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ABSTRACT: Tomaralimab (OPN-305) is the first humanized immunoglobulin G4 monoclonal antibody against TLR2 and is
designed to prevent inflammation that is driven by inappropriate or excessive activation of innate immune pathways. Here, we
constructed a homology model of Tomaralimab and its complex with TLR2 at different mapped epitopes and unraveled their
behavior at the atomistic level. Furthermore, we predicted a novel epitope (leucine-rich region 9−12) near the lipopeptide-binding
site that can be targeted and studied for the utility of therapeutic antibodies. A geometric deep learning algorithm was used to
envisage Tomaralimab binding affinity changes upon mutation. There was a significant difference in binding affinity for Tomaralimab
following epitope-mutated alanine substitutions of Val266, Pro294, Arg295, Asn319, Pro326, and His372. Using deep learning-based
ΔΔG prediction, we computationally contrasted human TLR2−TLR2, TLR2−TLR1, and TLR2−TLR6 dimerization. These results
reveal the mechanism that underlies Tomaralimab binding to TLR2 and should help to design structure-based mimics or bispecific
antibodies that can be used to inhibit both lipopeptide-binding and TLR2 dimerization.

■ INTRODUCTION
Toll-like receptor (TLR) dysregulation due to pathogens
causes inflammation or hyperresponsiveness of the immune
system and may affect an adaptive immune response.1 The
nature and magnitude of the adaptive immune response have a
great impact owing to the defense against pathogens via a TLR
because TLR activation guides T-cell differentiation into CD4+
T helper cells or CD8+ cytotoxic T lymphocytes and promotes
dendritic-cell maturation into fully competent antigen-present-
ing cells.2 TLR signaling is initiated by the dimerization of
intracellular Toll/IL-1 receptor (TIR) domains. Except for
TLR3, all TLRs recruit the myeloid differentiation primary
response 88 (MyD88) protein to the TLR TIR domains,
resulting in downstream signaling that culminates in the
production of proinflammatory cytokines. Depending on a
ligand, TLR2 interacts with TLR1 (triacylated lipopeptides) or
TLR6 (diacylated lipopeptides) to form two distinct
heterodimers, TLR2−TLR1 and TLR2−TLR6, which lead to
MyD88-dependent activation of NF-κB.3 The pivotal role in
the immune responses that are at risk of dysregulation makes
TLRs an attractive therapeutic target.

TLR2 dysregulation has been implicated in numerous
diseases, for example, atherosclerosis, arthritis, asthma, sepsis,
septic shock, tumor metastasis, and autoimmunity.4−7

Modulation of the TLR2 signaling pathway and the develop-
ment of TLR2 antagonists to inhibit cytokine production in
inflammatory diseases and autoimmune diseases are ther-
apeutically worthwhile. Nonetheless, TLR2 agonists are among
the most effective vaccine adjuvants against human immuno-
deficiency viruses, hepatitis B virus, and human papillomavi-
rus.8−10 N-methyl-4-nitro-2-(4-(4-(trifluoromethyl) phenyl)-
1H-imidazol-1-yl) aniline (CU-T12-9), a small-molecule
agonist, stabilizes the TLR1−TLR2 heterodimer and activates
downstream signaling by invoking tumor necrosis factor α
(TNF-α), interleukin 10 (IL-10), and inducible nitric oxide
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synthase (iNOS) through NF-κB signaling.11 Synthetic small-
molecule agonists called diprovocims induce heterodimeriza-
tion of TLR2 and TLR1 as well as the formation of a TLR2
homodimer in vitro.12 C29 and a derivative of ortho-vanillin
inhibit TLR2 signaling in vitro and in vivo.13 Staphylococcal
superantigen-like protein 3 (SSL3) interferes with the TLR2
ligand binding by blocking its binding site and interacts with
the complex of TLR2 with lipopeptides, thus preventing the
formation of heterodimers TLR2−TLR1 and TLR2−TLR6.14
On the other hand, neither TLR2 agonists nor antagonists are
in clinical or preclinical development as small-molecule drugs
because of the high selectivity of the ligands and the
stabilization of the protein−protein interaction (PPI).
Nevertheless, the design of monoclonal antibodies (mAbs)

competing with PPI formation (necessitating humanization of
the immunoglobulins to prevent an immune reaction) has
been remarkably successful. Accordingly, mAbs have become a
key class of therapeutic agents for the treatment of many
human disorders, particularly cancers and immunological,
infectious, neurological, and metabolic diseases, because of the
active development of antibody medicines in recent decades.15

