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Abstract

Isothermal titration calorimetry (ITC) is the gold standard for accurate measurement of ther-

modynamic parameters in solution reactions. In the data processing of ITC, the non-constant

variance of the heat requires special consideration. The variance function approach has

been successfully applied in previous studies, but is found to fail under certain conditions in

this work. Here, an explicit ITC measurement model consisting of main thermal effects and

error components has been proposed to quantitatively evaluate and predict the non-constant

variance of the heat data under various conditions. Monte Carlo simulation shows that the

ITC measurement model provides higher accuracy and flexibility than variance function in

high c-value reactions or with additional error components, for example, originated from the

fluctuation of the concentrations or other properties of the solutions. The experimental design

of basic error evaluation is optimized accordingly and verified by both Monte Carlo simulation

and experiments. An easy-to-run Python source code is provided to illustrate the establish-

ment of the ITC measurement model and the estimation of heat variances. The accurate and

reliable non-constant variance of heat is helpful to the application of weighted least squares

regression, the proper evaluation or selection of the reaction model.

Introduction

Isothermal titration calorimetry (ITC) is the gold standard for direct, label-free, and in-situ

measurement of complete thermodynamic parameters, including Gibbs free energy (ΔG),

enthalpy (ΔH), entropy (ΔS), and heat capacity change (ΔCp) for interactions in solution [1,

2]. In certain cases, it can even be used to obtain the additional kinetic parameters (kon, koff)

simultaneously [3–6]. The modern isothermal titration calorimeter designed with power com-

pensation possesses very low detection limits [2, 7] and is widely used in biomolecular interac-

tion studies, supramolecular chemistry, drug research, nanomaterials science, and other fields

[8–13]. Thermodynamic information is key in drug design, discovery and optimization [14–

16], because it provides details about the balance of driving forces that cannot be obtained

solely from current structural and computational methods [17, 18]. Accurate determination of

the intrinsic enthalpy and entropy provides the necessary validation data for the development
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of structure-thermodynamics correlations in rational molecule design [19–22] and extends the

understanding of the abstruse enthalpy-entropy compensation [23] and the discrepancies

between Van’t Hoff and calorimetric enthalpies [24–26].

In a typical ITC titration experiment, the buret with a syringe needle injects the titrant solu-

tion into the reaction cell containing the titrand solution at the preset injection volume and

time interval to start the reaction. At the same time, the measuring unit detects the thermal

power signal of the reaction cell in real time. Each time the titration solution is injected to initi-

ate a reaction, a time-related thermal pulse signal (dQ/dt) is generated, and the heat rate curve

is integrated over time to obtain the binding isotherm (Q versus molar ratio of titrant to

titrand). The optimal experimental design is heavily dependent on the error distribution in the

binding isotherm. Over the past few years, continuous efforts in data processing have been

devoted to improving the accuracy and reliability of ITC. Wiseman and coworkers [27]

defined a dimensionless quantity that governs the shape of the binding isotherm, the Wiseman

c-value c = KaCcell, where Ka is the association constant of the solution reaction, and Ccell is the

concentration of the reactant in the sample cell. They recommended c-values ranging from

1–1,000 to ensure the S-shape of the binding isotherm. In cases of very weak binding (c! 0)

or very tight binding (c!1), Ka obtained from direct ITC measurements is not reliable [28,

29]. Biswas and Tsodikov have determined the optimal c-value between 5 and 20 since the

transition region was well covered by the experimental data in this case [30]. However, this

result does not consider the inevitable noise during titration. Broecker and coworkers [31]

have quantified the influence of noise by overlaying the specified noise distribution on the sim-

ulated ideal binding isotherm, where the isotherm noise conforms to Gaussian distribution

with a relative standard deviation of 1% of the maximum heat among injections. The relative

standard deviation was assumed to be constant at different c-values and an optimal window of

40< c< 100 has been determined based on their model [31]. Hansen and coworkers [32]

have calculated an optimal window of 50 < c< 500 based on a similar assumption. The non-

constant variance of the heat data in actual ITC experiment requires the weighted least squares

(WLS) regression [33, 34]. However, the standard protocol for ITC data analysis is nonlinear

least squares regression, where the software packages provided by the manufacturers of the

instruments assume that the error distribution is constant.

