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Gut microbiome populations are
associated with structure-specific changes
in white matter architecture
Irene M. Ong1,2, Jose G. Gonzalez3, Sean J. McIlwain1,2, Emily A. Sawin4, Andrew J. Schoen5, Nagesh Adluru6,
Andrew L. Alexander3,6,7 and John-Paul J. Yu 4,7,8,9

Abstract
Altered gut microbiome populations are associated with a broad range of neurodevelopmental disorders including
autism spectrum disorder and mood disorders. In animal models, modulation of gut microbiome populations via
dietary manipulation influences brain function and behavior and has been shown to ameliorate behavioral symptoms.
With striking differences in microbiome-driven behavior, we explored whether these behavioral changes are also
accompanied by corresponding changes in neural tissue microstructure. Utilizing diffusion tensor imaging, we
identified global changes in white matter structural integrity occurring in a diet-dependent manner. Analysis of 16S
ribosomal RNA sequencing of gut bacteria also showed changes in bacterial populations as a function of diet.
Changes in brain structure were found to be associated with diet-dependent changes in gut microbiome populations
using a machine learning classifier for quantitative assessment of the strength of microbiome-brain region
associations. These associations allow us to further test our understanding of the gut-brain-microbiota axis by
revealing possible links between altered and dysbiotic gut microbiome populations and changes in brain structure,
highlighting the potential impact of diet and metagenomic effects in neuroimaging.

Introduction
The tremendous diversity and abundance of microbes

comprising the gut microbiome and its impact in
numerous aspects of human health, physiology, and dis-
ease have emerged as an intense area of interest. Already,
many important associations have been made that reveal
the critical role the gut microbiome plays in inflammatory
bowel disease, immunology, and host metabolism in both
local and systemic disease1. The central nervous system
(CNS) is no less susceptible with commensal bacteria able
to shape complex social, emotional, and anxiety-like
behaviors in both mice and humans2,3. Gut microbiota

have also been shown to be integral to normal brain and
behavioral development and in the regulation of the CNS
and brain function4.
Disruptions in the number, composition, and taxo-

nomic diversity of the gut microbiome have long been
implicated in the development and exacerbation of neu-
ropsychiatric conditions. Mood disorders are seen in
more than half of all patients with irritable bowel syn-
drome5 and in a maternal immune-activation mouse
model known to display features of autism spectrum
disorder, treatment with B. fragilis ameliorated defects in
anxiety-like and sensorimotor behaviors2. Diet-dependent
microbiome populations are also strongly linked with
psychopathological outcomes, as consumption of a high-
fat diet is associated with reduced synaptic plasticity6 and
low-calorie diets associated with augmented neurogenesis
and brain-derived neurotropic factor (BDNF) levels, and
improved cognition in adult rats7. More striking is the
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role of the gut microbiome in both prenatal and post natal
neurodevelopment. Maternal high-fat diet-induced obe-
sity in mice is associated with social behavioral deficits,
which are mediated by alterations in the gut microbiome
of the offspring8. The gut microbiome, which also criti-
cally promotes maintenance of microglia in the CNS
during developmentally sensitive periods, is responsible
for synaptic pruning and remodeling during development
and adulthood9. Perturbations to the gut microbiome
during these sensitive neurodevelopmental windows are
associated with a wide range of neurodevelopmental and
psychiatric disorders including anxiety, attention deficit
hyperactivity disorder, depression, and schizophrenia10.
Enigmatically, for all the evidence of the critical role that
the gut microbiome serves during neurodevelopment and
later in preserving CNS homeostasis, intestinal microbial
communities are surprisingly sensitive and responsive to
environmental cues such as diet, exposure to anti-
microbials, and disrupted sleep patterns10. So dynamic are
these communities that changes in diet are able to bring
about rapid changes in the composition of the gut
microbiome as fast as within a single day11. While strong
associations between diet-dependent gut microbiome
populations and neuropsychiatric illness are well recog-
nized, it is unknown whether there exists an attendant
structural neural correlate to parallel these observed
changes in brain function and behavior. Given the striking
spectrum of behavior observed as a function of diet, we
hypothesized that diet-dependent changes in brain func-
tion and behavior also manifest with corresponding
changes in neural tissue microstructure.

Materials and methods
Animals and experimental design
Animals were housed and cared for in an AAALAC-

accredited facility and all animal experiments were con-
ducted in accordance with University of Wisconsin-
Madison IACUC-approved protocols. Following wean-
ing, post natal day 22 male outbred Sprague-Dawley lit-
termate rats (Charles River, Wilmington, MA, USA), were
singly housed and randomized to one of four purified and
irradiated diets: a control (chemically purified) diet (A), a
high fat diet (B), a high fiber (C), and a high protein, low
carbohydrate diet (D). Male animals were chosen to avoid
potentially confounding estrous effects; male animals
were also singly housed to additionally avoid the poten-
tially confounding effects of rat coprohagy and its impact
on gut microbiome populations. Animals began the
experimental diets (n= 5 for each experimental diet)
immediately post-weaning and were fed for a total of
21 days with free access to their assigned diet and water;
all animals were maintained on a 12:12-h light–dark cycle.
The high fat diets had 60% energy from fat sourced from
combined lard and soybean oil, whereas the control diet

had 17% energy from fat sourced solely by soybean oil.
The high-fiber low energy diet was comprised of 40% fiber
supplied by additional cellulose and provided 2.5 Kcal/g of
diet relative to the 3.8 Kcal/g supplied by the control diet.
The high protein low carbohydrate diet had 75% of its
energy supplied by protein and 6% of energy derived from
carbohydrate sources (Teklad, Madison, WI: TD97184,
TD150669, TD150670, TD150671). Fecal samples from
each of the immediately post-weaned animals were col-
lected (prior to initiating their assigned diet) with a sec-
ond animal-matched fecal sample subsequently collected
from each animal three weeks later. All animals were then
brought to a surgical plane of anesthesia and were
transcardially perfused with ice-cold 4% paraformalde-
hyde (PFA). Brains were then cleanly dissected from the
cranial vault, post-fixed in 4% PFA, and stored at 4 °C.
Forty-eight hours prior to imaging, brains were serially
washed in 1X PBS to minimize the attenuating effects of
fixative prior to being placed in a custom-built holder
filled with Fluorinert (FC-3283, 3M) to minimize mag-
netic susceptibility artifact.