The unique structure of antibodies makes them highly antigen-
specific and popular biological tools for the precise probing of
individual molecules. Their therapeutic application is also
highly desirable owing to their high specificity to disease-
associated molecules and good safety. More recently, next-
generation mAb immunotherapies have boosted the creation of
antibody therapies. Computational techniques for antibody
discovery have the potential to advance this discipline by
generating findings faster than current standard laborious
experimental procedures.16 By using in silico methods rather
than in vivo maturation or experimental selection procedures,
one may search a much larger space, perhaps discovering
bigger and more beneficial evolutionary steps. Iterative
computational methods can improve the binding affinity of
mAbs beyond that achieved by in vivo maturation.17 For
rational antibody design, well-established structural bioinfor-
matic approaches such as homology modeling,18,19 protein−
protein docking,20 and protein interface prediction21 are
already in use.
In the present study, we first designed an antibody model

and studied its dynamics in detail. Next, we used a TLR2
crystal structure and a Tomaralimab-modeled structure to map
the likely TLR2 epitope. As there is no experimentally resolved
structure of the TLR2−Tomaralimab complex, we constructed
it computationally via flexible protein−protein coupling.
Molecular dynamics (MD) simulation trajectories and bind-
ing-energy calculation revealed that it is the PE1 site that favors
Tomaralimab binding. To evaluate the effect of mutation on
Tomaralimab binding affinity, we compared the ΔΔG of the
wide type and mutant complex by means of a deep learning
algorithm. Furthermore, we evaluated molecular interactions
within complexes TLR2−TLR1, TLR2−TLR6, and TLR2−
TLR2. We provide a comparative analysis of the most
important residues from the dimeric interface of TLR2 that
drive the homodimerization and heterodimerization (with
TLR1 or TLR6). The deep learning-based ΔΔG prediction
enabled us to determine that six dimeric interface residues are
responsible for dimerization.

■ MATERIALS AND METHODS
Tomaralimab Sequence Identification and Model

Building. The sequence was retrieved from the Therapeutic

Antibody Database (TABS) a unique database of therapeutic
antibodies, and the AntiBodies Chemically Defined (ABCD)
database.22 After verifying the antibody sequence, a three-
dimensional (3D) model was built in the MOE2020.0923 built-
in antibody homology modeling application and the PyRosetta
program.24,25 Antibody sequences were separated into a light
chain variable domain (VL) and a heavy chain variable domain
(VH). After that, for homology modeling, a suitable framework
template was selected based on scoring and a structural fit of
the integrity of the backbone. After determining the VL−VH
framework of Tomaralimab, complementarity-determining
regions (CDRs) in loops were assigned through grafting
onto the Fv framework. Finally, we generated 100 single-chain
variable fragment (scFv) models for the most likely
orientations of the CDRs to preserve their distinct loop
conformations. The CDRs of the antibody were annotated
according to Chothia and Lesk’s numbering scheme.26,27 The
top model based on the lowest energy was chosen for further
analysis.
Epitope Prediction. Epitopes were predicted as described

previously.28 The predicted epitopes were ranked by their
score, which is given by

= d n T Tepitope score ( )Pr( , )ab ag

where, Tab and Tag are the amino acid types of antibody and
antigen residues, respectively, that belong to the node n.
Molecular Docking and MD Simulation. The Tomar-

alimab 3D model was docked to TLR2 (Protein Data Bank ID:
2xi) via the reported and predicted epitopes by an antibody−
antigen docking protocol described in our previous report.28

After the clustering of the docked solutions, three solutions
were selected from the most populous clusters on the basis of
root mean square deviation (RMSD) and the docking score in
each case.
The stability of the docked complex was validated by MD

simulations performed in GROMACS 2020.229 as described in
our previous study.28

Binding Energy Calculations. The binding energy
between the mAb and TLR2 was calculated using molecular
mechanics Poisson−Boltzmann surface area (MMPBSA). The
effects of polar and nonpolar parts of the solvent on the free
energy were determined by means of the Poisson−Boltzmann
equation and the calculation of the surface area, while the
enthalpy of the system was computed from the MMPBSA. The
basic equations are

