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Abstract: Background: Spike-wave discharges, underlying absence seizures, are generated within a 
cortico-thalamo-cortical network that involves the somatosensory cortex, the reticular thalamic nucleus, 
and the ventrobasal thalamic nuclei. Activation of T-type voltage-sensitive calcium channels (VSCCs) 
contributes to the pathological oscillatory activity of this network, and some of the first-line drugs used 
in the treatment of absence epilepsy inhibit T-type calcium channels. The α2δ subunit is a component 
of high voltage-activated VSCCs (i.e., L-, N-, P/Q-, and R channels) and studies carried out in 
heterologous expression systems suggest that it may also associate with T channels. The α2δ subunit 
is also targeted by thrombospondins, which regulate synaptogenesis in the central nervous system. 

Objective: To discuss the potential role for the thrombospondin/α2δ axis in the pathophysiology of 
absence epilepsy. 

Methods: We searched PubMed articles for the terms “absence epilepsy”, “T-type voltage-sensitive 
calcium channels”, “α2δ subunit”, “ducky mice”, “pregabalin”, “gabapentin”, “thrombospondins”, 
and included papers focusing this Review's scope. 

Results: We moved from the evidence that mice lacking the α2δ-2 subunit show absence seizures 
and α2δ ligands (gabapentin and pregabalin) are detrimental in the treatment of absence epilepsy. 
This suggests that α2δ may be protective against absence epilepsy via a mechanism that does not 
involve T channels. We discuss the interaction between thrombospondins and α2δ and its potential 
relevance in the regulation of excitatory synaptic formation in the cortico-thalamo-cortical network. 

Conclusion: We speculate on the possibility that the thrombospondin/α2δ axis is critical for the 
correct functioning of the cortico-thalamo-cortical network, and that abnormalities in this axis may 
play a role in the pathophysiology of absence epilepsy. 

Keywords: α2δ subunit, T-type voltage-sensitive Ca2+ channels, non-T-type voltage-sensitive Ca2+ channels, ducky mice, 
pregabalin, gabapentin, absence epilepsy, thrombospondins. 

1. T-TYPE VOLTAGE-SENSITIVE CALCIUM 
CHANNELS: THE KEY MOLECULAR PLAYERS IN 
ABSENCE EPILEPSY 

 Absence epilepsy is the most common form of pediatric 
epilepsy, with an estimated annual incidence of 1-8 per 
100,000 children aged 4-15 years, and accounting for 10-  
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17% of all cases of childhood-onset epilepsy [1]. Chilhood 
and juvenile absence epilepsy belongs to a group of epileptic 
syndromes of genetic origin classified as “idiopathic 
generalyzed epilepsies” (IGEs) by the International League 
Against Epilepsy [2]. Absence seizures, the hallmark of 
absence epilepsy, are characterized by transient lapses of 
consciousness associated with bilateral, symmetrical and 
generalized spike-wave discharges (SWDs) at the 
electroencephalogram (EEG), generated by pathological 
oscillations in a cortico-thalamo-cortical network with a 
cortical origin. This SWDs generating network includes 
interconnected pyramidal cells and GABAergic interneurons 
in the somatosensory cortex (SSCtx), thalamocortical relay 
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cells in the ventrobasal (VB) thalamic nuclei, the reticular 
thalamic nucleus (nRT), and their connecting pathways [3-6] 
(Fig. 1). Highly excitable cells in deep layers of the SSCtx 
send excitatory fibers to both the VB thalamic nuclei and 
nRT. VB neurons, in turn, send excitatory fibers to the 
cortical pyramidal neurons and to GABAergic nRT neurons, 
which are interconnected by gap junctions. nRT GABAergic 
neurons send their axons to VB thalamic nuclei, but not to 
the SSCtx. The activity of nRT neurons is regulated by 
GABAA receptors targeted by the antiabsence drug, clonazepam 
[3, 7-10] (Fig. 1). Genetic models of absence epilepsy 
include tottering, leaner, roller and rocker mice carrying 
mutations in the gene encoding for the α1 subunit of P/Q-
type voltage-sensitive calcium channels (VSCCs), stargazer 
mice lacking the protein stargazin, lethargic and ducky mice 
carrying mutations in the genes encoding the β4 and 
α2δ subunits of VSCCs, respectively [9], and Genetic Absence 
Epilepsy Rats from Strasbourg (GAERS) and Wistar Albino 
Glaxo/Rijswijk (WAG/Rij) rats, which develop spontaneous 
absence seizures with age [6]. 