Analysis of variance has also been used to help select and validate the reaction model

applied to the heat data, especially when multiple models are available based on the same heat

data. A significant challenge in ITC is to select an appropriate mathematical model applied to

the heat data, especially when the stoichiometry or binding mechanism are not known before-

hand. Herrera and Winnik have respectively used two-site and three-site model to fit the heat

data of direct and reverse titrations between DGA (diglycolic acid) and Gd (III) [35]. The fit-

ting curves obtained by both models show good agreement with the heat data, while further

residual analysis show that the two-site model causes larger heat residual and stronger oscillat-

ing patterns. They used F-tests to distinguish models with different binding stoichiometry and

suggested that statistical tests based on variance should be used to evaluate the goodness-of-fit

for the reaction models [35]. However, the non-constant variance of heat data potentially lim-

its the evaluation and interpretation of the goodness-of-fit. A more accurate and universal heat

variance estimation method will be more conducive to the validation and selection of the reac-

tion model.

The variance function can quantitatively describe the error of heat data through an empiri-

cal formula, which generally includes two or three items [33, 34, 36], as shown below:

s2

i ¼ s
2

b þ s
2

pQ
2

i þ ðsv=ViÞ
2Q2

i ; ð1AÞ
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2

vðQi=ViÞ
2
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where Vi and Qi are the injection volume and reaction heat for the ith injection, respectively.

The first term in Eq (1) describes the background noise, the second term describes the propor-

tional error together with the third term, which is related to the injection volume error. The

above variance function contains the basic error components associated with the instrument,

where σb is loosely related to the titration material. Tellinghuisen and coworkers have reported

and sifted through several variance functions to describe the non-constant variance by per-

forming a residual-based global analysis of 321 heat data from 35 data sets recorded by the

VP-ITC instrument (Malvern Panalytical) [33, 37]. The selected variance function is Eq (1A)

with σb = 3.22(33) μJ, σp = 0.00234(20) and σv = 0.0154(30) μL [33]. For the same instrument

model, Gilson and coworkers have reformatted the variance function as Eq (1B) with σb =

0.54 μJ and σp = 0.01 at 27˚C [36]. Based on the saturated titration heat of succinic acid solu-

tion into excess NaOH solution, the third term associated with the injection volume error has

been excluded from their evaluation and analysis [36]. Li and coworkers have reformatted the

variance function by both CaCl2/EDTA saturated titration and water blank titration recorded

by NanoITC Standard Volume (TA Instruments Waters-LLC) [34]. Based on the 9 heat vari-

ances, where each one is calculated from 60 injections, the fluctuation magnitude of the back-

ground noise was found to be positively correlated with the injection volume and the injection

volume error is non-negligible in the variance function [34]. The non-constant variance of

heat data can be approximated best by Eq (1C) with σb = 0.1771(95) μJ�μL-0.5, σp = 0.00309(22),

and σv = 0.0214(21) μL [34]. However, all of the current variance function contains only basic

error terms originated from the instrument and cannot account for other relevant error

sources, e.g. the concentration uncertainty of the titrant solution. Chodera and coworkers

have applied Bayesian statistics to analyze ITC data and found that adopting Bayesian credible

intervals can describe the variance between independent experiments more accurately than

the confidence intervals by the standard nonlinear least squares fitting due to the inclusion of

concentration uncertainty [38]. This finding is consistent with a large-scale survey (ABRF--

MIRG’02) in which the variation for the binding constants and enthalpies is more than an

order of magnitude larger than that reported by the individual participant [39]. This large vari-

ation has mainly been attributed to the error in titrant (syringe reagent) concentration fluctua-

tion and estimated about 10% larger [40]. Such large concentration error is non-negligible.

Although more precise concentration is systematically achievable, e.g. 1% [36, 41], such small

deviation still has an important effect on the evaluation of heat variance.

