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ABSTRACT
An exclusive human milk diet (EHMD) has been shown to reduce health complications of prematurity in infants born weighing ≤1250 g compared
with cow milk–based diets. Accordingly, the number of available human milk (HM)-based nutritional products continues to increase. Newly
available products, and those reportedly soon to enter the market, include homogenized donor HM and homogenized HM–based fortifiers.
Existing literature demonstrating the benefits of an EHMD, however, is limited to non-homogenized HM-based products. Herein, we summarize
existing evidence on the impact of homogenization on HM, with a particular focus on changes to the macromolecular structure of the milk fat
globule and the subsequent impact on digestion kinetics. We use these published data to create a conceptual framework for the potential
implications of homogenized HM-based nutritional products on preterm infant health. Importantly, we underscore that the safety and efficacy of
homogenized HM-based products warrant investigation. Curr Dev Nutr 2022;6:nzab147.
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Introduction

The best source of nutrition for premature infants born weighing <1500
g is their mothers’ own milk (MOM) fortified appropriately with pro-
tein, minerals, and vitamins; when MOM is unavailable or contraindi-
cated, donor human milk (DHM) should be substituted (1). Human
milk (HM)-based fortifiers added to MOM or DHM—an exclusive hu-
man milk diet (EHMD)—has shown promising results in clinical stud-
ies to reduce health complications of prematurity in infants weighing
≤1250 g compared with traditionally used cow milk–based fortifiers or
preterm infant formulas, especially for necrotizing enterocolitis (NEC)
(2–9).

The benefits derived from an EHMD diet are 2-fold: delivering the
nutrition required to offset missed nutrient accretion that occurs dur-
ing the third trimester and reducing the complications associated with
enteral feeding (2, 10, 11). Before the advent of HM-based fortifiers,
MOM or DHM was fortified with cow milk–based fortifiers. However,
preterm infants fed cow milk–based fortifiers had higher risk of NEC
and severe retinopathy of prematurity despite having a base diet of HM
(8, 12). A combined analysis of 2 randomized clinical studies demon-
strated that for every 10% increase in the volume of milk containing cow

milk–based protein, the risk of NEC increased by 11.8%, surgical NEC
by 21%, and sepsis by 17.9% (7). Unsurprisingly, the adoption of HM-
based nutritional products is increasing in hospitals across the United
States and globally.

As the use of HM-based nutritional products grows, so do the num-
ber of products available in the market. Currently available products in-
clude DHM, HM-based multinutrient fortifiers, and HM-based caloric
fortifiers. These products are used in combination with MOM and/or
DHM under the direction of health care professionals to meet the indi-
vidual nutritional needs of the most medically fragile infants (2–8, 11,
12). Importantly, however, not all HM-based nutritional products are
created equally. The manufacturing processes used to produce DHM
and HM-based fortifiers vary widely among the manufacturers. These
processes influence the composition of HM-based nutritional products,
and possibly their efficacy. For example, currently available products
undergo heat-treatment (e.g., pasteurization) to ensure they are safe for
premature infants to consume. However, different heat treatments result
in highly variable losses to important biologically active components in-
cluding anti-infective properties, such as immunoglobulins, lysozyme,
and lactoferrin (13–16). Therefore, it is prudent that physicians, nurses,
and hospital administrators involved in purchasing decisions consider
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manufacturing processes when deciding which HM-based nutri-
tional products to use for their neonatal intensive care unit (NICU)
patients.

Newly available products, and those reportedly soon to enter the
market, include homogenized DHM and homogenized HM-based for-
tifiers (17, 18). Herein, we discuss homogenization: what it is, why it
is performed, and what evidence supports its use for HM-based nu-
tritional products designed for ill newborn and premature infants. We
propose a conceptual framework for the potential implications of ho-
mogenized HM-based nutritional products on preterm infant health,
highlighting areas of research needed to establish their safety and
efficacy.