Image data acquisition
For ex-vivo diffusion tensor imaging (DTI) acquisition,

groups of 2 or 3 brains were simultaneously imaged using
a 4.7-T Agilent MRI system and 3.5-cm diameter quad-
rature volume RF coil. Diffusion-weighted imaging (DWI)
data were acquired employing a multi-slice spin echo
sequence with the following imaging parameters: repeti-
tion time: 2000ms; echo time: 24.17 ms; field of view of
32× 32mm with an acquisition matrix size 192× 192 for
a 0.17× 0.17 mm in-plane resolution and 35 slices with 1
mm thickness. Diffusion measurements were acquired
with diffusion encoded along 30 non-collinear directions
at b= 1200 s /mm2 and three additional non-diffusion
weighted (b= 0 s/mm2) measurements. The acquisition
was averaged across two repeats resulting in a total ima-
ging time of approximately 11 h.

Image preprocessing
Experimenters were blinded to the experimental con-

ditions for this and all subsequent image processing steps.
An affine registration tool12 from the FMRIB software
library (FSL; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) suite
was used to co-register individual diffusion images to
correct for subtle eddy current distortions. Gradient
directions were then corrected for rotations13. Following
these corrections, FSL was used to fit the diffusion tensors
at each voxel.

Image spatial normalization
The FSL DTI output volumes were converted to NIfTI

tensor format for compatibility with the DTI-TK14 soft-
ware platform. Following the conversion, diffusivity units
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were verified to be in 10−3 mm2/s as required by the DTI-
TK normalization routine. Utilization of a group-wise
template has been shown to have a positive impact on
population comparison analysis of diffusion markers such
as TBSS15. Therefore, DTI-TK was employed to first
estimate a study-specific tensor template from all imaging
data sets acquired from the control group. This template
was then used as a target to which each subject tensor
volume was spatially normalized using the DTI-TK ten-
sor-based registration tools. DTI-TK’s registration rou-
tine, which iteratively employs rigid-body, affine, and
diffeomorphic transformations, was used as it has been
shown to offer improved registration results over other
registration algorithms16.

Image tract-based spatial statistics
The TBSS formalism was implemented as recom-

mended in Bach et al.17 This consists of replacing
the traditional TBSS registration (FSL’s FNIRT) with
the DTI-TK registration routine, which uses the full
tensor information for the registration resulting in an
improved alignment quality. The rest of the TBSS pipeline
was applied utilizing the recommended parameters
implemented in FSL, which includes using a 0.2 FA
threshold for creating the white matter skeleton. Addi-
tionally, a permutation test with n= 252 corrected for
multiple comparisons and threshold-free cluster
enhancement (TFCE)18 was implemented with FSL’s
Randomize for inter-group comparisons (i.e., three com-
parisons, each with n= 10), with p o 0.05 as threshold
for significance.

Image regions of interest (ROI) analysis
A standard atlas19 from which anatomical ROIs were

derived was non-linearly aligned to the group-wise tem-
plate. The registration included elastic warping with a
point-set based registration metric implemented in the
advanced normalization tools (ANTS)20 software library.
For use in the subsequent statistical analysis, mean values
of the diffusion-tensor-derived indices, namely, fractional
anisotropy (FA), RD (radial diffusivity), AD (axial diffu-
sivity), and TR (trace: mean diffusivity [MD]× 3) were
computed within each ROI for all individual samples.
These values were computed in the group-wise template
space.

Construction and sequencing of V3/V4 16S metagenomic
libraries
Fecal matter was collected using Oragene OMNIgene-

Gut storage tubes (DNA Genotek, Ottawa, ON, Canada)
and DNA was isolated from 250 uL of fecal slurry using
the OMNIgene adapted MO BIO PowerFecal DNA Iso-
lation Kit (Mo Bio Laboratories Inc, Carlsbad, California,
USA) at the University of Wisconsin-Madison