In this work, the non-constant variance has been analyzed and predicted by the Monte

Carlo sampling method using the ITC measurement model, which incorporates the reaction

model for solution reactions and injection model for overflow effect. The approach is consis-

tent with the ISO/IEC Guide 98–3:2008 for evaluation and expression of uncertainty in mea-

surements using a measurement model [42, 43]. The predicted results under various

experimental conditions are then compared with predictions from the variance function. The

latter was found to fail under certain conditions. The ITC measurement model has also been

used to quantitatively analyze the effect of the additional error components originated from

the titrant solution fluctuations on the distribution of the heat residual. The experimental eval-

uation protocol for the basic error components was further optimized. To facilitate the
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application of this approach, the Python source code for the above model and data processing

method are provided in the S1–S3 Files.

Materials and methods

ITC measurement model

The thermal effects associated with the titration process in ITC experiments can be divided

into three parts, such as reaction heat, dilution heat, and friction heat [5]. According to the

previous error analysis results [34], the injection volume error is an important error source,

which should be included in the measurement model. The proposed measurement model for

the ITC binding isotherm is expressed in Eq (2) and is illustrated in the S3 File.

Q ¼ rðVinj; Csyr;Ccell;VcellÞ þ dðVinj; Csyr;Ccell;VcellÞ þ f ðVinj; Rinj;TÞ þ Qp þ Qb ð2Þ

where the injection volume Vinj is an independent variable, and the total heat Q is a depen-

dent variable. The explicit expression of the ITC measurement model demonstrates a strong

correlation between the total heat error and the injection volume error. The injection volume

Vinj can be expressed as Vinj = V0 + Vε, where V0 is the injection volume preset by the experi-

menter, and Vε is a random variable representing the error component originating from the

injection system. Experimental results show that Vε is independent of V0 and subject to a

Gaussian distribution, i.e., Vε ~ N (0, σv
2). r(Vinj;Csyr,Ccell,Vcell) and d(Vinj;Csyr,Ccell,Vcell) denote

the reaction heat and dilution heat, respectively. Csyr and Ccell denote the reactant concentra-

tions in the syringe and sample cell, respectively. Vcell is the volume of the sample cell. f(Vinj;
Rinj,T) is the friction heat, a monotonically increasing function of the injection volume, which

depends on many experimental parameters, such as the injection rate Rinj, sample temperature

T, the fluid properties of the solutions, etc. The friction heat term has an unknown complex

expression, rendering it difficult to evaluate the individual contributions of various error com-

ponents. Therefore, the usual treatment method is to subtract the dilution heat and friction

heat as the background heat through the blank titration experiment. Qp is a random variable

representing any proportional error other than the first three terms in Eq (2), and can be

expressed as (r(Vinj) + d(Vinj) + f(Vinj))×P, where random variable P is independent of Vinj and

is generally presumed to follow a Gaussian distribution, i.e., P ~ N (0, σp
2). Qb is a random vari-

able representing the background noise originating from other uncontrollable and uncharac-

terized factors, such as stochastic thermal events, ambient temperature changes, electrical and

stirring instability, system control algorithms, sampling rates, filter settings, integration algo-

rithm of raw power curve, etc. The results of the blank titration experiment of water titration

show that Qb is positively correlated with V0 and follows a Gaussian distribution, i.e., Qb ~ N
(0, V0σb

2) which indicates Vε contributes minimally to Qb [34]. It is worth noting that the heat

of first injection is significantly less than expected due to the backlash of the stepper motor and

the titrant leakage from the syringe during the instrument balancing process [34, 38]. In actual

experiments, the first titration data should be excluded from the data analysis.

Simulation parameters for ITC measurement model under various

conditions

To make the comparison between the ITC measurement model and variance function repre-

sentative, the parameters of the basic error components were set as σb = 0.1771 μJ�μL-0.5, σp =

0.00309, and σv = 0.0214 μL [34], which are consistent with the experimental evaluation results

for NanoITC Standard Volume (TA Instruments Waters-LLC) instrument and also have refer-

ence significance for other ITC instruments. To make the simulation reaction representative,

PLOS ONE Estimation of non-constant variance in isothermal titration calorimetry

PLOS ONE | https://doi.org/10.1371/journal.pone.0244739 December 30, 2020 4 / 15

https://doi.org/10.1371/journal.pone.0244739


we focus on the classic (1:1) two-component binding reaction. When the titration system is

fixed, the specific form of r(Vinj) can be determined from the injection model and reaction

model. The independent binding model for reactions and the instantaneous injection model for

the overflow effect of the injection process are demonstrated as specific examples in the S1 and

