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Abstract
Networks of anatomical covariance have been widely used to study connectivity patterns in both

normal and pathological brains based on the concurrent changes of morphometric measures (i.e.,

cortical thickness) between brain structures across subjects (Evans, 2013). However, the existence

of networks of microstructural changes within brain tissue has been largely unexplored so far. In

this article, we studied in vivo the concurrent myelination processes among brain anatomical struc-

tures that gathered together emerge to form nonrandom networks. We name these “networks of

myelin covariance” (Myelin-Nets). The Myelin-Nets were built from quantitative Magnetization

Transfer data—an in-vivo magnetic resonance imaging (MRI) marker of myelin content. The syn-

chronicity of the variations in myelin content between anatomical regions was measured by

computing the Pearson’s correlation coefficient. We were especially interested in elucidating the

effect of age on the topological organization of the Myelin-Nets. We therefore selected two age

groups: Young-Age (20–31 years old) and Old-Age (60–71 years old) and a pool of participants

from 48 to 87 years old for a Myelin-Nets aging trajectory study. We found that the topological

organization of the Myelin-Nets is strongly shaped by aging processes. The global myelin correla-

tion strength, between homologous regions and locally in different brain lobes, showed a

significant dependence on age. Interestingly, we also showed that the aging process modulates the

resilience of the Myelin-Nets to damage of principal network structures. In summary, this work

sheds light on the organizational principles driving myelination and myelin degeneration in brain

gray matter and how such patterns are modulated by aging.
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1 | INTRODUCTION

Brain myelination is the process that takes place when myelin, which is

made up of fatty lipids (principally cholesterol and proteins), accumu-

lates around nervous fibers. Despite myelin density being sparser in

gray matter compared to white matter, this tissue component plays an

important role in insulating local axons that connects neighboring and

distant areas. It introduces a boost in axonal conduction velocities

making it possible for brain areas to interchange information in optimal

synchrony. It has been proved that the impaired cognitive ability, disor-

ganized thinking, mood disorders or hallucinations associated with psy-

chiatric illness (i.e., Schizophrenia) might result from slowed or

desynchronized impulse conduction between cortical regions due to

deficiencies of myelin wrapping the axons (Fields, 2008; Gootjes et al.,

2004; Kujala, Portin, & Ruutiainen, 1997). Experimental evidence

shows that tissue myelination may be tuned by experience to satisfy

requirements of synchronicity in neural circuits and achieve optimal

mental performance and learning (Fields, 2008). Myelination is also the*Bogdan Draganski and Antonie Lutti made equal contributions to this work.
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subject of profound changes across the lifespan with gray matter myeli-

nation following inverted-U shaped trajectories with age (Grydeland,

Walhovd, Tamnes, Westlye, & Fjell, 2013) whose characteristics exhibit

specific anatomical distribution patterns (Dean et al., 2016). So far,

however, the important question of the interactions between local

cortical myelination changes remains largely unexplored. Do myelin

changes occur independently across brain regions? Is myelination in

one region related to or modulated by variations in other regions? Are

synchronized myelination changes across the cortical mantle topologi-

cally organized? Could common underlying factors (e.g., genetics) be

driving these concurrent myelin fluctuations? Our paper is precisely

motivated by such questions.

The analysis of the covariance between regional estimates of mor-

phometric features derived from magnetic resonance images (MRI) is

well established (Andrews, Halpern, & Purves, 1997; Mechelli, Friston,

Frackowiak, & Price, 2005). Recent studies have investigated in detail

the topological organization of the brain (He, Chen, & Evans, 2007;

Sanabria-Diaz et al., 2010) to provide evidence for a network of ana-

tomical covariance in the healthy and diseased brain (Alexander-Bloch,

Giedd, & Bullmore, 2013; Evans, 2013). A number of studies have

shown strong age-related effects on the number and strength of the

interhemispheric correlations in cortical thickness and three key net-

work topological properties: characteristic path length, clustering index,

and local efficiency (Chen, He, Rosa-Neto, Gong, & Evans, 2011; Wu

et al., 2012; Yang, Tsai, Liu, Huang, & Lin, 2016; Zhu et al., 2012).