 Activation of T-type VSCCs contributes to the generation 
of pathological oscillations underlying SWDs. These 
channels are activated at negative membrane potentials and 
show a fast voltage-dependent inactivation with respect to 
other VSCCs. Owing to these peculiar functional properties, 
T channels are involved in the generation of repetitive firing 
in the cortico-thalamo-cortical network [11, 12]. In the 

pathophysiology of SWDs, an increased excitatory drive 
from the SSCtx to the nRT generates pathological bursts of 
nRT GABAergic neurons leading to GABAB receptor-
mediated inhibitory postsynaptic potentials (IPSPs) in VB 
thalamic neurons. The resulting hyperpolarization enhances 
the activity of T-type VSCCs in VB thalamic neurons 
producing the pathological 3-4 Hz oscillations that are 
typical of absence seizures in humans and 7-11 Hz in the 
genetic rat models [3]. Based on pioneering in vitro studies, 
it is thought that the therapeutic activity of ethosuximide in 
absence epilepsy occurs via the inhibition of low-threshold 
Ca2+ current (IT) in the thalamus and SSCtx [13-15]. 

 There are three subtypes of T-type calcium channels: 
CaV3.1, CaV3.2 and CaV3.3, containing the pore-forming 
α1G, α1H and α1I subunits, respectively [16]. CaV3.2 and 
CaV3.3 channels are expressed in nRT neurons and at least 
CaV3.3 has been implicated in the generation of nRT bursts. 
CaV3.1 channels are highly expressed in thalamocortical 
neurons, and all types of T channels are found in cortical 
neurons [17-19]. Studies carried out in WAG/Rij rats support 
the role of T channels in the pathophysiology of absence 
epilepsy. Changes in the transcript and protein levels of CaV3.1 
have been found in thalamic nuclei of presymptomatic 
WAG/Rij rats, and IT current density was increased in 
thalamic neurons of WAG/Rij rats as compared to age-
matched non epileptic controls [20, 21]. 

2. ROLE FOR THE α2δ SUBUNIT IN THE 
MODULATION OF VSCCs 

 VSCCs are formed by a multimolecular complex that 
includes the α1, β1, γ, and α2δ subunits [22]. The α1 subunit 
forms the ion channel and accounts for the basic properties 
of the channel. Based on the specific type of the α1 subunit, 
VSCCs are classified into T-type (containing the α1G, α1H 
and α1I subunits), L-type (containing the α1C, α1D, α1S, and 
α1F subunits), P/Q-type (containing the α1A subunit), N-type 
(containing the α1B subunit), and R-type (containing the α1E 
subunit) [16]. There are four isoforms of the intracellular β 
subunit, and eight isoforms of the transmembrane γ subunits, 
which do not confer a particular specificity to the VSCCs, 
although the γ subunit is preferentially found in L-type 
channels of the skeletal muscle [23, 24]. The γ2 subunit 
belongs to the group of transmembrane AMPA-receptor 
regulating proteins (TARPs) and is also named stargazin [25, 
26]. Interestingly, stargazer mice lacking the γ2 subunit 
show a severe neurological phenotype characterized by 
ataxia and absence epilepsy [27-30]. Stargazin levels are 
altered in the SSCtx of GAERS, but not in the cortex of 
WAG/Rij rats [31]. 

 The transmembrane α2δ subunit is formed by the α2 and δ 
subunits covalently linked by a disulfide bridge. Interestingly, 
the two subunits are generated by a single gene product, which 
is post-translationally cleaved. The α2 subunit is glycosylated 
and interacts extracellularly with the α1 subunit. The δ 
subunit has a single transmembrane domain and interacts 
with anchoring intracellular proteins via the C-terminal 
region [32]. There are four isoforms of the α2δ subunit, 
produced by different genes. α2δ-1, originally described in 
the skeletal muscle, is ubiquitous; α2δ-2 and α2δ-3 are 
specifically found in neurons, whereas α2δ-4 is non-neuronal. 

 

Fig. (1). Cortico-thalamo-cortical network underlying absence 
seizures. VB = Ventrobasal thalamic nuclei; nRT = reticular thalamic 
nucleus. GABAergic neurons projecting from the nRT to the VB. 
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 The α2δ-1 protein is mainly present in axon terminals of 
excitatory neurons [33], whereas the α2δ-2 protein is 
expressed by cerebellar Purkinje cells [34]. The α2δ-3 protein 
is ubiquitously expressed in the forebrain [33]. 