Biotechnology Center. DNA concentration was verified
using the Qubit® dsDNA HS Assay Kit (Life Technologies,
Carlsbad, California, USA). Samples were prepared as
described in the 16 S Metagenomic Sequencing Library
Preparation Protocol, Part # 15044223 Rev. B (Illumina
Inc., San Diego, California, USA) with the following
modifications: The 16 S rRNA gene V3/V4 variable region
was amplified with nested primers (forward primer: 5′-
ACACTCTTTCCCTACACGACGCTCTTCCGATCTC
CTACGGGNGGCWGCAG-3′, reverse primer: 5′-GTG
ACTGGAGTTCAGACGTGTGCTCTTCCGATCTGAC
TACHVGGGTATCTAATCC-3′), Region-specific pri-
mers were previously described in Klindworth et al.,21 and
were modified to add Illumina adapter overhang nucleo-
tide sequences to the gene-specific sequences. Following
initial amplification, library size was verified on an Agilent
DNA1000 chip, and cleaned using a 1x volume of Axy-
Prep Mag PCR clean-up beads (Axygen Biosciences,
Union City, CA). Illumina dual indexes and Sequencing
adapters were added using the following primers (Forward
primer: 5′-AATGATACGGCGACCACCGAGATCTAC
AC[55555555]ACACTCTTTCCCTACACGACGCTCTT
CCGATCT-3′, Reverse Primer: 5′-CAAGCAGAAGA
CGGCATACGAGAT[77777777]GTGACTGGAGTTCA
GACGTGTGCTCTTCCGATCT -3′, where bracketed
sequences are equivalent to the Illumina Dual Index
adapters D501-D508 and D701-D712). Following PCR,
DNA was cleaned using a 1x volume of AxyPrep Mag
PCR clean-up beads (Axygen Biosciences). Quality and
quantity of the finished libraries were assessed using an
Agilent DNA1000 chip and Qubit® dsDNA HS Assay Kit,
respectively. Libraries were standardized to 2 μM and
pooled prior to sequencing. Paired end, 300 bp sequen-
cing was performed using the Illumina MiSeq Sequencer
and a MiSeq 600 bp (v3) sequencing cartridge. Images
were analyzed using the standard Illumina Pipeline, ver-
sion 1.8.2.

16S rRNA sequence preprocessing and analysis
The University of Wisconsin-Madison Biotechnology

Center performed data analysis on the 16S rRNA
sequencing. Briefly, sequencing reads were adapter and
quality trimmed using the Skewer22 trimming program.
Flash23 was used to merge paired end reads into amplicon
sequences. Merged amplicons were then quality filtered.
Qiime24 analysis used an open-reference operational
taxonomic unit (OTU) picking process: reads are clus-
tered against a reference sequence collection using 97%
similarity, and any reads which do not hit the reference
sequence collection are subsequently clustered de novo.
Alignments were filtered to remove variable regions prior
to creating the phylogenetic tree. Singleton OTUs and
OTUs that could not be aligned using PyNAST were
removed. Alpha diversity was calculated with a rarefaction
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upper limit of (median depth/sample count). Beta diver-
sity was leveled according to the lowest sample depth.

Microbiome and brain random forest analysis
R was used for the preprocessing and downstream

predictive analysis of the metagenome and brain mea-
surement/regions25. The relative abundance values of the
metagenome OTUs were transformed using log (base 2).
The brain measurement/regions were then z-scaled across
the samples. A model was built to predict the diet for each
data set separately using the Random Forest package26 in
R (ntree= 16,000). The prediction performance and
confusion matrices were determined using leave-one-out
cross-validation. The percent mean decrease accuracy
from the importance matrix was used to select features
that were most predictive of diet. Heat maps were gen-
erated using the R package. Features from the quantitative
microbiome profiles including species-level relative
abundances were mapped to the brain imaging data from
the same subjects. Next, we predicted each z-scaled brain
region using Random Forest in regression mode (ntree=
4000) with metagenome OTUs as input. Feature selection
was done using %IncMSE as calculated by the importance
matrix.
To find OTU and brain region pairs that are individually

predictive of diet and whose brain measurement is pre-
dictable by the OTU, we derived four different scores with
values from 1/Nelement (lowest, least importance) to 1
(highest, most important). We derive scores from the
metagenome (S(OTUi)) and brain measurement/regions
(S(BrainMj)) from the rank of MeanDecreaseAccuracy
from the random forest importance matrix when pre-
dicting diet. For each brain measurement/region and
metagenome OTU, we derive a score based upon the rank
of the OTU’s %IncMSE for predicting the brain region/
measurement. The multiplication of the S(OTUi), S
(BrainMj), and S(OTUi,BrainMj) derives the combined
score (SCombined(OTUi,BrainMj).

S OTUið Þ ¼ Rank MeanDecreaseAccuracy Diet OTUijð Þð Þ
NOTU

BrainMj
� � ¼ Rank MeanDecreaseAccuracy Diet BrainMj

��� �� �

NBrainM

S OTUi;BrainMj
� � ¼ Rank %IncMSE BrainMj OTUij� �� �

NOTU

SCombined OTUi;BrainMj
� � ¼ S OTUið ÞS BrainMj

� �
S OTUi;BrainMj
� �

After ordering all OTU, Brain region/measurement
pairs using Scombined, we then selected the top 27 ranked
pairs for building three Random Forest models, two using
either OTU and Brain region/measurement for predicting
diet, and one using both the OTUs and Brain region/
measurement for predicting diet. A Circos plot was gen-
erated using circlize27.

Results
Diet modulates white matter structural integrity
To explore the influence of diet on neural tissue

microstructure and organization, singly housed, immedi-
ately post-weaned male rats were randomized to one of
four purified and irradiated diets: a standard/control diet
(A), a high fat diet (B), a high fiber diet (C), and a high
protein, low carbohydrate diet (D). After three weeks on
their assigned diet, ex-vivo whole brain DTI was per-
formed. After data preprocessing and spatial normal-
ization, the imaging data were analyzed with tract-based
spatial statistics (TBSS). Analysis with TBSS revealed
confluent areas of statistically significant differences in FA
(p o 0.05, corrected for multiple comparisons) between
the control diet group and both the fiber and protein diet
groups with areas of increased FA clustering in the left
frontal neocortex of both the fiber diet group and in the
protein diet group (Fig. 1a, b). While no significant dif-
ferences in FA were identified between the standard diet
and high-fat diet groups, there were extensive areas of
decreased RD, AD, and TR (trace=mean diffusivity
[MD]× 3) between the control and high-fat diet groups
(p o 0.05, corrected for multiple comparisons, Fig. 1c–h).
These areas of significant change include voxels spanning
areas of the neocortex, the corpus callosum, the forebrain,
and the right external and left internal capsules. The
protein diet group also displayed significant reductions in
RD and TR the left frontal neocortex with additional
reductions in RD and TR in clusters encompassing voxels
located in the expected regions of the left external cap-
sule, left frontal neocortex, and the forebrain (Fig. 1d, h).