S2 Files. The simulation parameters were fixed so as to best replicate the experimental condi-

tions. The reaction parameters Ka and ΔH were 1 × 105 M-1 and −40 kJ/mol, respectively. The

ratio of titrant concentration in the syringe (Csyr) to the titrand concentration in the sample cell

(Ccell) was 6:1, which facilitates the comparison between different reactions with various Ka or c-

values. The effective volume of the sample cell was 943 μL, and the volume of the syringe was

250 μL. In order to examine the effects of different experimental conditions on the residual dis-

tribution, we varied the values of Ka, Ccell, ΔH, and Vinj. The examined Ka values were 1.0 × 103,

1.0 × 104, 1.0 × 105, 1.0 × 106, and 1.0 × 107 M-1, Ccell values were 0.5, 1.0, 5.0, 10, and 50 mM,

ΔH values were −10, −20, −30, −50, and −100 kJ/mol, and Vinj values were 4, 6, 10, and 16 μL.

To investigate the effect of any other error that may be introduced during the experimental

operation, the error due to concentration or reaction parameters (Ka and ΔH) was examined

herein. The relative standard deviation of titrant concentration was 1%. The relative standard

deviation of Ka and ΔH were both 1%. Injection volume (Vinj) was fixed as 10 μL, Ccell was fixed

at 1 mM (c = 100), and the other parameters were the same as the basic simulation parameters.

Distribution propagation by Monte Carlo method

Usually, the complete analytic formula of r(Vinj;Csyr,Ccell) is nonlinear, and the theoretical

error analysis is tedious because of the overflow effect. Therefore, intermediate variables were

used in the calculations, and the propagation of distribution was implemented by the Monte

Carlo method [42, 43], which is widely used by random sampling of the independent variables

from their probability distributions. The main steps involved in calculating the variance of

heat (Q) in the ITC binding isotherm are as follows:

1. Select the standard deviations (σb, σp and σv) of the basic errors according to the ITC mea-

surement model.

2. Establish a specific expression of the reaction heat according to the material systems being

titrated. The thermodynamic parameters (Ka, ΔH and n) and other simulation conditions

consistent with the experimental conditions were determined a priori.

3. Sample Qb, P and Vinj based on their probability density functions, which are considered as

Gaussian distributions with standard deviations (σb, σp and σv, respectively) mentioned in step 1.

4. Calculate heat Q for each injection in the titration experiment using the expressions and

parameters from step 2 and the parameters Qb, P and Vinj sampled in step 3.

5. Repeat steps 3 and 4 a large number of times (the repetition number was 1 × 105 in this

work) to obtain a series of simulated Q.

6. Calculate the variance, standard deviation and 95% confidence interval for the simulated Q.

The key step for the Monte Carlo method is to establish an ITC measurement model that is

in line with the experimental measurements. For the Python implementation of the Monte

Carlo method, please refer to the S3 File.

Optimization of experimental evaluation protocol for basic error components

The basic error parameters (σb, σp, σv) of the ITC measurement model can be estimated in the

same way as variance function, which are generally estimated by fitting the residuals of
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multiple titration curves [33] or using specific experimental design, for example, a saturated

titration with uniform heat in the complete titration curve [34, 36]. Here, the latter approach

was adopted to eliminate the adverse effects of additional error components, for example,

titrant concentration fluctuation or reaction parameter fluctuation, as in our previous work

[34]. Since the theoretical value of the reaction heat effect (Q) is constant, the mean and vari-

ance of the integral heat can be obtained directly without the fitting process of integral heat.

High accurate information of reactant concentration and thermodynamic parameters are not

required, thus effectively shielding the influence of solution fluctuations on the evaluation of

the basic error components. The different heat expectations and variances were obtained by

changing the injection volume of the same solution. When the ITC measurement model was

known a priori, the previous evaluation protocol [34] could be further optimized to reduce the

number of titration experiments. In this work, the optimized protocol consists of only 4 groups

of titration experiments, which includes 3 saturated titration experiments with injection vol-

umes of 4, 10, and 16 μL, and a water blank titration experiment with 10 μL injection volume.