Morphological covariance studies are based on macroscopic fea-

tures of the brain and do not provide an insight into the concurrent

changes taking place at the microscopic scale within brain tissue. The

latter changes are of primary interest in neuroscience but are largely

intractable from the most widely used types of anatomical MRI scans

(e.g., T1-weighted, T2-weighted). A recent study has shown that micro-

scopic changes within brain tissue could lead to the spurious detection

of apparent morphological change (Lorio et al., 2016). New methods

have emerged based on the ratio of T1-weighted and T2-weighted

images (Glasser and Van Essen, 2011) that provide an insight into the

biological processes underlying brain tissue changes. However multiple

microscopic properties of the brain may impact ratio estimates, compli-

cating the interpretability of observed findings. Quantitative MRI

(qMRI) addresses the limitations of standard MRI anatomical data by

providing quantitative estimates of the MRI parameters that drive sig-

nal intensities in an MRI image. The correlation between these esti-

mates and microscopic features of brain tissue has motivated their use

as in vivo markers of microstructure (Lutti, Dick, Sereno, & Weiskopf,

2014). qMRI data is corrected for the sources of artifact that affect

standard anatomical MRI images, leading to enhanced reproducibility

and sensitivity to physiological brain changes (Weiskopf et al., 2013).

Because myelin and iron concentrations are the main contributors to

qMRI estimates (Fukunaga et al., 2010; Schmierer et al., 2007; St€uber

et al., 2014), the qMRI changes reported in neuroscience applications

have mainly been attributed to iron deposition and demyelination proc-

esses, in line with histological findings (Callaghan et al., 2014; Draganski

et al., 2011). qMRI also allows the in vivo delineation of the heavily

myelinated boundaries of visual (Sereno, Lutti, Weiskopf, & Dick, 2013)

and primary auditory (Dick et al., 2012) areas.

This study is based on the MRI parameter, Magnetization Transfer

(MT) (Helms, Dathe, Kallenberg, & Dechent, 2008b), which exhibits a

high level of specificity toward tissue myelination (Callaghan et al.,

2014; Helms, Draganski, Frackowiak, Ashburner, & Weiskopf, 2009;

Lorio et al., 2014; Lorio et al., 2016). The MT mechanism is based on

the exchange of magnetization between free water and protons bound

to macromolecules. MT values are mainly driven by the local macro-

molecule density and the amount of water in close proximity with

these macromolecules. Amongst the macromolecules involved, myelin

cholesterol has been suggested as a major contributor to magnetization

transfer (Koenig, Brown, Spiller, & Lundbom, 1990; Koenig, 1991).

Recently, using MT maps, Hunt et al. (2016) evidenced the pres-

ence of myelin concurrent changes among brain anatomical structures

but limited to studying its predictive value for electrophysiological

functional connectivity.

In this study, we use in vivo measures of MT to investigate pat-

terns of correlations in myelination change between gray matter

regions. In particular, we aim to study how myelination, a key micro-

structural feature of brain tissue, changes synchronously among spa-

tially distant regions to form characteristic networks of myelin

covariance (Myelin-Nets). Based on the graph theory framework we

explore, for the first time, the topological organization of the Myelin-

Nets and its modulation by age. Two age groups (Young-Age, 20–31

years old; Old-Age, 60–71 years old) were compared to describe age-

related Myelin-Nets topological changes in an elapsed time of 40 years.

The continuous aging trajectory of the topology of the Myelin-Nets was

also investigated after the fifth decade of life. This approach could be

considered as another step for revealing basic principles of gray matter

organization, and how these are modified by aging processes.

2 | MATERIALS AND METHODS

2.1 | Participants

The dataset included 562 participants of the CoLaus/PsyCoLaus cohort

(Firmann et al., 2008; Preisig et al., 2009) and other research studies

carried out at the LREN laboratory. The age range was 18–87 years

(277 Females). In our first study, a pool of 151 participants were

selected to define two age groups: Young-Age adults: 73 (35 Females),

comprising all participants of the dataset from 20 to 31 years old

(mean age524.56 years) and Old-Age adults: 78 (40 Females), from

60 to 71 years old (mean age565.04 years) (see Figure 3, Results).