= +G G G G( )bind receptor mAb receptor mAb

= +G E G T Sbind MM sol

where ΔGbind is the binding free energy, ΔEMM represents the
intramolecular energy difference in a vacuum, ΔΔGsol is the
solvation energy difference, T denotes absolute temperature,
and ΔS is the change in entropy. The MMPBSA calculations
were performed using the g_mmpbsa tool and the adaptive
Poisson−Boltzmann Solver. Frames from the last one-third of
the MD simulation were extracted for each complex at 10-
frame intervals. For the g_mmpbsa run, the dielectric constant
of the aqueous solvent was set to 80, the interior dielectric
constant was set to 4, and the surface tension constant g was
set to 0.022 kJ/mol. The average contribution of the residues
to the binding energy was calculated for each complex. The
entropy contribution was ignored because the cost of
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computations for these large protein−antibody systems was
too high. Additionally, we performed a per-residue decom-
position analysis to elucidate the individual energy contribu-
tion of mAb and TLR2 amino acids to the overall binding
energy. A binding free energy decomposition was carried out
using the gmx_MMPBSA tool.30 We calculated the energeti-
cally important residues within 5 Å at the interface by
decomposing each residue using the effective free energy
decomposition method.31

Deep Learning Framework for Predicting Binding
Affinity Changes Upon Mutations. For the prediction of
the binding affinity change upon mutation in TLR2-

Tomaralimab, the single-point mutations in the TLR2 epitope
were enumerated by means of PyRosetta implemented in the
jupyter notebook. To estimate the mutation(s) effect, the
resulted complexes’ sidechains were repacked around the
mutation, and energy was minimized. The geometric deep
learning method32 was utilized to predict and identify the
effect of mutation on Tomaralimab binding to TLR2. The
geometrical neural network encodes the residues in wide type
and the mutant complex with local coordinates as input. Let
f iwt represent the feature of the i th residue in the wild-type
complex, and f imut represent the feature of its counterpart in
the mutant complex. The features shared across residues in the

Figure 1. Annotation and dynamics of the Tomaralimab homology model. (a) Framework regions are highlighted in green (VL) and marine blue
(VH), and hypervariable loops are red (H1 and L1), orange (H2 and L2), and indigo (H3, L3). Root mean square (b) deviation and (c)
fluctuation of VL and VH. (d) Compactness of the mAb.
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complex are used as an input in the multilayer perceptron to
predict the difference in binding affinity between the two
complexes

=x f f f fMLP ( , ) MLP ( , )i i i i i1
wt mut

1
mut wt

=D W x
i

i

Where MLP1 stands for standard multilayer perceptron
network, while W stands for trainable weight matrix.
Furthermore, TLR2 homo- and heterodimers were con-

structed in PyRosetta. An alanine scan was performed using
PyRosetta scripts, where computational models of the alanine
variants were first generated, with energy minimization. We
performed binding-energy calculations using a deep learning
approach32 to determine ΔΔG of alanine mutants.

■ RESULTS AND DISCUSSION
The anti-TLR2 humanized immunoglobulin (Ig) G4 mAb in
question has potential anti-inflammatory and antineoplastic
activities.33 Upon intravenous administration, Tomaralimab
binds to the ligand-binding site on the receptor (TLR2) and
blocks the activation of TLR2-mediated innate-immunity
signaling.34

Characterization of the Structure and Dynamics of
Tomaralimab. Tomaralimab is an anti-TLR2 humanized
immunoglobulin G4 mAb created by Opsona Therapeutics.
Tomaralimab is being studied in two patient groups: a Phase I/
II trial against lower-risk myelodysplastic syndrome
(NCT02363491) and a Phase II trial testing the ability to
prevent delayed renal graft function (NCT01794663), a
condition that can occur after a kidney transplant.35

