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Germinal centers (GCs) are complex multicellular structures in which antigen-specific B
cells undergo the molecular remodeling that enables the generation of high-affinity
antibodies and the differentiation programs that lead to the generation of plasma–
antibody-secreting cells and memory B cells. These reactions are tightly controlled by a
variety of mechanisms, including the post-transcriptional control of gene expression by
microRNAs (miRNAs). Through the development of animal models with B cell-specific
modified miRNA expression, we have contributed to the understanding of the role of
miRNAs in the regulation of GC responses and in B cell neoplasia. Here, we review recent
advances in the understanding of the role of miRNAs in the regulation of B cell and T
follicular helper physiology during the GC response and in the diseases associated to GC
response dysregulation.
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INTRODUCTION

The germinal center (GC) response is a key B lymphocyte maturation and differentiation program
essential for the generation of competent protective immunity. The GC response is initiated in
mature B lymphocytes after antigen encounter and leads to the generation of memory B cells and
plasma antibody-secreting cells that produce antibodies with high antigen affinity and with different
immunoglobulin (Ig) isotypes, conferring the Ig molecule with the ability to orchestrate different
immune effector responses (1, 2). At the molecular level, these reactions are initiated by the activity
of activation induced deaminase (AID), an enzyme that deaminates cytosines in the Ig genes,
triggering somatic hypermutation (SHM) and class switch recombination (CSR), processes
respectively responsible for the changes in affinity and isotype in the Ig genes. At the cellular
level, initiation of the GC reaction requires the cognate interaction of antigen-activated B-
lymphocytes with a specialized subset of GC T CD4 cells, the follicular T helper (Tfh) cells. Tfh-
GC B cell interactions are dependent on a number of molecule interactions that signal for full B and
Tfh cell differentiation together with cellular localization in follicles. These interactions include T-
cell receptor recognition of B cell peptide-MHC complexes as well as CD40 and ICOS ligand co-
receptor interactions (3). Developing Tfh and B GC cells are influenced by changing cytokine,
chemokine and cellular environments through the induction of specific transcriptional programs
(4). Gene transcription in Tfh and B cells is regulated by key GC transcription factors such as BCL6,
as well as by RNA-binding proteins and microRNAs (miRNAs) (3, 5). miRNAs are small non-
coding RNA molecules that drive post-transcriptional negative regulation of gene expression by
org April 2021 | Volume 12 | Article 6604501
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promoting the degradation or translational blockade of partially
complementary target mRNAs. Mature miRNAs are 21-24-
nucleotide RNA molecules processed from longer RNA
precursors in two consecutive cleavage steps mediated by the
RNase III enzymes Drosha and Dicer (6). Ablation of miRNAs in
miRNA-processing-enzyme deletion knockout models has
demonstrated that miRNAs play essential roles in diverse
developmental, cellular, and physiological processes (7, 8).
miRNAs fine-tune cellular gene expression networks and have
emerged as essential regulators of GC differentiation responses.
miRNAs IN PHYSIOLOGICAL
GC REGULATION

Studies of global miRNA depletion in GC B and T cell-specific
models showed that miRNAs are essential for proper GC
formation (9, 10). Dicer-mediated miRNA depletion after AID
expression in early activated GC B cells impaired the production
of high-affinity class-switched antibodies and the generation of
memory B and long-lived plasma cells after T cell-dependent
immunization due to defects in B cell proliferation and survival
(9). Likewise, DGCR8-Drosha complex-mediated miRNA
depletion in CD4 T cells showed that CD4 T cell-expressed
miRNAs are essential for the differentiation of Tfh cells and the
induction of GC B cells during T cell-dependent immunizations
(10). Interestingly, miRNAs are not only required to regulate Tfh
and GC B cell function in a cell intrinsic manner, but are also
important contact-independent mediators of T-B cellular
communication (Figure 1). This communication occurs
through the transfer to B cells of a restricted set of T cell-
derived miRNAs in extracellular vesicles and modulates the
efficiency of GC generation and antibody secretion in response
to immunization (11).