Homogenization and its Impact on HM Composition and
Digestion Kinetics

What is homogenization?
Homogenization is a physical process that evenly disperses 2 mutually
nonsoluble liquids to create a single uniform mixture. Milk is homoge-
nized to disperse fat droplets and prevent the cream from rising to the
top. In the dairy industry, homogenization is used to improve cow milk’s
taste, consistency, and appearance as well as to extend its shelf-life (19).

Why are some HM-based nutritional products
homogenized?
Some newly available and upcoming HM-based nutritional products
are homogenized, although the rationale for homogenization is unclear.
The strongest rationale is based on the hypothesis that homogenization
may improve weight gain of very-low-birth-weight premature infants.
This hypothesis gained traction after evidence showed that fecal excre-
tion of fat is lower in infants fed homogenized HM than in those fed
nonhomogenized HM (20). These data suggest that fat absorption is
higher in infants fed homogenized HM. Even so, there is currently no
clinical evidence demonstrating that this translates into improved or
more appropriate growth outcomes in premature infants. In contrast,
HM-based nutritional products produced from nonhomogenized HM
have been shown in clinical studies to result in adequate growth without
long-term insulin resistance and excess adiposity in infants born weigh-
ing ≤1250 g (11, 21–24).

Another rationale for homogenizing HM-based nutritional prod-
ucts may be to reduce fat loss during enteral feeding. Continuous en-
teral feeding can lead to fat loss of HM because the fat sticks to plastic
tubing (25). Homogenization reduces the size of the milk fat globule,
which may reduce its adherence to the tubing (26, 27). Even so, feeding
homogenized HM-based nutritional products is unnecessary because
fat loss from HM is already mitigated by adding nonhomogenized HM-
based fortifiers or HM cream (28). In addition, nonhomogenized HM
cream can be used to “prime” the tubing before enteral feeding to fur-
ther minimize fat loss (29).

More likely, the rationale for homogenizing HM-based nutritional
products may be to counter the effects of high-temperature process-
ing, such as retort sterilization or ultra-high temperature (UHT) pro-
cessing. Retort sterilization is a heat treatment common in canned food
manufacturing during which milk is exposed to high temperatures and
pressure to eliminate viral and bacterial pathogens. UHT processing is

a higher heat treatment for shorter duration than retort sterilization.
New and upcoming homogenized HM-based nutritional products also
undergo either retort sterilization or UHT processing. Unfortunately,
high-temperature processing methods can lead to loss of fat content
in HM because they cause the fat to adhere to the container. Steriliza-
tion of HM resulted in loss of >10% of fat content, whereas pasteuriza-
tion of HM had no effect on its fat content (30). It is plausible that ho-
mogenization is used to uniformly distribute the fat content back into
solution.

Ultimately, the rationale for homogenizing HM-based nutritional
products is based on the weak scientific premise that it is advantageous
for infant weight gain, although it is more likely performed to counter
the negative effects of harsh heat treatments on HM fat.

Effects of homogenization on milk composition
Homogenization affects the properties of milk in a variety of ways. The
most serious of these relate to changes in the macromolecular struc-
ture of the milk fat globule. Specifically, homogenization removes a large
proportion of the outer membrane, resulting in smaller milk fat droplets
to which milk serum proteins adsorb (31). This change in the macro-
molecular structure of the milk fat globule can alter digestion kinet-
ics and the bioavailability of nutrients, especially proteins, fats, and fat-
soluble nutrients. The implications of such changes on preterm infant
health outcomes have been inadequately investigated.

The milk fat globule is the primary vesicle that delivers fat and fat-
soluble nutrients to the infant (32). The native milk fat globule con-
sists of an inner core of triglycerides surrounded by a lipid bilayer
derived from a plasma membrane, called the milk fat globule mem-
brane (MFGM) (Figure 1). The MFGM contains numerous embedded
lipids, proteins, and carbohydrates including sphingolipids, phospho-
lipids, proteins, glycoproteins, gangliosides, and cholesterol that are im-
portant for protection against pathogens, maturation of the infant gut,
and the development of the immune, metabolic, and central nervous
systems (33). The structure of the MFGM and the roles of its various
components have been reviewed in detail (31, 33–35).