Discriminatory OTUs and diffusion tensor regions of
interest can predict diet
The constellation of these imaging findings reveals

remarkable changes in underlying white matter structural
integrity occurring in a diet-dependent fashion. As dif-
ferent diets also alter the composition of the gut micro-
biome, we next explored whether diet-dependent gut
microbiome populations could be mediating these
observed diet-specific perturbations in white matter
structural integrity. To explore this hypothesis, fecal
samples from each of the immediately post-weaned ani-
mals were collected (prior to initiating their assigned diet)
with a second animal-matched fecal sample subsequently
collected 21 days later. 16S ribosomal RNA sequencing
was then performed on all fecal samples with amplifica-
tion of the V3/V4 variable regions. A comparison of the
composition of gut microbial communities across the
different diets was assessed with the UniFrac metric28 and,
as expected, significant changes were seen in the relative
abundance of bacterial taxa at the end of the three week
diet period (Fig. 2a). Principle coordinates analysis
(PCoA) of weighted UniFrac-based pairwise comparisons
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(post-weaning; after diet) similarly revealed diet-specific
gut microbiome communities that were unique to the
consumed diet (Fig. 2b)29.
To refine the relationship between gut microbial com-

munities, diet, and changes in neural tissue micro-
structure, predictive modeling with Random Forest
(which can be thought of as an ensemble of decision trees)
and leave-one-out cross-validation was performed25,30.
We found that the log (base 2) relative abundance of the

OTUs of gut microbiota between the first and second
fecal samples were able to discriminate between the dif-
ferent diets with 100% accuracy using just nine OTUs
(Fig. 3a; Table S1) where OTUs with the highest mean
decrease accuracy (a feature importance metric from
Random Forest) were used to select the features that were
most important in determining the diet. To estimate the
predictive accuracy on future data, we performed 3× 5-
fold cross-validation (stratified by diet) on the whole
process of feature selection using the random forest
ranking and achieve an average accuracy of 75± 10% (95%
confidence interval assuming normal distribution with
sample standard deviation; a random classifier would
achieve 25% accuracy). We also determined the most
predictive OTUs for each diet using Random Forest; in
the case of the high protein, low carbohydrate diet, we
found that the bacterial species L. garvieae could alone
predict this diet (Fig. S1). In addition, Roseburia, and
Barnesiellaceae were also selected as discriminative OTUs
that are good predictors of the high-fiber diet (Fig. S1).
With the identification of highly discriminatory and pre-
dictive elements in the OTU sequencing data, we next
explored whether such elements were also present in our
diffusion tensor data. Following TBSS processing, anato-
mical regions of interest (ROIs) derived from a standard
atlas19 were aligned to a group-wise template, which was
estimated from the samples in the standard diet group.
Mean values of FA, RD, AD, and TR were then computed
within each ROI for all individual samples. These mean
values of diffusion-tensor-derived indices per ROI were
used as an input to build a model to predict the diet for
each data set separately. Again, using Random Forest with
leave-one-out cross-validation, we identified nine features
(nine imaging ROIs), which were able to successfully
discriminate between the different diets with 95% accu-
racy (Fig. 3b; Tables S2-S4). Estimating the predictive

Fig. 1 Diet impacts multiple measures of the diffusion tensor in a
diet-dependent manner. Ex-vivo diffusion tensor imaging (DTI) was
performed 21 days after immediately post-weaned male rats were
assigned to one of four assigned diets (n = 20; n = 5 in each diet
group) to measure diet-dependent changes in the diffusion tensor
when referenced to control animals. Following tract-based spatial
statistics (TBSS) analysis, areas of increased FA (a, b) and decreased
trace (TR) (c, d) axial (AD) (e, f) and radial diffusivity (RD) (g, h) for each
experimental diet group (as compared to the standard diet) were
identified and are displayed over masked oblique and coronal
fractional anisotropy (FA) maps. No voxels corresponding to
decreased FA or increased TR, AD, or RD were identified. Areas
highlighted in yellow (high fat), green (high fiber), and magenta (high
protein, low carbohydrate) represent diet-specific voxels where tract-
based spatial statistics (TBSS) analysis revealed statistically significant
diffusion tensor differences between each of the enriched diet groups
and the control diet group. No significant changes were found in FA
for the fat diet group or in AD for the fiber diet group
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Fig. 2 Diet shapes both the relative abundance and composition of gut microbiome populations. Immediately post-weaned male rats were
singly housed and were assigned to one of four experimental diets for 21 days (n = 20) including a control (standard) chow, high fat, high fiber, and
high protein, low carbohydrate diet. a Taxonomic distribution of major identified bacteria taxa (at the class level) immediately post-weaning and after
21 days on the assigned experimental diet with values representing the average relative abundance across all samples within the indicated group. b
16 S rRNA gene surveys (analyzed by weighted UniFrac-based PCoA) from immediately post-weaned animals and after 3-weeks on a control (blue),
high-fat diet (green), high protein, low carbohydrate (pink), and high-fiber diet (yellow). Principle coordinates 1 and 2 (PC1, PC2) are the x- and y-axis,
respectively, and are scaled on the basis of percent variance with PC3 depicted by the shading of each point
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performance on future ROI data using 3× 5-fold cross-
validation (stratified by diet), we achieve an average
accuracy of 77± 12%.