Antibody structure prediction has been widely used in many
biological analyses. The 3D structure of Tomaralimab has not
yet been reported. The 3D homological model of the
Tomaralimab scFv region was constructed here in the
MOE2020 antibody modeler and PyRosettaAb from an IgG
template (Protein Data Bank ID: 2NY7) that consists of one
VL and one VH domain (Figure 1a). The quality of the top 3D
model was evaluated on the MolProbity web server (http://
molprobity.biochem.duke.edu/),36 which determines the clash
score (the number of unfavorable steric overlaps at >0.4 Å per
1,000 atoms), the percentage of backbone conformations in
the favored Ramachandran region, and the MolProbity score
that combines the clash score, the percentage of side-chain
conformations classified as rotamer outliers, and the
percentage of backbone Ramachandran conformations outside
the favored region (Table 1). The overall steric hindrance of
the structure owing to clashes was removed through the
refining of the model by maintaining the appropriate
orientation of the CDRs.
To assess the flexibility, mobility, and accuracy of the

modeled structure, the PyRosetta 3D model with the least
outliers on the Ramachandran plot was subjected to MD
simulations. By simply examining the simulation of the mAb,
we can quantify the extent to which various regions of the
molecule move at equilibrium and can determine which types
of structural dynamics it undergoes. The stability of the
simulation system was evaluated by determining the RMSD of
Cα atoms of the 3D model (Figure 1a); initially, it was
assumed that the system achieves stability after 50 ns, but the
graph of the 3D model showed fluctuation between nano-
seconds 105 and 125. Finally, the conformational stability of

the mAb was reached after 125 ns because the RMSD
remained constant thereafter. On the other hand, both the VL
and VH showed the same behavior (Figure 1b). The fluctuation
in RMSD from nanoseconds 105 to 125 may be due to the
flexible nature of the loops. To obtain sufficient sampling of
the mAb conformation sampling, we increased the sampling
time to 450 ns (Figure 1b). The RMSD remained constant for
further sampling time. Further, to check the reproducibility
and reliability of the data, we performed the 3 replicas of mAb.
The RMSD showed a similar trend in 3 replicas (Figure S2a).
The displacement of individual atoms at an instant of the
simulation was measured by determining root mean square
fluctuation (RMSF). An RMSF graph (Figure 1c) revealed
marked oscillation of loop residues 130−140 and 187−200 in
the VH chain. Compared to other regions in both VL and VH,
the loop residues oscillated with a higher amplitude.
Furthermore, we assessed the mAb’s compactness by
determining its radius of gyration (Rg). This parameter (Figure
1d) underwent a significant decrease between nanoseconds 50
and 80 and then stayed constant during the remainder of the
simulation run. The second and third replicas showed slightly
higher Rg values than the first up to 250 ns and remained
constant thereafter (Figure S2b). Rg spanned the range from
∼24 to ∼25 Å, revealing that the mAb retained compactness
during the simulation.
Mapping of the Tomaralimab-Binding Site on TLR2.

To construct the TLR2−mAb complex, the epitope of the
mAb should be known. A probable epitope of the anti-TLR2
mAb in question was predicted using Tomaralimab and TLR2
structure coordinate files, as demonstrated elsewhere.29 Among
the ranked epitopes, two were selected for docking analyses
and compared with the reported epitope36 represented by R
hereafter in this study. A Ramachandran plot was analyzed to
validate the epitopes (Figure S1). The mapping of these
epitopes onto TLR2 is shown in Figure 2. PE1 overlaps with
the reported epitope (R) because many residues are common
between them and because both are at the TLR2 dimerization
interface. These data support the published evidence that
Tomaralimab interferes with TLR2 dimerization.37 PE2 is
located on the convex surface of TLR2 in the leucine-rich
region at positions 9−12 (LRR9-12; Figure 2a).
Understanding the mode of binding of an immunoglobulin

to its antigen has immense medical, industrial, and biological
implications. To illustrate the mode of binding of the mAb at
hand, molecular coupling of Fab (Tomaralimab) to TLR2 was
performed in three different epitopes. The docked solutions
were clustered, and representative complexes from the most
populated clusters were chosen. The preferred solution was
superimposed with the structures of TLR1 and TLR6 bound to
TLR2 in the same orientation as seen in the respective