The age groups were selected with a gap of 40 years to capture differ-

ent lifespan stages of the myelination processes.

Owing to the reduced number of participants in our cohort

between 30 and 47 years old, our second study, aiming to explore the

continuous aging trajectories of the Myelin-Nets, was limited to the 48–

87 years old age range, which involved a subset of 437 out of the 562

subjects of our original data.

2.2 | Ethics statement

The study participants gave written informed consent at the time of

their enrollment and completed questionnaires approved by the local
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Ethics Committee. The authors state that they have obtained approval

from CHUV and Colaus Data Sharing and Publications Committee for

use of the data and confirm that the data was analyzed anonymously.

2.3 | MRI acquisition and preprocessing

Participants were examined on a 3 T whole-body MRI system (Magne-

tom Prisma, Siemens Medical Systems, Germany), using a 64-channel

RF receive head coil and body coil for transmission. On visual inspec-

tion study participants showed neither macroscopic brain abnormal-

ities, that is, major atrophy, nor signs of overt vascular pathology (i.e.,

microbleeds and white matter lesions. Participants with extended atro-

phy or with white matter hyperintensities (WMH) of grade 2 or more

by the Scheltens rating scale (Scheltens et al., 1993) were not included.

The whole-brain quantitative protocol comprised three multi-echo

3D fast low angle shot (FLASH) acquisitions with predominantly Mag-

netization Transfer-weighted (MTw: TR/a524.5 ms/68), proton

density-weighted (PDw: TR/a524.5 ms/68) and T1-weighted

(24.5 ms/218) contrast (Helms et al., 2009, 2008a, 2008b). The MTw

contrast was achieved by use of a Gaussian-shaped RF pulse prior to the

excitation (4 ms duration, 2208 nominal flip angle, 2 kHz frequency off-

set from water resonance). Multiple gradient echoes were acquired with

alternating readout polarity with a minimal echo time TE of 2.34 ms and

a time span of 2.34 ms between consecutive echoes; 6/8/8 echoes

were acquired for theMTw/PDw/T1w acquisitions to keep the TR value

identical for all acquisitions. The image resolution was 1 mm3 isotropic,

the field of view was 2563 2403 176 mm and the matrix size was 256

3 240 3 176. Parallel imaging was used along the phase-encoding

direction (acceleration factor 2 GRAPPA reconstruction (Griswold et al.,

2002)), 6/8 partial Fourier was used in the partition direction. The acqui-

sition time was 7 min per contrast. Data were acquired to calculate

maps of the radio frequency (RF) transmit field B11 using a 3-D echo-

planar imaging (EPI) spin-echo (SE) and stimulated echo (STE) method

(Lutti, Hutton, Finsterbusch, Helms, &Weiskopf, 2010; Lutti et al., 2012)

and to correct for effects of RF transmit inhomogeneities on the quanti-

tative maps (Helms et al., 2009; Helms and Dechent, 2009; Weiskopf

et al., 2013). The image resolution of the B1-mapping data was 4 mm3.

The echo time was 39.06 ms and TR was set to 500 ms. The spin-echo

flip angle was decreased from 2308 to 1308 in steps of 108 (Lutti et al.,

2012). The acquisition time of the B1 mapping data was 3 min. B0-field

mapping data was acquired using a 2-D double-echo FLASH sequence

to correct for geometric distortions in the 3-D EPI data as described in

Lutti et al. (2010, 2012). The total acquisition timewas 27min.