miRNAs in the Regulation of B Cells
in the GC
The most extensively studied GC B cell miRNA is miR-155,
whose expression is upregulated after mature B cell activation
and in GC B cells (12–15). Infection of miR-155-deficient mice
with pathogenic bacteria showed that miR-155 expression is
required to control pathogen-induced disease (16).
Characterization of the response to T cell-dependent
immunizations in miR-155-/- loss-of-function and miR-155KI

gain-of-function mouse models revealed that miR-155
expression is required for efficient adaptive immune responses,
including the generation of GC B cells and the secretion of
antigen-specific antibodies (12, 16). miR-155 is a positive
regulator of the GC response, and deficiency in miR-155
expression leads to reduced cytokine production, IgG1
secretion, impaired affinity maturation, and plasmablast B cell
generation in a B cell autonomous manner (12, 17, 18). miR-155
controls affinity-based selection, at least in part, by protecting
light zone (LZ) GC c-MYC+ B cells from apoptosis (19).

Transcriptome studies showed that miR-155 regulates the
expression of numerous mRNAs in B cells (17, 18), although the
Frontiers in Immunology | www.frontiersin.org 2
functional consequences of miR-155-dependent mRNA
regulation in GC B cells has been characterized for only a few
miR-155 targets. The transcription factor PU.1 is a direct miR-
155 target implicated in miR-155 mediated effects on CSR (17).
PU.1 is encoded by Sfpi1, and the consequences of disrupting
miR-155–Sfpi1 mRNA interaction in vivo were determined by
generating knock-in mice with a mutation in the miR-155
recognition site in the Sfpi1 mRNA 3’UTR. miR-155-mediated
PU.1 post-transcriptional regulation was shown to be required
for efficient terminal plasma B cell differentiation and antigen-
specific immunoglobulin (Ig) secretion through the
downregulation of Pax5 expression and genes involved in
adhesion and B-T cell interactions (20).

The other well characterized miR-155 target in GC B cells is
activation-induced deaminase (AID), the enzyme responsible for
the molecular remodeling of Igs in the GC. Knock-in mice with a
disruption of the miR-155 recognition site in the Aicda mRNA
3’UTR demonstrated that miR-155 expression in GC B cells is
needed to limit AID expression, allow proper affinity maturation,
and restrict oncogenic AID-mediated MYC-IgH chromosomal
translocations (21, 22). GC tolerance of DNA damage is
multilayered and temporally regulated (23), and miR-155
expression is in turn limited by the expression of BCL6 (24,
25), an important transcriptional regulator and proto-oncogene
that inhibits the DNA damage response in GC B cells (26). In
addition, miR-155 negatively regulates the expression of Socs1, a
P53 activator important for the DNA damage response (27).
miR-155 thus plays a dual role in modulating the accumulation
of DNA double-strand breaks (DSB) associated with the GC
reaction, regulating P53 activity by controlling the expression
levels of Aicda and Socs1.

AID expression is directly regulated in B cells by yet other
miRNAs in B cells. miR-361 is another BCL6-downregulated
miRNA that targets Aicda, presumably in light-zone GC B cells
(25). miR-181b, which is highly expressed in mature resting B
cells and whose expression diminishes upon B cell activation,
targets Aicda directly through the binding of several partly
complementary sequences found in its mRNA 3’UTR (28).
Thus, AID levels are controlled by different miRNAs at
different stages of B cell activation.