Diet-specific gut microbiota populations potentially
influence white matter integrity
Beyond using diffusion tensor ROIs and OTUs to pre-

dict animal diet, we sought to extend our analysis to
further characterize potential relationships between brain
structure and populations of bacterial genera in the gut
microbiome. Specifically, we sought to determine if indi-
vidual OTUs could predict diffusion tensor measures
(such as FA, RD, MD, or TR) in a brain ROI. To these
ends, we predicted each z-scaled brain ROI using Random
Forest in regression mode. Feature selection was then
performed using percent increase mean squared error
(MSE) as calculated by the importance matrix. The
importance matrix demonstrates the degree to which
MSE increases when a variable is randomly permutated; if
a variable is randomly permutated, it will not contribute
to accuracy in prediction and predictions therefore will

not fluctuate. Conversely, important variables will sig-
nificantly change the predictions if they are randomly
permutated. To find OTU:brain ROI pairs that are indi-
vidually predictive of diet and whose ROI value is pre-
dictable by the OTU, we derived a scoring function that
combines rankings from three different ranked lists such
that our constraints are met; we select for OTU features
that are predictive of brain measurements and combined
OTU features and brain measurements that are also
predictive of diet. After ordering all OTU:brain ROI pairs
using Scombined, we then selected and used the top 27
ranked pairs for building three Random Forest models,
two using either OTU or brain ROIs for predicting diet,
and one using both the OTUs and brain ROIs for pre-
dicting diet (Table S5). Forward selection was then per-
formed until we obtained 100% accuracy. With a selected
threshold of 0.84, we were able to accurately identify
OTU:brain ROI pairs that matched the presence of a gut
microbiome OTU to a predicted and experimentally
observed diffusion tensor value in a prescribed ROI (Fig.
4) thus demonstrating that diet-dependent gut

Fig. 3 Discriminatory OTUs and measures of the diffusion tensor can both predict animal diet. Predictive modeling with Random Forest with
leave-one-out cross-validation identified nine features from both the gut microbiome and from experimentally measured diffusion tensor values that
were able to predict the diet of the animal with 100% and 95% accuracy, respectively. Hierarchically clustered heatmaps for discriminatory elements
and their relationship to diet are shown here for identified OTUs (a) and for identified diffusion tensor measurements (b)
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microbiome populations can potentially predict or be
linked to changes in white matter structural integrity in a
defined manner.

Discussion
The mechanism through which the gut microbiome

exerts its effects on the CNS is multifactorial (neural,
endocrine, and immunologic) but is thought to largely
occur via the generation of bacterial metabolites, which
exert their physiologic effects both locally and systemi-
cally. Short-chain fatty acids, produced by the bacterial
fermentation of dietary carbohydrates, alter neuronal
excitability31 and gut bacteria also manufacture a wide
spectrum of neuroactive compounds that include dopa-
mine, γ-aminobutyric acid, histamine, acetycholine and
tryptophan, a precursor in the biosynthesis of serotonin32.
The results of our work extend and build upon these
findings by uncovering changes in white matter structural
integrity and how they may be linked to specific gut
microbiome populations. Other groups have previously
linked the gut microbiome to structural changes in the
brain33, and used machine learning methods to associate
the gut microbiome with phenotypic data34; however, to

the best of our knowledge, we are the first to utilize
machine learning methods to directly link diet with gut
microbiome populations and brain structure. Our find-
ings associating gut microbiome populations to changes
in brain structure are further buttressed with new evi-
dence demonstrating the gut microbiome and Toll-like
receptor 4 (TLR4) as critical stimulants of cerebral
cavernous malformations35. Our method for uncovering
potential links between gut microbiome populations and
brain structural changes can help guide important new
experiments to study how these microbiome populations
impact the CNS beyond transiently modulating the pre-
sence and flux of neuroactive molecules and compounds.
Our observed structural changes may also be explained

in part by recent studies demonstrating examples of how
gut microbiome populations influence the transcriptional
activity of genes involved in neuronal myelination36,37,
which could potentially impart a lasting structural change
and durable imprint on brain structure, function, and
behavior. Intriguingly, all areas of significant FA change
were the result of increased FA with no significant areas of
decreased FA identified. While the cellular mechanisms
for increases in FA remain unknown, increased water

Fig. 4 Specific bacterial populations are predictive of diffusion tensor measurements in corresponding brain ROIs. Regression-based
ensemble analysis of OTUs and calculated diffusion tensor measurements identified unique populations of gut bacterial genera that are predictive of
ROI-specific tensor changes (Table S5). A Circos plot (a) and a hierarchically clustered heatmap (b) illustrate the most robust predictive relationships
between OTUs and brain diffusion tensor ROIs identified in our analysis. fa fractional anisotropy, tr trace, rd radial diffusivity, ad axial diffusivity
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content in the myelin sheath, accelerated myelination
and/or microscopic deficits of axonal structures or
decreases in axonal diameter, packing density, and
branching may all contribute to areas of elevated FA
found in our study38,39. In addition, while there was an
absence of significant FA differences between our high fat
and standard diet groups, there were, however, substantial
areas of significantly lowered AD, RD, and TR between
these two groups (Fig. 1). While it is generally unexpected
to observe an apparent decoupling in the direction of
change in FA and AD as changes in either diffusion metric
tends to follow the other, our results are not singularly
unique as numerous prior reports have also made this
observation40–42. With complex fiber architecture and
subsequent orientation uncertainty, the direction of the
measured tensor eigenvalues does not always correspond
to the underlying structure, especially in instances where
tensor measurement are being made in pathological tis-
sue40,41. Additionally, different tensor shapes can yield a
similar FA and the high degree of overlap between regions
of concomitant reduction in both AD and RD may help
explain the absence of FA differences in those regions
between these two groups43. These results also highlight
that even in the absence of a significant shift in FA, there
are important changes occurring to the diffusion tensor
that likely reflect important biological transformations.
In an extension of our work, we also performed a