 The α2δ subunit regulates the activity of VSCCs by 
increasing current amplitude and causing a shift of voltage-
dependent activation towards more hyperpolarized membrane 
potentials [35-39]. In addition, the α2δ subunit regulates 
cellular trafficking and membrane expression of VSCCs. 
Accordingly, transient expression of the α2δ-1, -2, and -3 
subunits in cultured hippocampal neurons targets P/Q channels 
in presynaptic terminals, thereby enhancing depolarization-
evoked neurotransmitter release [40]. This mechanism may 
be particularly relevant under pathological conditions, as 
suggested by the evidence that the α2δ-1 subunit translocates 
from neuronal cell bodies of dorsal root ganglia to axon 
terminals in the superficial layers of the dorsal horns of the 
spinal cord in a mouse model of neuropathic pain [41]. 

3. THE AMBIGUOUS ROLE FOR THE α2δ SUBUNIT 
IN ABSENCE EPILEPSY 

3.1. Studies on the Association Between the α2δ Subunit 
with T Channels in Heterologous Expression Systems 

 It is unclear to date whether native T channels associate 
with the α2δ subunit. All available studies were generated in 
heterologous expression systems and existing data are 
controversial. Overexpression of α2δ in NG108 cells 
influences the voltage-dependence of activation of T-type 
calcium channels although the presence of endogenous high 
voltage-activated (HVA) channels in these cells is a 
confounding factor [42]. Using transfected monkey COS-7 
cells and Xenopus oocytes co-expressing α2δ and α1G subunits 
the same authors found that the α2δ subunit enhances 
membrane insertion or stabilization of CaV3.1 T channels 
without changing the voltage-dependence or kinetics of Ca2+ 

currents [43], as opposed to data obtained in NG108 cells 
[42]. A potential role for the α2δ subunit in the regulation of 
membrane insertion of T channels was also suggested by the 
use of GFP-tagged CaV3.2 channels in various expression 
systems [44], and by co-immunoprecipitation in osteocyte 
membranes [45]. Contrasting findings were obtained in 
transfected HEK293 cells, where the same authors reported 
either no or small effects of the α2δ subunit on voltage-
dependence or inactivation kinetics of T channel [46-48]. 
These findings raise the possibility that α2δ may associate 
with, and facilitate the activation of, T channels in neurons. 
However, this remains to be determined taking into account 
that HVA channels expressed in neurons may compete with 
T channels for the interaction with the α2δ subunit. 

3.2. The Ducky Mouse: An Intriguing Example of 
Absence Epilepy Associated with the Lack of α2δ Subunit 

 The association between the Cacna2d2 gene and 
childhood absence epilepsy suggests a role for the α2δ 
subunit in the pathophysiology of absence seizures [49]. 
Because the α2δ subunit facilitates the activity of T channels 
(see above) it is reasonable to predict that the lack of the α2δ 
subunit confers protection against absence seizures. In 
contrast, ducky mice, characterized by a spontaneous loss-of-

function mutation of the Cacna2d2 gene, show generalized 
bilateral SWDs with a frequency of 5-7 Hz, and are 
considered as a genetic model for absence epilepsy [34]. 
Ducky mice also show severe ataxia, dyskinesias, dysgenesis 
of the cerebellum and other central nervous system (CNS) 
regions, axonal dystrophy and demyelination [50]. Another 
spontaneous mutation of the Cacna2d2 gene (entla) encodes 
a mutant form of the α2δ-2 protein with an intact C-terminus. 
This mutation also causes an atypical form of generalized 
absence epilepsy in mice [51], as does a targeted knockout of 
Cacna2d2 [52]. The epileptic phenotype of mice lacking α2δ-
2 is counterintuitive if one hypothesizes that the α2δ subunit 
positively modulates T-type calcium channels in neurons. 
However, we cannot exclude that α2δ-2 and T channels are 
not expressed in the same neuronal compartments and that 
the lack of α2δ-2 in ducky mice causes absence seizures 
through mechanisms that do not involve T channels, e.g., via 
functional abnormalities of HVA VSCCs. 