Homogenization disrupts the MFGM, exposing the hydrophobic
lipid core to the surrounding aqueous environment (31, 36). Whey pro-
tein, casein micelles, and casein micelle fragments subsequently adsorb
to the exposed lipid core, leading to smaller fat droplets coated with
milk serum proteins (Figure 1). In preclinical studies, homogenization-
induced changes to the physical and chemical properties of the milk fat
globules alter their interactions with digestive enzymes, including gas-
tric and pancreatic lipases, and render them more susceptible to pre-
mature digestion in the stomach (37–40) (Figure 1). An in vivo pilot
study confirmed these preclinical findings. In a clinical trial, prema-
ture infants fed homogenized HM presented with higher levels of gastric
lipolysis and proteolysis, and delayed gastric emptying, compared with
infants fed nonhomogenized HM (41). Together, these findings suggest
that homogenized HM could increase the amount of fatty acids available
for absorption (20) and have a positive impact on weight gain. Never-
theless, this study was small (it only included 8 infants) and thus was
not designed to evaluate important clinical outcomes including growth,
feeding intolerance, or neurodevelopmental outcomes. It is unclear if
this possible increased weight gain is at the expense of increased feed-
ing intolerance and decreased availability of bioactive lipid components
necessary for brain growth.

CURRENT DEVELOPMENTS IN NUTRITION



Homogenization of human milk–based fortifiers 3

MFGM

FIGURE 1 The impact of homogenization on human milk fat globules. Homogenization disrupts the MFGM, leading to adsorption of
milk serum proteins, including whey proteins, casein micelles, and casein micelle fragments. The resulting smaller fat droplets coated with
milk serum proteins interact differently with digestive enzymes such as gastric and pancreatic lipases, rendering them more susceptible to
premature digestion in the stomach. MFGM, milk fat globule membrane.
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FIGURE 2 Conceptual framework of the potential implications of homogenized HM-based nutritional products on health outcomes of
premature infants. LCPUFA, long-chain PUFA; MFGM, milk fat globule membrane; NEC, necrotizing enterocolitis.

Clinical Implications of Feeding Homogenized HM-Based
Products to Preterm Infants and Avenues for Needed
Research

Potential clinical implications of a disrupted MFGM
The MFGM and its various components have been implicated in favor-
able neurodevelopmental outcomes and low risk of infections and feed-
ing intolerance (33), and are generally lacking in commercial preterm
infant formulas. Thus, the MFGM has been the subject of much inter-
est in recent years as scientists endeavor to understand the biological
origins explaining the more favorable outcomes observed in breastfed
infants than in formula-fed infants.

In vivo studies of formula-fed infants support the hypothesis that
the MFGM may contribute to the benefits of HM-feeding. For instance,
the addition of cow or whey-sourced MFGM to infant formula has been
shown in clinical trials to result in fewer infections and improved neu-
rodevelopment outcomes compared with standard, MFGM-free formu-
las (42–45). Nevertheless, the benefits of HM may be more than the sum
of all parts. Rather, the structural properties of HM were evolutionar-
ily evolved to promote optimal health of the recipient infant (31). It has
been suggested that this structure influences the rate of digestion and
timing of absorption of the various components, and that this may have
an important role in the health-promoting benefits of HM (31). If so, it
is plausible that homogenization may influence the bioavailability and
bioactivity of MFGM components and, in turn, their benefits to infant
health. We created a conceptual framework to visualize the potential
implications of a disrupted MFGM for several clinically significant out-

comes in premature infants (Figure 2). This conceptual framework rep-
resents important areas of needed research.

