
Transient reprogramming primes the heart for repair

Natalie A. Gude, Fareheh Firouzi, Mark A. Sussman
SDSU Heart Institute and Biology Department, San Diego State University, San Diego, CA 
92182, USA.

Graphical Abstract

Cardiomyocyte loss followed by scar formation is the leading cause of heart failure upon 

pathological injury, chronic or acute stress, and aging. Despite decades of investigation, 

therapeutic development to enhance cardiomyocyte turnover and restore the structural and 

functional integrity of the heart has been limited due in part to the inherent lack of 
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proliferative capacity within adult cardiomyocytes. A therapeutic solution to the conundrum 

of post-mitotic cardiomyocytes has long been sought after, leading to a range of pre-

clinical interventional approaches including (but not limited to) overexpression of cell 

cycle proteins, induction of systemic hypoxemia, as well as transcriptional and hormonal 

regulation. The consensus outcome reveals dedifferentiation rather than proliferation 

potential of adult mammalian cardiomyocytes based upon phenotypic changes such as (1) 

loss of myofibrillar structure; (2) expression of stem cell markers; and (3) exhibition of 

immature metabolic functions[1]. In retrospect, the yet to be resolved refractory nature of 

adult cardiomyocytes with respect to cell cycle progression and cell division necessitates the 

need for an innovative approach to promote adult cardiomyogenesis.

Cellular reprogramming via the four pluripotency factors, OCT4, SOX2, KLF4, and MYC 

(OSKM), is a promising approach to epigenetically remodel somatic cells of various 

lineages into an induced pluripotent stem cell state. Partial reprogramming (PR) via the 

transient introduction of OSKM reverses age-associated phenotypes and promotes the 

regenerative potential of adult tissues such as skeletal muscle[2]. In an effort to illustrate 

the myocardial therapeutic significance of PR, Chen et al.[3], demonstrated that short-

term myocardial introduction of OSKM reprograms cardiomyocytes to a fetal phenotype 

evidenced by (1) transcriptome resembling neonatal and embryonic developmental stages; 

(2) expression of α-SMA; and (3) morphological rearrangement and cell cycle re-entry in 
vitro. Regardless of the time of induction, in vivo OSKM expression promoted structural 

recovery of the heart following myocardial infarction; however, functional results varied 

among induction regimens.

Driving cell cycle progression to achieve true proliferation in adult mammalian 

cardiomyocytes represents a longstanding goal in the ongoing effort to repair 

damaged myocardium[4]. From cardiomyocyte-specific overexpression of cyclins to 

transdifferentiation of fibroblasts into myocytes, to differentiating induced pluripotent stem 

cells (iPSCs) into cardiomyocytes, time and again, the results indicate that such approaches 

are unlikely to translate directly into clinically relevant therapies. And yet, each new 

insight into cardiomyocyte biology increases the knowledge base necessary to design better 

informed regenerative therapies. The current findings by Chen et al.[3] reveal a threshold 

of cardiomyocyte dedifferentiation in adult mice, after which cardiac function declines and 

cardiac tumors form, in contrast to lower vertebrates and neonatal mammals, which tolerate 

greater cardiac plasticity.

Creating pre-clinical models of cardiac repair that reflect clinically therapeutic scenarios 

remains an ongoing challenge in cardiac research. Differentiation of cardiac progenitor 

cells, iPSCs, or reprogrammed cardiomyocytes into functional, mature myocytes remains a 

major roadblock for translational applications. Experimental treatments that coincide with 

myocardial injury tend to represent cardioprotective salvage models rather than therapies 

that replace damaged myocardium post-injury. Functional outcomes may be improved; 

however, cardiac patients are unlikely to receive regenerative treatment at the time of 

a cardiac event. Interestingly, the infarction injury results presented by Chen et al.[3] 

highlight the challenge of associating clinically relevant cardiac repair with endogenous 

cardiomyocyte cell cycle progression. All of the partial reprogramming regimens result in 
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reduced scar size in infarcted hearts, and post-injury therapeutic treatment yields the most 

5-Ethynyl-2′-deoxyuridine (EdU) + cardiomyocytes. However, the best functional outcomes 

are observed in the pre-injury treatment group, whereas no functional improvement is 

observed in the post-injury therapeutic treatment cohort. Salvage, cell cycle progression, and 

function appear disconnected in this repair model.

Identifying true cardiomyocyte replication represents another point of contention among 

researchers. Mature cardiomyocytes are generally post-mitotic; however, their nuclei can 

undergo changes that appear to reflect proliferation, such as DNA synthesis in response to 

stress, binucleation or karyokinesis without cytokinesis, or increases in ploidy during aging. 