Calculation of the quantitative Magnetization Transfer (MT) maps

from the acquired data was implemented with the Voxel-Based Quanti-

fication toolbox (Draganski et al., 2011) running under SPM12 (Well-

come Trust Centre for Neuroimaging, London, UK; http://www.fil.ion.

ucl.ac.uk/spm) and Matlab 7.11 (Mathworks, Sherborn, MA, USA). The

MT maps were computed as described in Helms, Dathe, and Dechent

(2008a) and Helms and Dechent (2009) using the MTw, PDw, and T1w

images with minimal echo time (TE52.34 ms) to minimize R2* bias on

the MT estimates (Lorio et al., 2016). The amplitude of the MT effect is

governed by the duration, power and off-resonance frequency of the

MT saturation pulse. Therefore, the MT effect is most often character-

ized using semi-quantitative measures, that is, that depend on the set

of acquisition parameters kept constant for all study participants. Note

that these MT measures differ from the common Magnetization Trans-

fer Ratio (MTR), by accounting for local T1 relaxation and flip angle

inhomogenity effects, resulting in enhanced robustness and sensitivity

to myelin concentration (Helms et al., 2008b).

2.4 | Construction of the myelin data matrix

Figure 1 shows the flowchart representing the construction of the

matrix containing the local MT estimates for all subjects (Myelin Data

matrix). The MT maps (step 1) were automatically parcellated into 114

gray matter regions based on Neuromorphometrics atlas (our main gray

matter parcellation containing cortical and subcortical structures) using

the Neuromorphometrics toolbox (unpublished, John Ashburner perso-

nal communication; see Supporting Information, Table SI for the full list

of the structures of the Neuromorphometrics atlas). The Myelin data

matrix was M 3 N, where “M” represents the number of subjects and

“N,” the number of anatomical structures.

In short, the Neuromorphometrics atlasing methodology (Figure 1,

step 2) consists of two main steps. First, each individual MT image is

segmented into three different brain tissue classes (cerebral spinal fluid,

gray matter and white matter) using the “Segment” (unified segmenta-

tion) tool in SPM12, which includes a registration to MNI (Montreal

Neurological Institute) space. Second, the probabilistic atlas of each of

the 114 anatomical structures of the Neuromorphometrics atlas (see

further) are spatially registered with the extracted gray and white mat-

ter tissue maps using the “Shoot” tool in SPM12, based on a nonlinear

advanced registration algorithm (Ashburner and Friston, 2011). Rules of

probability are used to properly combine the previous images to ulti-

mately obtain a probabilistic label map for each brain structure.

At every gray matter voxel (in subject space), the probability of

belonging to a specific anatomical structure is provided. From above, a

maximum probability label maps are calculated at all gray matter voxels

(in subject space) which are labeled according to the structure of maxi-

mum probability. Finally (Figure 1, steps 3 and 4), mean MT values are

calculated across voxels belonging to each structure label and are used

as a proxy for local measures of myelin content. The “Neuromorpho-

metrics” probabilistic and maximum probability tissue labels were

derived from the “MICCAI 2012 Grand Challenge and Workshop on

Multi-Atlas Labeling” (https://masi.vuse.vanderbilt.edu/workshop2012/

index.php/Challenge_Details). These data were released under the Cre-

ative Commons Attribution-Non-Commercial (CC BY-NC) with no end

date. The anatomical T1-weigthed MRI scans originate from the OASIS

project (http://www.oasis-brains.org/) and the labeled data were pro-

vided by Neuromorphometrics, Inc. (http://Neuromorphometrics.com/)

under academic subscription.

2.5 | Construction of the myelin correlation matrix

The process of constructing the myelin correlation matrix is summar-

ized in Figure 2. For each age group, a linear regression was performed

on the regional MT estimates to remove the effects of age, age2,
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FIGURE 2 Steps for the assessment of the Myelin correlation matrices (Myelin Nets). (a) MT data matrix. (b) The MT original data matrix