Neurodevelopment outcomes
The effects of a disrupted MFGM on the neurocognitive benefits of HM
for preterm infants is a critically important area of research in need of
investigation (Figure 2). Premature infants are at risk of long-term poor
neurocognitive and academic outcomes (46). However, premature in-
fants fed HM experience a lower incidence of long-term neurodevelop-
mental disabilities and more favorable neurodevelopmental outcomes
than those fed preterm infant formulas (1).

The neurocognitive benefits of HM are attributed, in part, to the
numerous HM components important for brain development, includ-
ing sialic acid, gangliosides, sphingomyelin, choline, cholesterol, and
PUFAs (33). These components are naturally resistant to gastric di-
gestion in the stomach owing to the macromolecular structure of the
intact milk fat globule. They are delivered intact to the small intes-
tine, the main site for digestion and absorption of lipids (47). Through
complex interactions with pancreatic and biliary secretions the in-
tact milk fat globule is broken down and its lipids absorbed (47).
When milk is homogenized and the MFGM is disrupted, more of these
lipids are broken down prematurely in the stomach (41). The clini-
cal significance of their premature digestion has not been adequately
investigated.

In addition to causing premature digestion of HM lipids, homog-
enization can alter the accumulation patterns of free fatty acids. Fatty
acids are a normal part of the inner triglyceride core of the milk fat
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globule. Three fatty acids connected to a glycerol molecule make up
a single triglyceride. Typically, long-chain fatty acids are released be-
fore SCFAs so they can be absorbed in the small intestine (47). How-
ever, ex vivo models of digestion demonstrated that homogenized cow
milk had early release of SCFAs and delayed release of long-chain
fatty acids compared with nonhomogenized cow milk (38). It is un-
clear whether delayed release of long-chain fatty acids negatively affects
their absorption. This is an important avenue for future research be-
cause it may influence accumulation of long-chain fatty acids in the
brain and neurocognitive outcomes in very-low-birth-weight preterm
infants.

Long-chain fatty acids, especially long-chain PUFAs (LCPUFAs), are
important for brain development. LCPUFAs, including DHA (22:6n–3),
are primarily accumulated in the fetal brain during the third trimester
(48).

Achieving optimal accretion of LCPUFAs in the brain of infants born
prematurely remains a serious clinical challenge, although recent evi-
dence suggests feeding an EHMD using nonhomogenized HM-based
fortifiers may be beneficial. Among premature infants fed fortified HM,
those fed HM with a nonhomogenized HM-based fortifier maintained
normal blood concentrations of DHA in the first 3 wk of life compared
with a 30% decline in infants fed HM fortified with a homogenized cow
milk–based fortifier (49).

These results are intriguing because all infants in this study were
fed HM (>70% MOM), but 1 group received a nonhomogenized HM-
based fortifier with intact MFGM and the other group received a ho-
mogenized cow milk–based fortifier, lacking MFGM. Further investi-
gation of the effect of a disrupted MFGM structure on blood DHA con-
centrations should be undertaken before homogenization is deemed ap-
propriate for HM-based fortifiers.

Epithelial barrier function and risk of infections
New and upcoming homogenized HM-based nutritional products also
undergo high heat processing, such as UHT or retort sterilization—a
combination that plausibly could have implications for infant epithe-
lial barrier function and risk of infection and NEC (Figure 2). An MS-
based protein determination study reported that DHM that underwent
homogenization and retort sterilization had significantly lower concen-
trations of several immune-modulating proteins, including IgA, IgG,
lysozyme, lactoferrin, α-lactalbumin, α-antitrypsin, and osteopontin,
than nonhomogenized DHM that was processed by vat or Holder pas-
teurization (13). In addition, in an ex vivo model of digestion, cow milk
that underwent homogenization and UHT had significantly lower con-
centrations of intact whey proteins, IgG, and lactoferrin than cow milk
that underwent homogenization alone (50). Taken together, these data
suggest that homogenized HM-based nutritional products that undergo
UHT or retort sterilization could deliver fewer anti-infective lipids and
proteins and fewer growth factors to the infant gastrointestinal tract.
If so, this could delay maturation of the epithelial barrier, which is re-
quired to prevent bacterial translocation (51, 52), and it could increase
the risk of secondary infections, late-onset sepsis, or NEC, especially in
infants exposed to antibiotics (53, 54). These possibilities also warrant
investigation.