Another miRNA that positively regulates the GC response
upon its induction during B cell activation and in GC B cells is
miR-217. Using gain- and loss-of-function mouse models, we
showed that miR-217 promotes the generation of GC B cells and
increases the generation of class-switched antibodies and the
frequency of somatic hypermutation in B cells. We found that
miR-217 regulates a DNA damage response and repair gene
network that stabilizes BCL6 expression in GC B cells (29). Thus,
miR-217 downregulates a network of genes that sense and repair
genotoxic events on DNA, which in turn can increase GC B cell
tolerance to DNA damage in the context of AID activity, very
much like BCL6. Notably, we found that miR-217 protects BCL6
from previously described genotoxic stress-induced degradation
(23), suggesting that both molecules form part of the same
network that renders GC cells permissive to genomic
instability and prone to malignant transformation.
April 2021 | Volume 12 | Article 660450
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Positive regulation of terminal post-GC plasma B cell
differentiation has been suggested to be regulated by other
miRNAs. A likely candidate is miR-148a, the most abundant
miRNA in human and murine plasma cells, which has been
Frontiers in Immunology | www.frontiersin.org 3
shown to promote plasma cell differentiation and survival in
vitro. Importantly, miR-148a expression was shown to
downregulate the expression of the GC transcription factors
Mitf and Bach2, which block premature plasma cell maturation
FIGURE 1 | miRNAs regulate gene expression in B and Tfh germinal center cells. Regulated miRNA expression is required to regulate B-Tfh cell interactions and
ensure proper GC responses. GC-derived dysfunctions caused by miRNA alterations can lead to the development of autoimmunity and/or B cell neoplasia through
the disruption of post-transcriptional control mechanisms required for the maintenance of GC homeostasis.
April 2021 | Volume 12 | Article 660450
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and favor cell death (30). Definition of the role of miR-148a as a
regulator of GC-dependent plasma cell differentiation in vivo
would require the development of gain- or loss-of-function miR-
148a B cell-specific mouse models.

GC miRNAs can also act as regulators that restrict the GC
response, the best-characterized negative regulators of GC
responses being miR-28 and miR-146a. miR-28 is a GC-specific
miRNA(14, 15)whose expression is lost in numerousmatureB-cell
neoplasms (31–33). By combining gain- and loss-of-function
approaches, we showed that miR-28 negatively regulates CSR and
immunization-triggered GC and post-GC plasma and memory B
cell generation. Combined transcriptome and proteome analysis
upon inducible re-expression of miR-28 in B cells revealed that
miR-28 expression induces the coordinated downregulation of the
key BCR signaling gene network regulating B-cell proliferation and
cell death (33), thus supporting the notion that miR-28 limits the
strengthofBCRsignalingandregulates proliferation and survival of
GC B cells.

miR-146a is expressed in B cells upon stimulation and within
GC B cells (15), and loss of miR-146a causes a B cell-intrinsic
increase in the GC response to immunization (34), spontaneous
GC generation in aged mice, and increased production of anti-
double–stranded DNA (dsDNA) auto-antibodies (35). miR-146a
was shown to limit B cell GC functional responses by
downregulating B cell expression of signaling pathway
components involved in GC B Tfh cellular interactions, such as
ICOSL (34) and CD40 (35).

Other miRNAs have also been suggested to negatively regulate
terminal post-GC plasma and memory B cell differentiation. miR-
125b, a miRNA highly expressed in dividing centroblasts in GC B
cells (36), has been shown to inhibit plasma cell generation and
antibody secretion in vitro (37, 38). Importantly, direct mRNA
targeting by miR-125b was shown to downregulate the expression
of BLIMP-1 and IRF-4 transcription factors, which are essential for
plasma cell differentiation (36–39). Prdm1, the gene encoding
BLIMP-1, is a direct target of other highly expressed GC B cell
miRNAs, including miR-9, miR-30a, and let-7 family miRNAs
(40–43). Interestingly, the expression of miR-30a and miR-125b is
regulated epigenetically in B cells and can be modulated using
histone deacetylase inhibitors to inhibit BLIMP-1 expression in the
context of antibody responses and GC-derived diseases (44–46).
Memory B cell generation is associated to changes in chromatin
accessibility and miRNA expression, and miR-181 has been
recently identified as a major gene expression regulator during
memory B cell differentiation (47).