is substituted by residuals of the linear regression represented in (c). (c) Effects of age, age2, gender, and age–gender interaction
were regressed out. (d) Correlation matrix representing the myelin concurrent changes among all pairs of anatomical structures.
(e) Thresholding process at different sparsity degrees to generate binary graphs. (f) Assessment of the network properties for all binary
graphs obtained in (e) [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 1 Flowchart of the MT matrix construction. (a) Representation of the individual MT maps for all subjects. (b) Neuromorphometrics
Atlasing processing for the parcellation of the individual MT maps. (c) Mean MT values are computed for all anatomical structures. (d) The
local MT values were organized in a “Myelin Data” matrix [Color figure can be viewed at wileyonlinelibrary.com]
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gender, and age–gender interaction (Figure 2, steps b and c). The resid-

uals of this regression then replaced the raw values in the myelin data

matrix. This detrending step was implemented to remove the effects of

the mean MT values—and their dependence on age—likely to bias the

covariance estimates by overestimating the Pearson correlation. Only

fluctuations around the mean MT ageing trajectories are of interest in

this analysis. The correlation between global and local MT was statisti-

cally the same for both groups (p5 .85) and different sliding windows

(p> .05) in the aging trajectory study (Supporting Information, Study 1).

Therefore, the global MT was not regressed out as confounding vari-

able. Global MT effect subtraction in principle may highlight interre-

gional differences but at the same time will affect genuine covariance

patterns (and topological network attributes) without the possibility of

estimating the introduced bias (Borchardt et al., 2016; Fox, Zhang,

Snyder, & Raichle, 2009; Murphy, Birn, Handwerker, Jones, & Bandet-

tini, 2009; Murphy and Fox, 2017; Schwarz and McGonigle, 2011).

We defined a connection as the statistical association in MT values

(a surrogate measure of myelin) between each pair of brain regions for

a parcellation scheme of 114 anatomical structures. The statistical simi-

larity or synchronized co-variations in myelination between two regions

was measured by computing the Pearson’s correlation coefficient

across subjects (Figure 2, steps c and d) (He et al., 2007). Hence, the

interregional Pearson’s correlation matrix C (N 3 N, N (5114) being the

number of gray matter regions)—or Myelin correlation matrix—contains

elements Cij that are the value of the Pearson’s correlation between

regions i and j. Self-connections were excluded, implying zeros in the

diagonal of this symmetric matrix.

It is important to point out that a partial correlation analysis could

not be used in our case because the sample size was not large enough

for a robust estimation of this measure (i.e., the number of structures in

the Neuromorphometrics parcellation is higher than the number of

subjects for each group).

In the next step, we obtained for each age group Nboot52000

bootstrap samples of the connectivity matrix by selecting a random sub-

set of subjects with replacement using the classical bootstrapping proce-

dure described in (Efron and Tibshirani, 1994). This algorithm guarantees

independent samples. Bootstrapping allows the computation of empiri-

cal distributions of the connectivity matrices and of the topological net-

work properties (i.e., mean, standard deviation, etc.) that, with a

sufficient number of data points, reflect the true underlying distributions.

This could not be obtained with a permutation resampling approach. In

addition, and very, important the bootstrapped connectivity matrices

allowed us to estimate the significance of changes in network properties

between age groups (Young-Age and Old-Age) taking into account the

variability of these properties within each group. The connectivity matri-

ces obtained from the 2000 bootstraps were thresholded to create

sparse binary graphs (Figure 2, step e). Rather than restricting our analy-

sis to a binarized graph obtained by applying a single threshold value, we

explored the Network Properties of the graphs over a range of sparsity

degrees varied from 0.5 to 0.9 in steps of 0.02 (a sparsity degree of 0.9

means that 90% of the connectivity matrix is discarded, keeping only the

highest 10% of the connectivity values) (Figure 2, step f) (Bassett, Nelson,

Mueller, Camchong, & Lim, 2012; Ginestet, Nichols, Bullmore, &

Simmons, 2011; Sanabria-Diaz et al., 2010). This range of sparsity degree

was chosen to allow for all network properties to be accurately estimated

and the number of spurious edges in each network minimized as indi-

cated in previous studies (Achard and Bullmore, 2007; He et al., 2007).

Corresponding threshold values Rk were calculated for each of the 2000

correlation matrices so that their elements Cij were set to 1 when |Cij|>

Rk and 0 otherwise. This procedure normalizes the networks to have the

same number of nodes and edges, enabling the examination of the rela-

tive network properties obtained for each group.