The sample size (total effective injection number at the specific injection volume) remains at

60 to ensure the accuracy of the variance calculation [44]. The three basic error parameters

could be estimated using the WLS method to fit the heat variance data with Eq (1C) [34],

which is equivalent to the ITC measurement model for the specific saturated titration

experiments.

This optimized error evaluation protocol was validated by the Monte Carlo simulation and

experiments. The experimental validation data are from 3 groups of saturated CaCl2 /EDTA

titration experiments with injection volumes of 4, 10, and 16 μL, and a water blank titration

experiment with 10 μL injection volume, as carried out in our previous work [34]. The concen-

trations of the titrant and titrand solutions were specially designed around 5mM to facilitate

the extraction of σp and σv, and the water blank titrations were investigated to improve the

measurement accuracy of σb. The titrations of CaCl2 into excess EDTA were performed in 0.1

M MES buffers at pH = 8 to ensure the association constant was large enough. It is worth not-

ing that the titration experiment was generally repeated 1–4 times to reach a sample size of 60.

The evaluation results will be compared with the reference [34].

For Monte Carlo simulation, the reaction parameters (Ka and ΔH) for the saturated titra-

tion were set to 1.0 × 109 M-1 and -40 kJ/mol, respectively, close to the real reaction parameters

of the validation experiments. The titrant concentration in the syringe and the titrand concen-

tration in the sample cell were both 5 mM. Thus, it can be observed that the latter was in

excess. The true values of the error parameters were set as σb = 0.1771 μJ�μL-0.5, σp = 0.00309,

and σv = 0.0214 μL. In addition, additional error components were introduced to verify the

reliability of the saturated titration method. The relative errors of reaction parameters (Ka,

ΔH) and titrant concentration were both set to 1%. The artificial titration data pool with sam-

ple size of 10,000 was generated from the ITC measurement model by the Monte Carlo

method. Each sample data consisted of 4 groups of titration experiments mentioned above and

was fitted using the WLS method to obtain the values and standard deviations of the three

basic error parameters. Each fitting result of the three basic error parameters corresponded to

the result of each error evaluation experiment. To investigate whether there is bias in the opti-

mized error evaluation protocol, the mean and standard deviation of 10,000 sets of the fitting

results of the three basic error parameters will be compared with the true error values i.e. σb =

0.1771 μJ�μL-0.5, σp = 0.00309, and σv = 0.0214 μL. The reliability of the standard deviation of

the three basic error parameters obtained by the WLS method in each error evaluation experi-

ment will be verified further with the Monte Carlo sampling from two aspects. One is to com-

pare the mean of 10,000 sets of the standard deviations obtained by the WLS method in each

error evaluation experiment with the standard deviation of the 10,000 sets of the fitting value,
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because the latter is usually more reliable than the standard deviation estimate using the WLS

method, especially in the case of nonlinear fitting. The other is to compare the preset confi-

dence probability of the three confidence intervals of the error parameters with the inclusion

frequency at which the 10,000 sets of the three confidence intervals contains the true error

values.

Results and discussion

Comparison of the standard deviation of heat residual

Fig 1 shows a comparison of the standard deviation of heat residual (SDR) obtained from the

ITC measurement model (blue solid line) and variance function (red dashed line), where only

three basic error components are considered. When c = 10, the curves obtained from the two

methods nearly coincide. In contrast, when c-value is higher, the variance function cannot

depict the specific changes in the transition region because of the limitations of the variance

function form, which is a monotonically decreasing function and results in lower SDR values

in the transition region as shown in Table 1. When c = 1000, the residual peak in the transition

region (mole ratio around 1) is nearly 3 times the predicted value of the variance function. The

non-constant variance may interfere with the statistical tests, especially in the case of the

abnormally large residual of high c-value reactions in the transition region, which may cause

misjudgment in the selection of the reaction model based on analysis of variance. A more real-

istic and accurate heat variance estimation method will facilitate the selection and validation of

the reaction model.