Overall, these studies have identified a set of miRNAs that are
required to promote or limit the GC reaction through post-
transcriptional gene expression regulation in B cells (Figure 1
and Table 1).

miRNAs in the Regulation of Follicular
Helper T Cells
The induction of the GC reaction is critically dependent on the
colocalization of B cells with Tfh cells and interaction between
the two. This GC B-Tfh cell interaction and the resulting
intracellular signaling are also controlled by miRNAs expressed
Frontiers in Immunology | www.frontiersin.org 4
in Tfh cells. Remarkably, miR-146a downregulates the inducible
costimulatory Icos expression in Tfh cells (34), and thus the
expression of the two interacting molecules (ICOS and ICOSL)
of this costimulatory pathway are negatively controlled in both
cell subsets by the same miRNA. ICOS directly controls the
migration of CD4+ T cells from the T cell-B cell border into the B
cell follicles of peripheral lymphoid organs (77). Importantly,
ICOS signaling in T cells was shown to be important for miR-
146a mediated Tfh and GC regulation (34). Icos expression is
also negatively regulated by two other miRNAs whose expression
is downregulated during Tfh differentiation, miR-101 and miR-
103 (78, 79). Thus, ICOS co-stimulatory receptor expression is
redundantly regulated by miRNAs in Tfh cells presumably to
limit or end the GC reaction.

GCB-Tfh derived ICOS signaling ismediated by the PI3K/AKT
pathway (80) and inhibited by PTEN phosphatase activity in Tfh
cells (81). This key signaling pathway for Tfh activation and
differentiation (3) is additionally regulated at different levels in
Tfh cells bymiRNAs fromthemiR-17-92cluster.miR-17-92cluster
expression is induced early in T cell activation (48) and is repressed
by BCL6, the critical transcriptional factor that regulates Tfh
differentiation (82). T cell-specific miR-17-92 gain- and loss-of
function mouse models showed that the microRNAs of the cluster
are critical promoters of Tfh and GC B cell differentiation and
antigen-specific antibody generation during both T-cell dependent
immune responses and chronic viral infection (10, 48, 49). miR-17-
92 cluster miRNAs regulate the ICOS-PI3K signaling pathway in
Tfh cells through the simultaneous targeting of different pathway
inhibitory components. miR-17-92 inhibits PTEN phosphatase
expression upstream of AKT (10, 48, 51) as well as the
downstream AKT phosphatase PHLPP2 (48). This pathway is
additionally regulated in Tfh cells by Roquin, an RNA-binding
protein that recognizes specific stem-loop structures in the 3’UTRs
of target mRNAs and which interferes with miR-17-92 binding to
an overlapping binding site in the Pten mRNA 3’UTR (83).
Important miR-17-92 targets mediating other aspects of the Tfh
differentiation program include the transcription factor RORa;
responsible for the induction of IL-1R1 and CCR6 expression in
Tfh cells (10), andCXCR5, a hallmark Tfhmolecule that influences
Tfh cell localization to follicles in which the ligand CXCL13 is
expressed (82).

BCL6 represses the expression of a significant fraction of the
miRNAs expressed in mouse CD4+ T cells (82); however, the
functional contribution of this repression to the Tfh cell
transcriptional program has been characterized for few miRNAs
outside the miR-17-92 cluster. BCL6 represses miR-31 expression
in human Tfh cells through direct binding to its promoter (84).
miR-31 inhibits the expression of CD40L, SAP, and BTLA, which
are crucial forTfh cell helper activity and cross-talkwithB cells (85–
87). Accordingly, Tfh cells forced to express miR-31 display
decreased B-helper activity (84). Although BCL6 controls Tfh
activity in humans and mice, the role of miR-31 is restricted to
humanTfh cell differentiation, reflecting a species specificity on the
action of some miRNAs.

Bcl6 gene expression is also regulated by miRNAs in CD4+ T
cells, and this regulation influences the generation of Tfh cells
April 2021 | Volume 12 | Article 660450
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TABLE 1 | Identified roles of miRNAs in the regulation of physiological GC responses and in GC-derived dysfunctions.