Table 1. Validation of Tomaralimab Models

Ramachandran data

model no. clash score outliers (%) favored (%) MolProbity score

1 5.05 1.40 92.09 2.55
2 6.12 2.79 89.07 2.62
3 6.74 3.49 83.72 2.75
4 5.51 3.02 86.74 2.69
5 6.43 3.26 85.81 2.61
6 8.57 1.86 85.35 2.79
7 7.66 3.26 85.35 2.76
8 6.28 3.02 86.98 2.57
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complex (Figures 2b−d and S3a−f). The superimposition in
the case of the reported epitope and PE1 indicated that OPN-
305 disrupts dimerization because it binds to TLR2 in the
same region as TLR1 and TLR6 do (Figures 2b,c and S3a,b
and S3d,e). As revealed by the superimposition of the TLR2
dimer and the TLR−mAb complexes, the orientation of these
two complexes favors blockage of the dimerization site.
Therefore, Tomaralimab should block the heterodimerization
of TLR2 with TLR1 and TLR6. According to surface plasma
resonance analysis, TLR2 and the immunostimulatory lip-
opeptide had a direct and specific interaction that was blocked
in a dose-dependent manner by OPN-301 (a murine analogue
of Tomaralimab).37 They used OPN-301 to treat HEK293
cells that had been overexpressed with mutant human TLR2

construct that lacked the respective portion of the wild-type
extracellular domain.38 The absence of NF-κB-dependent
reporter gene activation in response to lipopeptide exposure
after OPN-301 administration demonstrated that the epitope
identified by OPN-301 is located within the LLR9-12 region of
TLR2.37 The entrance to the lipopeptide binding pocket in
TLR2 is located between LRRs 11 and 12,39 which is crucial to
both the TLR−TLR (TLR2−TLR1 or TLR2−TLR6)
dimerization surface and the antibody epitope (Figure 2b,c).
The multiple sequence alignment of human, mouse, and
monkey TLR2 (Figure S4) showed 72 and 96% sequence
identity, respectively. Typically, the amino acids of TLR2
which are interacting with the antibody are highly conserved.
However, OPN-301 specifically inhibits mammalian TLR2

Figure 2. Dynamics of the mapped epitopes. (a) Mapping of the epitopic residues of reported epitope R and of predicted epitopes PE1 and PE2.
Tomaralimab docked in (b) R, (c) PE1, or (d) PE2. Structural fluctuations were measured as (e) RMSD and (f) root mean square fluctuation
(RMSF).
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activation and cross-reacts with human, pig, and monkey
TLR2, indicating that this antibody is specific for a critical
epitope.40 Furthermore, in vitro studies show that Tomar-

alimab inhibits TLR2 signaling in mice, pigs,41 cynomolgus
monkeys, and human cells.34 The data suggest that
Tomaralimab is specific to a critical epitope yet conserved.

Figure 3. Fluctuation of interatomic distances during interfacial interactions. (a) Computed averages and fluctuations of interatomic distances for
selected residues. Three epitopic patches (b) R (c) PE1 and (d) PE2 are shown with structural details of key interfacial interactions between TLR2
and the antibody.
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Consequently, these data implicate that Tomaralimab binds to
a specific epitope within the TLR2 extracellular domain to
abrogate the TLR2 heterodimerization, resulting in the
silencing of downstream signaling cascades. Furthermore, in
the third complex, the mAb binds to the convex face of
LRR10-13, partially covering the entrance of the lipopeptide-
binding pocket (Figures 2d and S3c,f). We superposed this
complex with the crystal structure of the TLR2−SSL3 complex
(Figure S3g). We found that the binding of the mAb overlaps
with the binding of SSL3. These data suggested that the
antibody binding at the PE2 site accompanies a conformational
change in TLR2 and prevents dimerization, which is crucial for
the activation of downstream signaling. These results implied
that the mAb designed based on the PE2 epitope interferes

with lipopeptide binding and disrupts an already-formed
TLR2−lipopeptide complex, thereby, preventing TLR hetero-
dimerization and downstream signaling. These findings are
backed up by a study on SSL3 binding to TLR2 on the convex
face.14

Dynamics of Tomaralimab at the Mapped Sites on
TLR2. To determine the correct mapping for locating more
precisely the true binding site of Tomaralimab, we performed
an MD simulation of the docked complexes. Structural
fluctuation of the simulation systems was measured by
means of RMSD and RMSF of Cα atoms. The RMSD of
the PE1 and PE2 complexes proved to be slightly higher than
that of the R complex up to 110 ns (Figure 2e). Meanwhile, to
achieve sufficient sampling of conformations, we enhanced the