Fig 1. Comparison of SDR predicted by ITC measurement model and variance function. (A) When c = 10, the results of two methods are the same. (B) When c = 1000,

the variance function cannot describe the specific changes in the transition region.

https://doi.org/10.1371/journal.pone.0244739.g001

Table 1. The maximum deviation of SDR with different c-values predict by ITC measurement model and variance function.

c-value 10 50 100 500 1000 5000

Maximum deviation (%) 4.0 19.5 36.0 124.5 175.4 261.2

https://doi.org/10.1371/journal.pone.0244739.t001
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Non-constant variance predicted by ITC measurement model with only

three basic error components

The four primary factors that affect the residual heat, such as Ka, Ccell, ΔH and Vinj, were inves-

tigated under various conditions for the ITC measurement model using Monte Carlo simula-

tion. Fig 2A shows the theoretical curves of binding isotherms with varying Ka values, when

the errors in the experiments are not considered. As the Ka value increases, the transition

region of the curve becomes steep. Fig 2B shows the distribution curves of the SDR when only

the three error components σb, σp and σv are considered. When the value of Ka is low, the dis-

tribution of the SDR is monotonically reduced. In contrast, when the value of Ka is higher, the

distribution is no longer monotonic, the SDR in the transition region increases significantly,

and the distribution on both sides of the transition region remains almost constant. In fact,

Fig 2. The influence of Ka and c-values on the distribution of SDR. Theoretical titration curves and SDR for simulated reactions with different Ka (A, B) and c-value (C,

D). With the increase of Ka or c-value, the SDR increases significantly in the transition region (B, D).

https://doi.org/10.1371/journal.pone.0244739.g002
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when the injection volume error is considered, the position of the inflection point in the tran-

sition region fluctuates, causing the SDR near the inflection point to vary dramatically. The

simulation without injection volume error (σv) shows that the SDR decreases monotonically in

the transition region (As shown in S1 Fig). Therefore, the injection volume error is the reason

for the abnormal residuals in the transition region. The ITC measurement model evidently

delivers a variance distribution, which is more realistic than that provided by the variance

function. In addition, the peak of SDR in the transition region increases and approaches a lim-

iting value with increasing Ka. This is consistent with the increasing steepness of the heat dis-

tribution curve as it tends toward becoming a step function with increasing Ka (Fig 2A). Fig

2C and 2D shows the simulation results obtained from the ITC measurement model by vary-

ing Ccell, while keeping the other factors constant (Ka = 1.0 × 105 M-1). In addition to the value

of Ka, the value of Ccell also has a significant impact on the steepness of the binding isotherm,

which is ultimately determined by the Wiseman c-value (c = KaCcell). The significant increase

in SDR in the transition region becomes apparent when the c-value is higher than 500, and the

phenomenon weakens as the c-value decreases. The c-value is the most important factor to be

considered in the heat error distribution in the transition region.

When only the ΔH of the titration system is varied, the curves corresponding to different

ΔH values exhibit similar shapes, as shown in Fig 3A. The SDR values reach a peak around the

transition region (mole ratio around 1) when the c-value is high. As ΔH increases, both heat

and heat residual increase. The height of the peak in the transition region remains constant rel-

ative to the residual at the beginning of the titration curve and continues to increase relative to

the residual at the end of the titration curve. When ΔH is very low, the background noise term

(σb) dominates, while the other two terms (σp, σv) can be ignored. At this time, the heterosce-

dasticity (non-constant variance) degenerates to homoscedasticity, and the distribution of

SDR degenerates to a horizontal line. For homoscedasticity, both ITC measurement model

and variance function can deliver a reasonable distribution of SDR. For incremental titration,

Vinj value is usually set between 2 and 16 μL. Vinj exhibits some influence on the shape of the

Fig 3. The influence of ΔH and Vinj on the distribution of SDR with c = 1000. (A) As ΔH decreases, the heat residual decreases until the heteroscedasticity disappears.