Molecular mechanisms and targets

Promotes proliferation and survival in lymphocytes by inhibiting the
expression of Pten and Bim (51). Regulates differentiation and
enhances ICOS-PI3K signaling by downregulating Pten and Phlpp2
phosphatase gene expression in Tfh cells (10, 48, 49).

Regulates the GC reaction via B cell-intrinsic (12, 17, 18) and T cell-
intrinsic mechanisms (52). Prevents LZ GC c-MYC+ B cell apoptosis
by downregulating Jarid2 (19). Targets Sfpi1 (17, 60) and Aicda (21,
22, 44) mRNAs and prevents P53 (27) and ERK activation through
the inhibition of SHIP-1 (58) in B cells. Promotes Prmd1/BLIMP-1
expression and plasma cell differentation through PU.1-Pax5
downregulation in B cells (20, 60). Regulates Tfh development and
autoimmunity by modulating NF-kB, AP-1, and mTOR pathways (52)
and promotes Tfh cellular proliferation and CD40L expression by
repressing Peli1 (61). Targets S1pr1 in B cells from Faslpr lupus-like
mice, and its expression is decreased in SLE patients (57, 59).
Inhibits Pu.1 in rheumatoid arthritis B cells (60). Promotes age-
dependent inflammation associated to accumulation of Tfh, GC B
cells and the generation of autoantibodies in miR146a deficient mice
(62).
Downregulates DNA damage and repair response through Nbs1,
Xrcc2, Lig4, and Pds5b gene expression downregulation and BCL6
stabilization (29).

Promotes B-cell proliferation (63, 64). Downregulates the expression
of Ddk6, Dnmt3a, and the P53-responsive and tumor suppressor
gene Pxdn (64).

Promotes B cell activation and proliferation. Activates the PI3K–AKT–
mTOR pathway. Inhibits expression of Pten, Pdcd4 (69), Foxo (70),
Fas (65), and Pdcd4 (68).

Inhibits BCR signaling and impairs B-cell proliferation and survival.
Inhibits MAD2L1, BAG1, RAP1B, p-AKT, p-ERK, NFKB2, IKKB and
BCL2 gene expression (32, 33).
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GC regulation miRNA Role in GC physiology Role in B cell neoplasia Role in autoimmunity

miR-17-92 polycistron
(miR-17, miR-18a, miR-
19a, miR-20a, miR-19b,
and miR-92a)

Positive GC regulator. Promotes GC
responses, Tfh and GC B cell
generation (10, 48, 49).

OncomiR.
Promotes B cell GC-derived
lymphoma (50)

Promotes autoimmunity. miR-17-92
expression in lymphocytes promotes
spontaneous accumulation of Tfh and
GC B cells, IgG anti-dsDNA antibodies
and fatal immunopathology (48, 51).

miR-155 Positive GC regulator
Promotes GC responses and Tfh and
GC B cell generation (12, 16, 52)

OncomiR
Induces preB and mature B cell
lymphomas (53–56)

Promotes autoimmunity
miR-155 expression promotes
autoimmunity in autoimmune mouse
models of collagen-induced arthritis
(57), systemic lupus erythematosus
Faslpr (58, 59), and age-dependent
miR-146a deficiency (52).

miR-217 Positive GC regulator
Promotes GC B cell generation and
GC responses (29).

OncomiR
Overexpression in B cells leads
to clonal GC-derived lymphomas
(29).

NA

miR-29 Positive GC regulator
Promotes GC B cell generation after
T-cell dependent immunization (63)

OncomiR
Overexpression in B cells leads
to B-cell chronic lymphocytic
leukemia (B-CLL) development
(64)

Promotes autoimmunity
Promotes autoimmunity in collagen-
induced arthritis (63)

miR-21 Positive GC regulator
Promotes GC responses, Tfh and GC
B cell generation (Schell SL J Immunol
2019, 202 (1 Supplement) 121.12;
(Abstr) (65). Expression inhibited by
BLIMP-1 during plasma cell
differentiation (66).

oncomiR
Induces B lymphomas
dependent on continuous miR-
21 expression (67).