regression-based ensemble analysis of OTUs identified
from sequenced 16S ribosomal RNA with calculated dif-
fusion tensor measurements. From this analysis, we were
able to identify unique populations of gut bacterial genera
that were both associated with and predictive of ROI-
specific tensor changes (Fig. 4). These associations were
found to be independent of diet, which suggests that while
the overall taxonomic composition and relative abun-
dance of any one specific bacterial genera is diet-depen-
dent, its contribution to underlying brain structure is not
likely the result of synergistic effects derived from the
presence of other bacterial populations or to behavioral
changes that may result from a change in diet. This par-
allels the findings of numerous reports in the literature
where the recolonization of a single gut bacterial species
has been shown to be able to rescue perturbations in host
physiology and ameliorate behavioral phenotypes2,8. With
our Random Forest analysis not only predicting microbial
driven ROI-specific changes but also changes to regions of
the brain central to animal behavior including the neo-
cortex, hypothalamus, and forebrain, these findings also
highlight a potential mechanism whereby certain micro-
organisms are able to exert their systems-level behavioral
effects. Notably, these predictions are again consistent
with prior reports in the literature, with many of the
bacterial genera identified in our analysis having been
previously identified not only as important modulators of

behavior but also having been shown to exert their effects
in our predicted ROIs. A standout example of the pre-
dictive efficacy of our analysis is our identification of
Roseburia being linked to microstructural changes in the
neocortex (Fig. 4a). Previous reports have linked gut
populations of Roseburia with elevated mood44, and with
recent experimental findings implicating neocortical
regions with altered mood and other affective disorders45,
our analysis uncovers a potential hypothesis for how
Roseburia is able to exert its specific behavioral effects. In
sum, the methodology and results presented here are a
novel framework with which one could potentially infer
what brain structure may be given knowledge of the gut
microbiome. In particular, our novel neuroimaging and
machine learning classifier for the quantitative assessment
of microbiome-brain region associations can guide future
experimental work, whereby with an interest in a parti-
cular brain region or structure, our analysis can now allow
for the selection of specific bacterial genera to generate a
more tailored study of how specific gut microbiome
populations impact brain structure, function, and
behavior.
Our findings also bolster an emerging appreciation of

metagenomic effects in experimental science. Particularly
in experiments where mice and rats serve as a model
organism, the absence of strong controls for metagenomic
populations (such as the gut microbiome) may inad-
vertently confound experimental reproducibility as there
are many potential linkages of the microbiome to vari-
ables known to influence experimental outcomes46. Our
results now foster important experimental considerations
for the neuroscience and neuroimaging community. Dif-
fusion tensor imaging and the subsequent evaluation of
white matter integrity are often employed in an effort to
identify imaging endophenotypes across a broad range of
neurologic and psychiatric diseases and the sensitivity of
diffusion tensor imaging, coupled with its bias-free auto-
mated analysis, makes this an established and widespread
clinical and experimental technique. Diffusion tensor
techniques also serve as the basis for several large ongoing
neuroimaging trials including the Alzheimer’s Disease
Neuroimaging Initiative, the Human Connectome Project,
and ENIGMA-DTI. With many clinical and experimental
studies leveraging the utility and sensitivity of diffusion
tensor imaging, that the gut microbiome could impart an
unexpected impact on sensitive measures of diffusion
tensor is an unanticipated and surprising challenge. While
the effects of the gut microbiome are, in all likelihood, less
likely to impact large well-organized white matter tracts
such as the corpus callosum, studies employing DTI to
identify novel imaging endophenotypes may be unknow-
ingly affected by metagenomic effects that can further
challenge efforts to identify and refine candidate neuroi-
maging biomarkers across a wide variety of diseases. This
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may be especially true for neuroimaging trials employing
diffusion tensor techniques in schizophrenia, major
depressive disorder, and bipolar disorder where investi-
gators have yet to validate a truly robust neuroimaging
biomarker that may have been influenced by unaccounted
gut microbiome populations and their influence on the
measurement of sensitive diffusion tensor indices.
In addition, concerns regarding the reproducibility of

neuroimaging biomarkers have been raised with newly
available data demonstrating the surprisingly poor
reproducibility of candidate gene effects on imaging
measures of mental illness. In an effort to countervail
these findings, large imaging trials such as ENIGMA have
pursued large sample sizes and meta-analyses as a means
to screen for these false positive findings47; however, it is
conceivable that these efforts could still be encumbered
by the unaccounted contributions of gut microbiome
populations on diffusion tensor metrics, thus masking and
precluding the discovery of biologically important tensor
changes and potentially salient neuroimaging biomarkers.
These unforeseen potential challenges highlight a need to
better understand the mechanism through which various
bacterial genera are able to exert changes on brain
structure and moreover, to uncover the mechanism by
which they are able to do so in such a region-specific
manner. These efforts will likely complement additional
work exploring both the durability and malleability of
these tensor changes and how these can be shaped not
only by diet but also through the consumption of pre-
biotics, probiotics, and other means of dietary
supplementation.