Figure 4. Analysis of the binding affinity of Tomaralimab using deep learning. (a) Effect of epitope mutation on the Tomaralimab binding affinity
measured by ΔΔG using deep learning. Tomaralimab binding affinity affected by TLR2 residues (b−h) is visualized.
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sampling time up to 300 ns of each complex. There was an
increase in RMSD of the R complex after 150 ns but remained
constant (Figure 2e). However, the RMSD of the PE1 and PE2
complexes did not change. To make the data conclusive, we
performed the 3 replicas of each complex (Figure S2c−e). All
complexes showed similar behaviors in 3 replicas; however, R
and PE1 underwent an increase in RMSD in the third replica
with a similar trend as in their first and second run. To assess
the protein−mAb interactions during the simulations, a
number of hydrogen bonds were assessed. As the time
trajectory progressed, the mAb formed 10 to 15 hydrogen
bonds at the PE1 site, 7 to 12 at R and 10 to 12 at the PE2 site
(Figure S2f). In addition to the RMSD of the complexes, the
mAb and TLR2 in the complex were compared with their apo
forms. The bound forms of both showed higher RMSDs than
their apo forms did (Figure S3h,i). We determined the
displacement of the residues�or the extent to which the
residues of the mAb and TLR2 fluctuated during the
simulation during the complex formation�by measuring
their RMSF. The TLR2 residues in the PE2 complex were
found to oscillate with a higher amplitude, especially the
residues in the central region, where the antibody binds in this
complex. On the contrary, in the other two complexes, only the
terminal residues showed fluctuation, which was also seen in
the apo form (Figure 2f).
Electrostatic Interactions within the TLR2−mAb

Complex. To understand the structural origin of TLR2−
mAb binding and affinity differences between different
mapping sites, we focused on amino acid interactions of the
binding contact regions (Figure 3). The dimerization interface
of TLR2−TLR1 has a small hydrophobic core in the center
surrounded by ionic and hydrogen-bonding interactions.39,42

In the case of the first and second complexes, the antibody
binds to the dimeric region by forming hydrophobic, hydrogen,
and ionic bonds with TLR2. Tomaralimab has several
interlocking hydrogen bonds in R (Figure 3a,b), including
Glu29−His292 (H), Ser67−Asp205 (H), Ser80−Asp159 (H),
and Arg18−Met133 (H), while additional hydrophobic
contacts with the antibody can be found in the Val58−
Thr262-type ionic bond; the average distance is 2 Å.
In the PE1 patch, both light and heavy chains of the

antibody are involved, in sharp contrast to the TLR1 or TLR6
binding (Figure S3b,e). The hydrophobic core at the dimeric
interface is overhauled by CDRs at this location along with
Tyr32 and Tyr31, which form hydrogen bonds with Asp393
and Ser418 of the receptor (Figure 3c). There is also the
consistency of such hydrogen bonds as Glu59−Cys321 (H),
Asn57−Asp260 (H), and Thr103−Gln370 (H), with an
average distance of >5 Å (Figure 4a,c). An ionic pair was
found between Glu29 and His292 with an average distance of
2.5 Å.
The contact area between the antibody and TLR2 at the

PE2 site is smaller (Figures 3d and S3c,f). The convex nature
of TLR2 makes this patch less exposed to antibody binding
because we see that fewer areas encounter antibodies.
Furthermore, the binding of the antibody to the PE2 patch

(LRR9-12) (Figure S3c) of the receptor does not interfere
directly with the dimerization site. The hydrogen and ionic
interactions of TLR2 and the mAb are presented in Figure 3d.
Hydrogen bonds Tyr32−Le324, Ser60−Arg270, Arg98−
Ser272, and Thr28−Asp279 turned out to be transient, with
an average distance of >5 Å (Figure 4a,d). Notably, antibody
binding at this site overlaps with SSL3 binding (Figure S3g).
The structure of the TLR2−SSL3 complex indicates that SSL3
binds to LRR11-13 on the convex surface of TLR2.14 SSL3
covers the entrance intended for lipopeptides, and therefore, it
should be covered by antibody binding. Finding specific
residue−residue interactions between an antibody and antigen
and integrating them into a machine learning approach is used
to design biologically active antibodies.43