Feeding tolerance and growth outcomes
Feeding tolerance and growth are critically important clinical outcomes
for preterm infants, and the role of the microbiome in these outcomes
has gained attention (55–57). A recent study found that gut microbiome
richness was positively associated with feeding tolerance and growth
among exclusively HM-fed preterm infants (57). These results support
the possibility that the microbiome may be one of the biological mecha-
nisms underlying feeding tolerance and growth—another area needing
further investigation.

It has been suggested that the macromolecular structure of the milk
fat globule enables advantageous absorption (which may not necessar-
ily be rapid or complete) that optimizes lipid tissue distribution (31, 58).
Specifically, although it is well established that changes in the physio-
chemical properties of milk fat globules influence digestion and absorp-
tion of nutrients in non-HM products (59, 60), the food structure is a
complex matrix of diverse components designed to be digested and ab-
sorbed during specific phases of digestion. This multiphasic digestion
of the native milk fat globule influences the protein–protein interac-
tions, such as the interaction of MFGM proteins and probiotic bacteria,
Bifidobacterium spp., and lactic acid bacteria (61). These interactions
are important to the survival and adhesion of probiotic bacteria in the
gastrointestinal tract as well as the development of mucosal immunity
(61). This may explain the positive association between gut microbiome
richness and feeding tolerance and growth outcomes in very-low-birth-
weight infants (57). The possibility that homogenized HM-based nu-
tritional products alter this biological mechanism and, in turn, feeding
tolerance and growth merits investigation (Figure 2).

Safety and efficacy of homogenized HM-based nutritional
products are unclear
In summary, homogenization changes the macromolecular structure
and composition of the milk fat globule in ways that influence protein
and fat bioavailability and bioactivity. Although preliminary studies in-
dicate that this may increase fat absorption (20, 62, 63), the implications
for several clinically relevant outcomes including infection, NEC, neu-
rodevelopment, feeding intolerance, and growth have not been studied
(Figure 2). As HM scientists and medical professionals, it is our opinion
that the use of industrial processing techniques such as homogenization
with or without high heat processing should be avoided for HM-based
nutritional products until their safety and efficacy have been established.

Concluding Remarks

HM-based nutritional products as part of an EHMD have been shown
in clinical studies to improve health and reduce the complications of
prematurity in very-low-birth-weight infants. Accordingly, the use of
these products and EHMD protocols are increasing globally as are the
number of available products. Some new and upcoming products are
homogenized which alters MFGM structure, a complex mixture of pro-
teins, lipids, and carbohydrates shown to be important in infection,
neurodevelopment, and growth. Changes to the macromolecular struc-
ture of the milk fat globule have unknown consequences for the health
of premature infants. Thus, investigation of homogenization-induced
changes to the macromolecular structure and function of the milk fat
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globule is critical to establish the safety and efficacy of homogenized
HM-based nutritional products, especially those that also undergo high
heat treatments including retort sterilization and UHT processing. Im-
portantly, the published clinical benefits of HM-based nutritional prod-
ucts only apply to currently available nonhomogenized products. The
safety and efficacy of homogenized HM-based nutritional products
have not been established.

Box 1

Key Messages
� Traditionally used in the dairy industry, homogenization is used

to improve cow milk’s taste, consistency, and appearance as well
as to extend its shelf-life.

� Homogenization disrupts the milk fat globule, which may lead to
premature digestion of bioactive components linked to favorable
neurological outcomes, including sphingolipids and long-chain
PUFAs. The implications of these changes for infant health are
unknown.

� The described clinical benefits of human milk (HM)-based nu-
tritional products only apply to currently available nonhomog-
enized products. The safety and efficacy of homogenized HM-
based nutritional products have not been established.
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