Acknowledgements
We would like to thank the University of Wisconsin Biotechnology Center Gene
Expression Center for microbiome sequencing support; B. Rauch for
outstanding imaging support through the Small Animal Imaging Facility at the
University of Wisconsin Carbone Cancer Center; and bioinformatics support
from the Institute for Clinical and Translational Research (ICTR) at the University
of Wisconsin–Madison and the National Center for Advancing Translational
Sciences (NCATS). J.-P.J.Y was supported by UW-Madison School of Medicine
and Public Health and Department of Radiology; University of Wisconsin
Carbone Cancer Center Support Grant P30 CA014520; NCATS UL1TR000427; N.
A. is supported in part by R01EB022883-01, Waisman Core Grant P30
HD003352-45, and U54 AI117924-03. J.G.G is supported by the National
Science Foundation Graduate Research Fellowship under Grant No. DGE-
1256259.

Author details
1Department of Biostatistics and Medical Informatics, University of
Wisconsin–Madison, Madison, WI 53705, USA. 2Carbone Cancer Center,
University of Wisconsin School of Medicine and Public Health, Madison, WI
53705, USA. 3Department of Medical Physics, Wisconsin Institutes for Medical
Research, University of Wisconsin School of Medicine and Public Health,
Madison, WI 53705, USA. 4Department of Radiology, University of Wisconsin
School of Medicine and Public Health, E3/366 Clinical Science Center, 600
Highland Avenue, M/C 3252, Madison, WI 53792-3252, USA. 5Department of
Computer Sciences, University of Wisconsin–Madison, Madison, WI 53706, USA.
6Waisman Laboratory for Brain Imaging and Behavior, University of
Wisconsin–Madison, Madison, WI 53705, USA. 7Department of Psychiatry,
University of Wisconsin School of Medicine and Public Health, Madison, WI
53705, USA. 8Department of Biomedical Engineering, College of Engineering,

University of Wisconsin–Madison, Madison, WI 53706, USA. 9Neuroscience
Training Program, Wisconsin Institutes for Medical Research, University of
Wisconsin–Madison, Madison, WI 53705, USA

Authors’ contributions
J-P.J.Y. designed the experiments; J.G.G, I.M.O., S.J.M., N.A., A.J.C., and E.A.S.
performed the experiments; J-P.J.Y., J.G.G., I.M.O., S.J.M., N.A., A.J.C., and A.L.L.
interpreted the results; J-P.J.Y., J.G.G., S.J.M., and I.M.O wrote the manuscript.

Competing interests
The authors declare that they have no competing financial interests.

Supplementary information
The online version of this article (https://doi.org/10.1038/s41398-017-0022-5)
contains supplementary material.

Received: 5 April 2017 Revised: 1 August 2017 Accepted: 4 August 2017

References
1. Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn’s dis-

ease. Cell Host Microbe 15, 382–392 (2014).
2. Hsiao, E. Y. et al. Microbiota modulate behavioral and physiological

abnormalities associated with neurodevelopmental disorders. Cell 155,
1451–1463 (2013).

3. Tillisch, K. et al. Consumption of fermented milk product with probiotic
modulates brain activity. Gastroenterology 144, 1394–401 (2013).

4. Heijtz, R. D. et al. Normal gut microbiota modulates brain development and
behavior. Proc. Natl. Acad. Sci. 108, 3047–3052 (2011).

5. Whitehead, W. E., Palsson, O. & Jones, K. R. Systematic review of the comor-
bidity of irritable bowel syndrome with other disorders: what are the causes
and implications?. Gastroenterology 122, 1140–1156 (2002).

6. Liu, Z. et al. High-fat diet induces hepatic insulin resistance and impairment of
synaptic plasticity. PLoS. ONE 10, e0128274 (2015).

7. Kaptan, Z. et al. Long term consequences on spatial learning-memory of low-
calorie diet during adolescence in female rats; hippocampal and prefrontal
cortex BDNF level, expression of NeuN and cell proliferation in dentate gyrus.
Brain Res. 1618, 194–204 (2015).

8. Buffington, S. A. et al. Microbial reconstitution reverses maternal diet-induced
social and synaptic deficits in offspring. Cell 165, 1762–1775 (2016).

9. Schafer, D. P. & Stevens, B. Phagocytic glial cells: Sculpting synaptic circuits in
the developing nervous system. Curr. Opin. Neurobiol. 23, 1034–1040 (2013).

10. Rogers, G. B. et al. From gut dysbiosis to altered brain function and mental
illness: mechanisms and pathways. Mol. Psychiatr. 21, 1–11 (2016).

11. David, L. A. et al. Diet rapidly and reproducibly alters the human gut micro-
biome. Nature 505, 559–63 (2014).

12. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the
robust and accurate linear registration and motion correction of brain images.
Neuroimage 17, 825–841 (2002).

13. Leemans, A. & Jones, D. K. The B-matrix must be rotated when correcting for
subject motion in DTI data. Magn. Reson. Med. 61, 1336–1349 (2009).

14. Zhang, H., Yushkevich, P. A., Alexander, D. C. & Gee, J. C. Deformable regis-
tration of diffusion tensor MR images with explicit orientation optimization.
Med. Image Anal. 10, 764–785 (2006).

15. Keihaninejad, S. et al. The importance of group-wise registration in tract based
spatial statistics study of neurodegeneration: a simulation study in Alzheimer’s
disease. PLoS. ONE 7, e45996 (2012).

16. Wang, Y. et al. DTI registration in atlas based fiber analysis of infantile Krabbe
disease. Neuroimage 55, 1577–1586 (2011).

17. Bach, M. et al. Methodological considerations on tract-based spatial statistics
(TBSS). Neuroimage 100, 358–369 (2014).