Energetic Analysis of the TLR2−mAb Complex. Free
energy describes the strength of antibody affinity for an
antigen. The paratope−epitope binding reaction results in a
free-energy change. The binding-free-energy change accom-
panying the interaction of the antibody at different epitopes of
TLR2 was computed by the MMPBSA technique. Table 2
summarizes the binding free energies of Tomaralimab in three
epitopes. The ΔGbinding for the reported epitope proved to be
−1158.740 ± 197.572 kJ/mol; notably, for the PE1 epitope,
this parameter was found to be −1324.291 ± 191.206 kJ/mol,
that is, 166 kJ/mol higher than that of R. In contrast, in PE2,
ΔGbinding is 1080.718 ± 197.593 kJ/mol. Regarding the
binding-energy data, we concluded that the antibody has a
stronger affinity for the PE1 epitope than other epitopes.
The lower free energy of the antibody in the PE2 patch

means that Tomaralimab binds specifically to the dimerization
site. As shown in Figures 4d and S3c, only a small area comes
into contact during the formation of the antigen−antibody
complex, and this area is also the loop region of the receptor,
which is highly flexible. On the contrary, we observed notable
binding energy for the antibody in the PE1 patch, indicating its
stronger affinity for this epitope. The antibody was geometri-
cally aligned with TLR2 in a stable configuration, and the area
of contact was larger than that of other epitopic patches, as
displayed in Figures 3c and S3b. MMPBSA analysis calculates
the approximate free energy of binding within an antibody−
antigen complex.44 Furthermore, we performed per-residue
decomposition analysis to elucidate the individual energy
contributions of amino acids of mAb and TLR2 toward the
overall binding energy. Figure S5 illustrates the energy
contribution of the top ten residues in Tomaralimab and
TLR2 toward total binding energy at R, PE1, and PE2. His292,
Tyr297, and Met133 of TLR2 contribute −3.5 to −2.5 kcal/
mol, and Arg18, Ser80, and Ser67 of the mAb contribute −4.6
to −3.6 kcal/mol toward total energy at R (Figure S5a). A total
of −4.8 to −3.2 kcal/mol is added to the total energy at the
PE1 epitope by amino acids Leu345, Tyr297, Val347, and
His372 of TLR2, and −8.7 to −4.4 kcal/mol is added by
Asn57, Thr31, Tyr32, and Lys32 of mAb (Figure S5b). In
terms of energy content, Ser272, Val277, Tyr306, and Arg270
of TLR2 contribute −3.6 to −3.0 kcal/mol, whereas Tyr32,

Table 2. Binding Energy of Tomaralimab Toward TLR2

epitope position Vdw energy electrostatic energy polar solvation SASA binding energy P value

R −325.962 ± 29.409 −2006.454 ± 185.514 1218.181 ± 172.642 −44.506 ± 8.320 −1158.740 ± 197.572 0.0001
PE1 −405.136 ± 33.046 −2000.633 ± 249.873 1135.067 ± 213.475 −53.589 ± 8.403 −1324.291 ± 191.206 0.0001
PE2 −452.370 ± 49.961 −1557.42 ± 193.853 988.298 ± 181.932 −59.217 ± 9.354 −1080.718 ± 197.593 0.0003
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Thr34, and Arg54 of mAb contribute −4.9 to −4.0 kcal/mol to
PE2 (Figure S5c).
Analysis of the Binding Affinity of Tomaralimab

Using the Deep Learning Framework. To estimate the
effect of mutation on Tomaralimab, we constructed the single-
point alanine substitution in the Tomaralimab binding epitope.
We computed the difference in binding affinity between the
wide type and the mutant complex by measuring ΔΔG using
the deep learning framework. The deep learning methods have
been validated on split-by-complex fivefold cross-validation
over the Structural Kinetic and Energetic database of the
Mutant Protein Interactions (SKEMPI) V2.0 dataset. A subset
of 1,131 single-point mutations and 1707 multipoint mutations
was used to benchmark the model and other baselines.