(B) When the injection volume is large, the SDR peak weakens.

https://doi.org/10.1371/journal.pone.0244739.g003
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SDR distribution curve, but the effect is not as significant as that of the c-value, as shown in Fig

3B. When the injection volume is less than 10 μL, though the relative height of the SDR peak

varies with respect to the residuals at the beginning of the titration curve, the peak characteris-

tics are preserved in case of higher c-values. It is worth noting that when the injection volume

is large, the SDR peak in the transition region weakens. For example, when Vinj = 16 μL, the

relative error of the injection volume is about 0.1% (σv/Vinj = 0.0013), and the SDR peak in the

transition region almost disappears, shown as purple curves in Fig 3B.

Influence of solution fluctuations

When the experimental process is disturbed by other factors, additional important errors may

be introduced. For example, the solution preparation process is a key step in the titration

experiment. When a pipette is used for solution configuration, substantial concentration

errors are usually introduced, resulting in significant additional error. Using a balance and

density meter instead can effectively reduce the concentration error. In case of biological sam-

ples, such as proteins, problems related to activity changes and non-identical batches can easily

introduce additional concentration error. In addition, the type, concentration and pH of the

buffer may also interfere with the reaction parameters of the material systems, such as Ka and

ΔH, thereby introducing additional errors into the experiment. The Monte Carlo method

based on the ITC measurement model can be seamlessly extended to investigate the influence

of these additional experimental errors.

Fig 4 shows the effect of additional error components of reaction parameters (Ka and ΔH)

or titrant concentration on the distribution of SDR. The orange curve represents the control

curve with only three basic error components (background noise (σb), heat proportional error

(σp), injection volume error (σv)). The red curve denotes the additional effects of the reaction

parameter error components (1% relative error in Ka and ΔH). Major variations are observed

between the beginning region of the titration curve and transition region in which the chemi-

cal reaction occurs. The additional error components enhance the heteroscedasticity. The

Fig 4. Theoretical titration curves without error components (A) and distribution of SDR for reactions with different error components (B). The orange curve is the

control curve with three basic error components (σbpv), the red curve has additional error components (σH Ka) in reaction parameters Ka and ΔH, and the green curve has

additional error component (σconc) in titrant concentration. The additional error components obviously change the distribution characteristics of the heat residual,

resulting in a significant deviation from the prediction result of the variance function.

https://doi.org/10.1371/journal.pone.0244739.g004
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green curve shows the additional effects of typical concentration error (1% relative error in

titrant) in addition to the control curve. A significant increase can be observed in the SDR val-

ues in the beginning of the titration and the wider transition region. A small concentration

error (1% in titrant) significantly enhances the heteroscedasticity, and the resulting SDR distri-

bution curve is considerably different from the variance function. This phenomenon will

become more prominent when pipettes are used for solution configuration. This implies that

the control of the purity and concentration of the reactants is important during the compari-

son of batch experiments. The ITC measurement model provides a convenient approach to

assess the impact of these additional errors on the heat residual, which is difficult to achieve

with the variance function.

Validation of optimized protocol for the basic error estimation

As mentioned above, the additional error components have a significant effect on distribution

of heat residual, thereby adversely affecting the evaluation of the basic error parameters. How-

ever, an elaborate experimental design and operation may eliminate the interference of these

additional errors, as shown in our previous work for the basic error estimation for variance

function [34]. The ITC measurement model can be utilized to optimize and validate the exper-

imental protocol further.

The statistical results of the 10,000 sets of the fitting values of the three basic error parame-

ters obtained from the Monte Carlo simulations are σb = 0.176(16) μJ�μL-0.5, σp = 0.00304(32),

σv = 0.0212(29) μL, which are consistent with the true values i.e. σb = 0.1771 μJ�μL-0.5, σp =

0.00309, and σv = 0.0214 μL within 2–3 significant digits. The means of the 10,000 sets of the

standard deviations obtained by the WLS method are mean(σb_sd) = 0.0164 μJ�μL-0.5, mean

(σp_sd) = 0.000319, mean(σv_sd) = 0.00294 μL, which are consistent with the standard devia-

tion of the 10,000 sets of the fitting values std(σb) = 0.0163 μJ�μL-0.5, std(σp) = 0.000315, std(σv)

= 0.00294 μL. To compare the confidence probability of the confidence intervals with the

inclusion frequency of the true values, Fig 5 illustrates 100 data of the estimated 95% confi-

dence intervals for the three basic error parameters, subsampled from the 10,000 sets. The

most intervals include the truth values. Table 2 lists the inclusion frequency of the true error

parameters for the confidence intervals estimated by the optimized protocol at three common

confidence levels based on the whole 10,000 sets. It is clear from the table that the inclusion fre-

quency is equivalent to the specified confidence levels. In the optimized protocol, only four

groups of titration experiments are needed for error parameters evaluation, which greatly

reduces the workload and is conducive to the promotion of the method. In addition, it still

reduces the potential adverse effects of fluctuations in concentration and reaction parameters.