Promotes autoimmunity
miR-21 inhibition ameliorates disease in
a lupus model (68)

miR-28 Negative GC regulator
Impairs CSR and memory B and
plasma cell differentiation (33).

Tumor suppressor
Efficiently inhibits tumor growth
after intratumor or systemic
administration of miR-28
synthetic mimics in various
DLBCL and BL xenograft models
and in a primary mouse BL (33).

NA
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from T cell precursors. miR-10a, a miRNA highly expressed in
mouse regulatory T cells (Treg), has been proposed to attenuate
the conversion of inducible Tregs to Tfh cells through Bcl6
repression in mice (88). miR-346 has been suggested to repress
BCL6 gene expression in human Tfh cells (62).

Another keymiRNA regulator of bothCGB andTfh cells is the
positive GC regulator miR-155. Immunization of T cell-specific
miR-155-deficient Cd4-Cre miR155fl/flmice revealed impaired in
GC B and Tfh cell generation and antigen-specific antibody
production (52), revealing that miR-155 expression regulates
Tfh development during immunization responses through T cell
intrinsic mechanisms. The same study showed that miR-155
regulates different Tfh-cell targets important for Tfh
development and autoimmunity in the NF-kB, AP-1 and
mTOR pathways. Interestingly, miR-155 promotes Tfh cell
accumulation during chronic, low-grade inflammation by
counteracting the effect of miR-146a in Tfh cells (52). A later
study showed that miR-155 promotes Tfh cell proliferation
and CD40L expression by repressing expression of Peli1, a
ubiquitin ligase that promotes the degradation of the NF-kB
family transcription factor c-REL (61). These data suggest that
miR-155 contributes to increased Tfh-mediated GC B activation
through increased CD40L–CD40 interaction, which is known
to be a limiting step in B cell clonal expansion, GC formation,
isotype switching, affinity maturation, and the generation of
long-lived plasma cells (89, 90).

Thus, miRNAs regulate Tfh cellular differentiation and
interaction with B cells in the GC at multiple levels and
through multilayer regulatory molecular circuits (Figure 1).
miRNAs IN GC-DERIVED B CELL
NEOPLASIA AND AUTOIMMUNE
DISEASES

Defects in GC regulation lead to immune diseases such as
autoimmunity and mature B-cell neoplasia. These diseases are
ultimately caused by the dysregulation of two distinct GC
checkpoints; a breakdown of immune tolerance in autoimmunity
and a surpassing of the DNA damage-tolerance threshold
associated with Ig remodeling during CSR and SHM in B cell
neoplasia. However, both diseases share a contribution from some
of the mechanisms that promote GC dysfunction, including
lymphoproliferative aberrant GC persistence, abnormal cellular
components, and abnormal cellular signaling (91–93).

Recent studies addressing the contribution ofmiRNAs to these
two GC-derived diseases revealed that dysregulated miRNA
expression in GC B or Tfh cells can trigger B cell neoplasia or
autoimmunity (Figure 1). Interestingly, several miRNAs that
positively regulate the GC response also promote autoimmunity
and B cell neoplasia (Table 1). For instance, miR-155, which
promotes GC responses through T and B cell intrinsic
mechanisms (12, 16, 52), also promotes autoimmune diseases
characterized by switched auto-antibodies (52, 57–60, 94) and
B cell neoplasia (53–56), likely through multilayer mechanisms
that can lead to aberrant GC persistence due to increased
T
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proliferation, reduced cell death and altered cellular signaling of
Tfh and GC B cells (Table 1). Similarly, the miR-17-92
polycistron, which promotes GC responses by enhancing Tfh
and B lymphocyte proliferation and survival by inhibiting the
expression of Pten and Bim (10, 48, 49, 51), when overexpressed
in different mouse models promotes the generation of
spontaneous GCs, IgG anti-double–stranded DNA (dsDNA)
autoantibodies linked to fatal immunopathology (48, 51), and
B cell GC-derived lymphoma (50). Accordingly, miR-155
and miR-17-92 are upregulated in mature B cell neoplasia
and GC-derived autoimmune diseases (95–97), suggesting their
involvement in the enhancement of GC-derived human diseases.
Other miRNAs that positively regulate GC responses and have
been found to promote both autoimmunity and B-cell derived
neoplasia include miR-29 and miR-21 (Table 1). Further studies
are required to establish whether the switched autoantibodies
generated in the context of positive GC miRNA regulator
overexpression are derived from GC-derived plasma cells or
are also generated from extrafollicular plasma cells.