Pearson’s correlations between the predicted ΔΔG and the
real ΔΔG values are 0.65. The model makes predictions with
moderate to high correlation with experimental binding data.32

The ΔΔG of the alanine mutants are shown in Figure 4.
Among epitope-mutated residues, the binding affinity of

Tomaralimab was affected by Val266Ala, Pro294Ala, Arg295A-
la, Asn319Ala, Pro326Ala, and His372Ala. Alanine substitution
of Arg295, Asn319, and His372 showed a significant ΔΔG
value of −0.6 to −4.32 kcal/mol. Figure 4b−g shows the
structure of these mutations. Mutations in these residues
showed negative free-energy (−ΔΔG) changes, which means
that these mutations can reduce the efficacy of Tomaralimab. A
potential CDR mutation can be evaluated to improve the
efficacy of the antibody. An understanding of protein−protein

Figure 5. Energy contribution of interfacial interactions of TLR2 during homo- and heterodimerization. Interfacial interactions within (a) TLR2−
TLR2, (b) TLR2−TLR1, and (c) TLR2−TLR6. (d) Bars represent the energy contribution of TLR2’s interfacial residues to homodimerization
and heterodimerization after alanine substitution. TLR2 appears to be highly optimized for heterodimerization, as evidenced by the binding-energy
values after a single substitution.
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binding affinity values is vital to understanding biological
phenomena in a cell, such as how missense mutations alter the
protein−protein binding. With the deep learning algorithm,
the changes in binding affinity upon changes in amino acids
can be modeled quickly and accurately.45

Energy Contribution of TLR2 Dimeric-Interface
Residues. To assess the importance of the dimeric-interface
residues of TLR2, we analyzed the dimeric interfaces within
complexes TLR2−TLR1, TLR2−TLR6, and TLR2−TLR2.
The surface corresponding to the PPI within these complexes
contains a hydrophobic interaction reinforced by surrounding
hydrophilic residues that form ionic and hydrogen bonds
(Figure 5). To find out the energy contribution of the dimeric-
interface residues, we computationally mutated each to alanine,
and the resultant complexes were energy-minimized and ΔΔG
was determined by using the deep learning approach. To
investigate how essential the native residues are, we substituted
them with alanine and tested whether this alteration
significantly affects the dimerization. The results of the alanine
scan (Figure 5d) revealed that 63% (12 out of 18) of dimeric-
interface residues of TLR2 are important for dimerization. We
noticed that residues Lys347, Phe349, Leu371, Glu375,
Tyr376, and Asn379 make a major contribution to the
interactions at the dimerization interface. Each residue
contributes −2.5 to −25 kcal/mol energy to the interaction.
This is because they help establish strong bonding during
TLR2 heterodimerization with TLR6 or TLR1 as well as in
homodimerization. Glu375 engages in a strong ionic bond with
Lys313 of TLR6. Lys347 and Tyr376 are involved in hydrogen
bonding with Thr366 and a hydrophobic contact with TLR6
Pro342. These findings support crystallographic analysis data,
which revealed that these residues participate in hydrogen
bonding, hydrophobic contacts, and ionic interactions during
TLR2−TLR6 and TLR1−TLR2 heterodimerization.39,42
Aberrant TLR2 activation is associated with atherosclerosis,

arthritis, asthma, sepsis, septic shock, tumor metastasis, and
autoimmunity. Unraveling the biophysical characterization of
the Tomaralimab interaction with TLR2 points to a binding
mechanism of mAb and provides new insights into the
development of TLR2-based therapeutics. Our mapping data
on the novel epitope offer a new approach to TLR2 inhibition
via blockage of both ligand binding and dimerization by a
bispecific antibody to disrupt heterodimerization, which is
crucial for TLR activation and downstream signaling. A deep
learning framework can identify and predict changes to the
CDR that enhance the antibody’s efficacy by estimating the
effect of mutations on Tomaralimab binding affinity. In a
recent study, the CDR of the P36-5D2 antibody was
optimized, and its potency increased ∼10 to 600-fold against
SARS-CoV-2 variants, including Delta.32 Altogether, deep
learning and MD simulation methods can efficiently optimize
the antibody and potentially develop a new antibody candidate
with broader and more potent neutralization.
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