3.3. Lack of Therapeutic Activity of the two α2δ Ligands, 
Gabapentin and Pregabalin, in Absence Epilepsy 

 Gabapentin and pregabalin have been developed for the 
treatment of focal epilepsy and are currently used in the 
treatment of neuropathic pain, migraine, anxiety disorders, 
and bipolar disorders [53, 54]. Gabapentin and pregabalin 
bind selectively to α2δ-1 and α2δ-2 with nanomolar affinity 
[55-58]. An arginine residue in position 217 of α2δ-1 is part 
of the binding pocket, and binding of both [3H] gabapentin 
and [3H] pregabalin is largely reduced in the brain regions of 
transgenic mice with the α2δ-1 R217A mutation [38, 59-62]. 
Interaction of gabapentin and pregabalin with α2δ has two 
major effect on VSCCs: (i) a reduced membrane localization 
of α2δ and α1 subunits; and (ii) a reduced calcium channel 
current. It is generally believed that both effects contribute to 
the therapeutic action of gabapentin and pregabalin in focal 
epilepsy, neuropathic pain, and generalyzed anxiety disorder 
[61, 63]. 

 By interacting with the α2δ subunit, gabapentin and 
pregabalin are expected to have therapeutic potential in 
absence epilepsy as a result of T channel inhibition. In 
contrast, clinical studies have consistently shown that the 
two drugs have no activity in absence epilepsy [64, 65], and 
gabapentin can precipitate absence and myoclonic status 
epilepticus [66-68]. This paradoxical aggravation, that usually 
results in subtle or overt increased seizure activity and 
worsening of EEG abnormalities, is increasingly recognized 
as a serious and common problem [67]. Moreover, clinical 
and EEG pitfalls in the diagnosis of epilepsy may often 
result in erroneous classification and treatment choices. In 
animal studies, pregabalin did not affect the incidence of 
SWDs in GAERS [69] and gabapentin had no effect on 
absence-like seizures in the lethargic mouse model of human 
absence epilepsy [70]. 

4. POTENTIAL EXPLANATIONS FOR THE 
AMBIGUOUS ROLE OF THE α2δ SUBUNIT IN 
ABSENCE EPILEPSY 

4.1. Modulation of Non-T-type VSCCs 
 One possible explanation for the epileptic phenotype of 
ducky and entla mice is that the loss of α2δ subunit causes 
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absence seizures by restraining the activity of HVA Ca2+ 
channels (P/Q, N, L and R channels). Although T channels 
are one of the major players in the generation of pathological 
oscillations in the cortico-thalamo-cortical network, a large 
body of evidence suggests that HVA channels are also 
involved in the pathophysiology of absence seizures. 
Pharmacological activation of L-type HVA Ca2+ channels 
alters the firing rate of thalamocortical neurons [71], and 
systemic administration of L-type Ca2+ channel blocker, 
nimodipine, increases the frequency of SWDs. In contrast, a 
decreased incidence of SWDs was found after intra- 
cerebroventricular injection of the L-type Ca2+ channel 
opener, BAY K8644, which could also antagonise the effects 
of nimodipine on SWDs [72, 73]. R-type channels are also 
involved in the generation of oscillatory burst discharges in 
nRT neurons [74], and administration of the selective R-type 
Ca2+ blocker, conotoxin GVIA, reduces SWDs [73]. The N-
type Ca2+ channel blocker, ω-conotoxin MVIIA, can also 
reduce the number of SWDs [75]. Mutations of the Cacna1a 
gene encoding for the α1 subunit of P/Q-type Ca2+ channels 
are associated with absence seizures in rodents and humans 
[76-78]. Genetic deletion of the Cacna1a gene in cortical 
layer VI neurons enhances T-type Ca2+ currents in thalamic 
relay and nRT neurons, thereby generating synchronous 
SWDs that are inhibited by ethosuximide [79]. It is possible 
that in ducky mice a reduced expression/activity of HVA 
VSCCs generates absence seizures either directly or as a 
result of a compensatory increase in the activity of T-type 
calcium channels. 

4.2. Beyond VSCCs: The α2δ Subunit Mediates the 
Action of Thrombospondins in the CNS 

4.2.1. Physiology of Thrombospondins in the CNS 

 The α2δ subunit is the receptor for a class of proteins, 
called thrombospondins (TSPs), which were first isolated from 
platelets stimulated with thrombin and show a widespread 
distribution in various organs, including the CNS. TSPs are a 
large oligomeric extracellular matrix (ECM) proteins, found 
in vertebrates and lower metazoa [80-82]. The human TSP 
protein family consists of five members (TSP-1, TSP-2, 
TSP-3, TSP-4, and TSP-5, or COMP, cartilage oligomeric 
matrix protein) which are subdivided into two groups [80, 
83, 84] on the basis of their oligomerization state and 
domain structure. Subgroup A includes TSP-1 and TSP-2, 
which form homotrimers; subgroup B includes TSP-3, TSP-
4, and TSP-5, which form homopentamers [85]. The various 
isoforms of TSPs are the products of different genes, and 
display differential non-overlapping functions [86]. 