18. Smith, S. M. & Nichols, T. E. Threshold-free cluster enhancement: Addressing
problems of smoothing, threshold dependence and localisation in cluster
inference. Neuroimage 44, 83–98 (2009).

19. Rumple, A. et al. 3-dimensional diffusion tensor imaging (DTI) atlas of the rat
brain. PLoS. ONE 8, e67334 (2013).

Ong et al. Translational Psychiatry  (2018) 8:6 Page 10 of 11

https://doi.org/10.1038/s41398-017-0022-5


20. Avants, B. B. et al. A reproducible evaluation of ANTs similarity metric per-
formance in brain image registration. Neuroimage 54, 2033–2044 (2011).

21. Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR
primers for classical and next-generation sequencing-based diversity studies.
Nucleic Acids Res. 41, e1 (2013).

22. Jiang, H., Lei, R., Ding, S. -W. & Zhu, S. Skewer: a fast and accurate adapter
trimmer for next-generation sequencing paired-end reads. BMC Bioinforma.
15, 182 (2014).

23. Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to
improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

24. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community
sequencing data. Nat. Methods 7, 335–6 (2010).

25. Liaw, A. & Wiener, M. Classification and regression by random Forest. R. News
2, 18–22 (2002).

26. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
27. Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. Circlize Implements and enhances

circular visualization in R. Bioinformatics 30, 2811–2812 (2014).
28. Lozupone, C. & Knight, R. UniFrac: A new phylogenetic method for comparing

microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).
29. David, L. A. et al. Diet rapidly and reproducibly alters the human gut micro-

biome. Nature 505, 559–63 (2014).
30. R Development Core Team R. R: A language and environment for statistical

computing. R found. Stat. Comput. 1, 409 (2011).
31. Nohr, M. K. et al. Expression of the short chain fatty acid receptor GPR41/FFAR3

in autonomic and somatic sensory ganglia. Neuroscience 290, 126–137 (2015).
32. Barrett, E., Ross, R. P., O’Toole, P. W., Fitzgerald, G. F. & Stanton, C. Gamma-

aminobutyric acid production by culturable bacteria from the human intes-
tine. J. Appl. Microbiol. 113, 411–417 (2012).

33. Fernandez-Real, J. M. et al. Gut microbiota interacts with brain microstructure
and function. J. Clin. Endocrinol. Metab. 100, 4505–4513 (2015).

34. Pasolli, E., Truong, D. T., Malik, F., Waldron, L. & Segata, N. Machine learning
meta-analysis of large metagenomic datasets: Tools and biological insights.
PLoS. Comput. Biol. 12, e1004977 (2016).

35. Tang, A. T. et al. Endothelial TLR4 and the microbiome drive cerebral caver-
nous malformations. Nature 545, 305–310 (2017).

36. Gacias, M. et al. Microbiota-driven transcriptional changes in prefrontal cortex
override genetic differences in social behavior. Elife 5, e13442 (2016).

37. Hoban, A. E. et al. Regulation of prefrontal cortex myelination by the micro-
biota. Transl. Psychiatr. 6, e774 (2016).

38. Hoeft, F. et al. More is not always better: increased fractional anisotropy of
superior longitudinal fasciculus associated with poor visuospatial abilities in
Williams syndrome. J. Neurosci. 27, 11960–11965 (2007).

39. Mayer, A. R. et al. A prospective diffusion tensor imaging study in mild trau-
matic brain injury. Neurology 74, 643–650 (2010).

40. Metwalli, N. S. et al. Utility of axial and radial diffusivity from diffusion tensor
MRI as markers of neurodegeneration in amyotrophic lateral sclerosis. Brain
Res. 1348, 156–164 (2010).

41. Wheeler-Kingshott, C. A. M. & Cercignani, M. About ‘axial’ and ‘radial’ diffu-
sivities. Magn. Reson. Med. 61, 1255–1260 (2009).

42. Uhlmann, A. et al. White matter microstructure and impulsivity in metham-
phetamine dependence with and without a history of psychosis. Hum. Brain
Mapp. 37, 2055–2067 (2016).

43. Alexander, A. L., Lee, J. E., Lazar, M. & Field, A. S. Diffusion tensor imaging of the
brain. Neurotherapeutics 4, 316–329 (2007).

44. Li, L. et al. Gut microbes in correlation with mood: case study in a closed
experimental human life support system. Neurogastroenterol. Motil. 28,
1233–1240 (2016).

45. Paterson, C. et al. Temporal, diagnostic, and tissue-specific regulation of NRG3
isoform expression in human brain development and affective disorders. Am.
J. Psychiatr. 174(3), 256–265 (2016).

46. Stappenbeck, T. S. & Virgin, H. W. Accounting for reciprocal host–microbiome
interactions in experimental science. Nature 534, 191–199 (2016).

47. Thompson, P. M. et al. ENIGMA and the individual: Predicting factors
that affect the brain in 35 countries worldwide. Neuroimage 145, 389–408
(2017).

Ong et al. Translational Psychiatry  (2018) 8:6 Page 11 of 11


	Gut microbiome populations are associated with structure-specific changes in white matter architecture
	Introduction
	Materials and methods
	Animals and experimental design
	Image data acquisition
	Image preprocessing
	Image spatial normalization
	Image tract-based spatial statistics
	Image regions of interest (ROI) analysis

	Construction and sequencing of V3/V4 16S metagenomic libraries
	16S rRNA sequence preprocessing and analysis
	Microbiome and brain random forest analysis

	Results
	Diet modulates white matter structural integrity
	Discriminatory OTUs and diffusion tensor regions of interest can predict diet
	Diet-specific gut microbiota populations potentially influence white matter integrity

	Discussion
	ACKNOWLEDGMENTS