Measures of cell cycle re-entry such as EdU, phospho histone H3, even aurora B kinase, 

are insufficient to definitively prove full cardiomyocyte cellular division[5]. Reagents that 

track cell cycle in real-time, such as various transgenic fluorescence ubiquitination cell cycle 

indicator reporter animal models, can provide dynamic readouts of cell cycle status in vitro 
and in vivo. Perhaps the most convincing data demonstrating cardiomyocyte proliferation in 

the current publication are live imaging videos tracking tagged cells going through karyo 

and cytokinesis. Of course, the next crucial step in the regenerative process is to convert 

these dedifferentiated reprogrammed proliferating cardiomyocytes into functional adult cells 

that contribute to cardiac function. Whether comparable division and re-differentiation occur 

in damaged reprogrammed hearts remains to be demonstrated.

Systemic context plays a crucial role in myocardial regenerative potential. Metabolic and 

paracrine factors, and the state of the extracellular matrix all have an enormous impact on 

cardiomyocyte cell cycle activity[6–8]. Reprogrammed cardiomyocytes in an adult heart are 

not equivalent to developing cardiomyocytes maturing in concert with associated systemic 

postnatal hormonal changes[9]. Studies have shown that the paracrine, metabolic and 

structural milieu of an adult mammalian heart favor cellular hypertrophy or senescence over 

cardiomyocyte proliferation[10]. The myocardial environment in most heart disease patients 

is probably even less conducive to proliferation and repair, underscoring the challenge of 

transforming reprogrammed cells into new functional new myocytes. Nonetheless, while 

the gap between basic research findings and clinically relevant cardiac therapies remains 

unbridged, cumulative research findings are essential to successful development of those 

therapies.

Many questions about cardiomyocyte proliferation remain unanswered from the basic and 

clinical perspectives, perhaps the most important being: can adult human cardiomyocytes 

be coaxed to divide in response to injury on a therapeutically relevant level, and is it 

possible to quantify this proliferation in recipient human patients? Experiments performed 

in young adult mice in no way reflect the systemic profile of human heart patients, many 

of whom are elderly or have underlying comorbidities such as hypertension, diabetes, or 

other metabolic dysregulation. Timing and dosage of a hypothetical reprogramming therapy, 

in light of the results presented by Chen et al.[3], represent substantial translational hurdles. 

How can cardiomyocyte reprogramming be administered safely and titrated to avoid the 

deleterious effects observed in over-reprogrammed hearts? Would this be possible given the 

enormous variability among human cardiac patients? Perhaps the real takeaway lesson from 

this and similar studies investigating cardiomyocyte proliferation lies in understanding what 
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makes an adult cardiomyocyte healthy and capable of cell cycle re-entry to the point of 

replication. From a preventative medicine point of view, a more realistic approach may be to 

identify lifestyles and habits that support the more youthful and proliferative cardiomyocyte 

phenotypes identified in partial reprogramming models. Transcriptomic and proteomic 

profiling studies comparing youthful and diseased or senescent cardiac phenotypes may 

provide therapeutically relevant targets for suppressing senescence-associated secretory 

phenotype, inflammation, or oxidative stress in a time and a dose-dependent way to 

encourage myocardial healing. Evaluating signaling pathways associated with youthful 

or proliferative phenotypes could also reveal safer, more reliable targets. Ultimately, 

combinatorial therapies incorporating multiple restorative strategies probably hold the most 

promise for improving cardiac patient outcomes.

In summary, the holy grail of physically mending damaged human hearts remains elusive. 

Considerable time, resources, and effort have gone toward understanding myocardial injury, 

repair, aging, and possible regeneration in vertebrate animal models. Approaches including 

cell therapy, tissue engineering, and driving adult mammalian cardiomyocytes to proliferate 

in response to damage as documented in neonatal hearts, or adult fish and reptile systems, 

have yielded valuable new insights into cardiac biology. Moreover, although a marketable 

therapy to repair pathologically challenged human hearts has not yet materialized, this goal 

has inspired incredible scientific creativity and a deeper understanding of cardiac cellular 

and molecular biology. Put another way, research findings cannot be valued solely on their 

immediate translational relevance, or unduly influenced by increasing pressure to produce 

therapies and cures. However, clinically driven studies that build on collective basic and 

translational research findings bring cardiac medicine closer to curing or even preventing 

heart disease altogether.
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