The proposed optimized protocol was validated by experiments further. The validation data

are from the CaCl2-EDTA saturated titration experiment carried in our previous study [34].

The evaluation result of the corresponding four groups of titration experiments are σb = 0.172

(16) μJ�μL-0.5, σp = 0.00323(32), σv = 0.0213(30) μL for CaCl2 (6 mM) / EDTA (5.5 mM) system

and σb = 0.172(16) μJ�μL-0.5, σp = 0.00307(32), σv = 0.0208(29) μL for CaCl2 (4 mM) / EDTA (4

mM) system. Both are consistent with the previous reported values σb = 0.1771(95) μJ�μL-0.5,

σp = 0.00309(22), σv = 0.0214(21) μL based on 9 sets of titration experiments [34]. The consis-

tent error evaluation results obtained from saturated titration experiments with different solu-

tion concentrations indicate that the concentration error is effectively eliminated.

Conclusion

A accurate and universal measurement model was established to quantify the non-constant

variance of heat data in ITC in this study. Based on the priori three basic errors, the standard
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deviation of each heat residual in the binding isotherm was well predicted under various con-

ditions by varying Ccell, Vinj, ΔH, or Ka. It was revealed that the Wiseman c-value and σv are the

most important factors governing the residual in the transition region. Though the variance

function was effective in low c-value reactions, it failed to describe the significantly increased

variance in the transition region for high c-value reactions. In addition, the ITC measurement

model also provides a convenient approach to assess the impact of additional errors on the

heat residuals. Both the Monte Carlo simulation and titration experiment verified that the

optimized protocol can effectively estimate the basic error parameters, eliminate interference

of additional error components and reduce the evaluation workload to 4 groups of titration

experiments. The quantitative evaluation of error components based on a universal measure-

ment model is expected to contribute significantly to measurement uncertainty evaluation,

reaction model validation, experimental optimization and instrument hardware improvement.

Supporting information

S1 File. Instantaneous injection model.

(PDF)

Fig 5. The 95% confidence interval estimates of the three error parameters for 100 samples. The vertical red lines are the true value of the three error parameters. The

blue bars indicate the 95% confidence intervals (total four standard deviations wide) containing the true value, while the orange bars indicate the opposite.

https://doi.org/10.1371/journal.pone.0244739.g005

Table 2. The inclusion frequency of true values evaluated by Monte Carlo simulation at three confidence levels

for the optimized protocol.

confidence level inclusion frequency of true values

σb σp σv
0.683 (1σ) 0.685 0.694 0.683

0.954 (2σ) 0.948 0.959 0.958

0.997 (3σ) 0.993 0.998 0.998

https://doi.org/10.1371/journal.pone.0244739.t002

PLOS ONE Estimation of non-constant variance in isothermal titration calorimetry

PLOS ONE | https://doi.org/10.1371/journal.pone.0244739 December 30, 2020 12 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244739.s001
https://doi.org/10.1371/journal.pone.0244739.g005
https://doi.org/10.1371/journal.pone.0244739.t002
https://doi.org/10.1371/journal.pone.0244739


S2 File. Independent binding model.

(PDF)

S3 File. ITC measurement model and heat variance estimation.

(IPYNB)

S1 Fig. The influence of injection volume error on the heat residual distribution with dif-

ferent Ka. The left panel shows that when there is an injection volume error (σv = 0.0214 μL),

the simulated standard deviation of heat residual (SDR) increases abnormally in the transition

region; the right panel shows that the simulated SDR decreases monotonically without the

injection volume error (σv = 0).

(TIF)
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