 TSPs primarily regulate cell-cell and cell-extracellular 
matrix interactions [87] acting through a number of ECM 
proteins and cell surface receptors and controlling cytoskeletal 
dynamics, cell migration, and cell attachment [88]. All these 
activities regulate many aspects of cell phenotype and 
contribute to angiogenesis and wound healing, vessel wall 
biology and synaptogenesis [84]. 

 Astrocyte-secreted TSP-1, TSP-2 promote synaptogenesis 
in cultured hippocampal neurons [89] and retinal ganglion 
cells [90], and TSP-1 can also promote neuronal migration 
[91] and axonal growth [92]. TSP-1 and TSP-2 are highly 

expressed during development [89, 90, 93] and acts in 
specific time windows to promote synaptogenesis in the 
developing brain. TSP-4 is exclusively expressed by mature 
astrocytes, and represents the mature TSP isoform in the 
CNS [88]. 

 Eroglu et al. [94] have shown for the first time that the 
synaptogenic epidermal growth factor (EGF)-like repeat 
domains of TSPs interact with the VWF-A (von Willebrand 
factor) domain of α2δ-1. This interaction mediates the 
synaptogenic activity of TSPs. Accordingly, overexpression 
of α2δ-1 enhanced synaptogenesis in mice, and the α2δ 
ligand, gabapentin, restrained the synaptogenic activity of TSPs 
[94]. 

4.2.2. Potential Role for Thrombospondins in the 
Pathophysiology of Absence Epilepsy 

 A potential link between alterations in synaptogenesis 
and absence epilepsy is suggested by the evidence that 
stargazin mutation in mice causes an impairment in synaptic 
formation and maturation in the cerebellum [95]. In addition, 
double mutant zi/zi, tm/tm rats, which spontaneously develop 
absence seizures after 6 weeks of age, show a low expression 
of the synaptic vesicle proteins, SV2A and synaptotagmin-1 
[96]. We have found a selective reduction of the transcript 
encoding for TSP-1 in the ventrobasal thalamus of 
presymptomatic and symptomatic WAG/Rij rats [97], which 
model human absence epilepsy [98, 99]. 

 An attractive hypothesis is that the TSP/α2δ axis plays a 
key role in synaptic formation within the cortico-thalamo-
cortical network that lies at the core of the pathophysiology 
of absence epilepsy [3] and that defects in either TSPs or  
α2δ disrupt synaptic organization in the circuit resulting  
into absence seizures. TSPs may have a broader role in 
epileptogenesis that involves other types of epilepsy. 
Mendus et al. [100] have recently found that mice with 
genetic deletion of TSP-1 show an increased sensitivity to 
chemical kindling induced by repeated administrations of a 
subconvulsive dose of pentylenetetrazole (PTZ). TSP-1 
knockout mice developed generalized tonic-clonic seizures 
in response to the second administration of PTZ, whereas at 
least eight administrations were required to produce the same 
phenotype in wild-type mice [100]. Interestingly, TSP-1 
knockout mice also showed a reduced expression of both 
α2δ-1 and α2δ-2 subunits in the frontal cortex [100]. 

 In conclusion, the α2δ subunit subserves pleiotropic 
functions that may be relevant for the pathophysiology of 
different type of epilepsy including absence epilepsy and 
may be targeted by therapeutic intervention. The role of α2δ 
subunit in absence epilepsy cannot be reconducted to the 
modulation of T-type channels, and may involve other types 
of VSCCs. In addition, increasing evidence suggests that the 
TSP/α2δ axis can be dysfunctional in absence epilepsy and 
other forms of epilepsy (Fig. 2). Abnormalities in either 
TSPs and/or α2δ subunit may contribute to the process of 
epileptogenesis, which is ultimately responsible for the 
recurrence of epileptic seizures. If proven to be correct, this 
may lay the groundwork for the design of novel disease 
modifying drugs that are directed towards mechanisms that 
lie at the core of epileptogenesis. 
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