Several miRNAs that negatively regulate the GC reaction have
the opposite effect on B cell neoplasia and autoimmunity
development, limiting the generation of GC-derived diseases
(Table 1). miR-28 and miR-146a, well-characterized negative
regulators of GC responses (33–35, 52), have both been found to
exert tumor suppressor activity in B cell lymphoma development
by limiting cell proliferation, promoting cell death and regulating
cell signaling (33, 71, 73, 74) (Table 1). However, protection
against autoimmune diseases has only been explored for
miR-146a, which inhibits autoimmunity, anti-dsDNA auto-
antibody production (72), and spontaneous GC reactions
(52) counterregulating miR-155 targets in Tfh cells (62) and
through B cell-intrinsic mechanisms, likely by targeting
CD40 signaling pathway components (35). Nevertheless, GC
B cell miR-146a expression needs to be tightly regulated
because forced overexpression promotes a lymphoproliferative
syndrome via Fas downregulation (76). Thus, both super
abundant or insufficient miR-146a expression are harmful for
GC homeostasis.

Overall, these studies show that regulated miRNA expression
is required to ensure proper GC responses and that GC-derived
dysfunctions caused by miRNA alterations frequently lead to
the development of both autoimmunity and B cell neoplasia
through the disruption of post-transcriptional control
mechanisms required for the maintenance of GC homeostasis,
regulated cell signaling, cell death and proliferation. Further
studies are needed to characterize with more detail the
molecular mechanisms leading to both neoplastic transformation
and autoimmunity caused by miRNA-dependent GC gene
expression dysregulation.
CONCLUSIONS AND PERSPECTIVE

Studies bymany groups in thefield have shown thatmiRNAs play a
key role inGC-response regulation and are required topreventGC-
derived autoimmunity and B cell neoplasia. The description of the
Frontiers in Immunology | www.frontiersin.org 7
role of dysregulated miRNAs in mature B cell oncogenic
transformation and GC-derived autoimmunity has led to the
clinical use of miRNAs as disease biomarkers with prognostic and
predictive value and to the identification of targets for miRNA-
based therapy (97, 98). The mechanisms leading to dysregulated
miRNA expression in GC cells are poorly understood, and their
characterization will likely provide new opportunities for
therapeutic intervention. Strategies to restore or inhibit
dysregulated miRNA expression have already established the
therapeutic potential of miRNA modulation in in vivo models of
GC-derived B cell neoplasia and autoimmunity (33, 44, 56, 68, 99–
105). Moreover, synthetic miRNA mimics or anti-miR molecules
are suitable for the generation of miRNA-based drugs that can be
coupled to different types of nanocarriers and conjugates for
effective delivery [reviewed in (106)].

The uniquemolecular features ofmiRNAsmake themattractive
tools for the development ofmiRNA-based therapies, andmiRNA-
based drugs are currently being tested in clinical trials for several
diseases, including different types of cancer [reviewed in (97)]. This
emerging and promising field faces a number of challenges
regarding the clinical translation of miRNA-based therapies for B
cell neoplasia and autoimmunity. Major challenges include i) the
development of cell-type specific miRNA-based drug targeting
approaches to improve specificity and reduce toxicity derived
from miRNA delivery to healthy cells and ii) the development of
models of human mature B cell neoplasia and GC-derived
autoimmunity that faithfully recapitulate human disease to
improve pre-clinical testing. The rapid pace of research in the
field ensures the continuing excitement and expectations in
building the path from basic science to translational miRNA-
mediated GC regulation.
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