2.6 | Graph analysis to characterize the “networks of

myelin covariance” (Myelin-Nets)

A great number of natural systems can be represented by complex net-

works. Graph Theory is usually considered an attractive model for the

mathematical treatment of such networks, including those representing

brain connectivity (Sporns, 2011). In general, a complex network can be

represented as a graph G 5 [N,K], where the nodes N are the compo-

nents of this system and the edges (K), the relations or connections

between them (Boccaletti, Latora, Moreno, Chavez, & Hwang, 2006). In

our specific case, the nodes are the anatomical regions obtained from

the brain parcellation and the edges are the co-variations (correlation)

in myelination across subjects between pairs of these brain regions.

It is important to note here that this is a mathematically derived

network, whose connections do not explicitly reflect anatomical or

physiological mechanisms in the brain. However, because these “Net-

works of myelin covariance” (Myelin-Nets) are based on anatomical

data, they can be taken as possible biomarkers of underlying biophysi-

cal mechanisms. These Myelin-Nets are unweighted because all edges

are assumed to indicate relations of equivalent strength between

nodes, and undirected, simply summarizing symmetric relations (such

as correlations) between nodes.

We used graph theory to study the myelin co-variation networks

in the Young-Age and Old-Age groups. This mathematical treatment

allows us to characterize the age-related changes of global and local

phenomena observed when myelination in any structure fluctuates

concurrently with myelination in its neighborhoods and other distant

brain regions of the network. In other words, graph theory gives us a

framework to explore the Myelin-Nets architecture and how efficiently

the information of myelin fluctuations is “exchanged” over the network

(in terms of the graph theory). Importantly, these networks cannot be

interpreted in terms of temporal causality. First, because myelination

co-variations are assessed across subjects and second, because we are

using Pearson correlations, measures that do not provide directional/

causal information on the interactions between pairs of nodes.

In particular, we analyzed the following global network attributes:

cluster index, local and global efficiency, and characteristic path length.

To describe the nodal properties of the network we computed the

betweenness centrality attribute that allowed us to identify the net-

work hubs. Additionally we carried out a “Targeted Attack” study to

evaluate the resilience of the Myelin-Nets when the most important

regions (hubs) are virtually attacked. In the following, these measures

will be defined with the traditional interpretation of general networks.
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However, their usefulness as relevant descriptors of anatomical brain

states will become apparent in the next sections.

2.7 | Clustering index (C)

The clustering index Ci of a node “i” is defined as the number of exist-

ing connections between the node’s neighbors divided by all their pos-

sible connections. It is a measure of the inherent tendency of nodes to

cluster into strictly connected neighborhoods (Watts and Strogatz,

1998). Nodes are considered neighbors when a connection between

them exists, which is not reduced to a physical neighborhood concept.

The clustering index for the whole graph G is defined as the average

clustering around each node:

C5
1
N

X

i2G
Ci (1)

represents the number of nodes. Clearly, 0<C<1; and C51 if and

only if the network is fully connected; that is, each node is connected

to all other nodes.

2.8 | Characteristic path length (L)

The characteristic path length L of the graph G is the smallest number

of connections required to connect one node to another, averaged

over all pairs of nodes. It is a measure of the typical separation

between two nodes (structures) i and j 8i; j 2 Nð Þ, and it is defined as

the mean of geodesic lengths dij over all pairs of nodes.

L5
1

N N21ð Þ
X

i; j 2 G

i 6¼ j

dij (2)

In the unweighted network context, the geodesic length dij is defined

as the number of edges along the shortest path connecting nodes i and j

(Boccaletti et al., 2006; Watts, 1999;Watts and Strogatz, 1998).

2.9 | Network efficiency

The concept of efficiency has also been expressed in terms of informa-

tion flow (Latora and Marchiori, 2001). That is, small world networks

are very efficient in terms of global and local communication and they

are defined to have high global Eglob and local Eloc efficiency. The global

Eglob of a graph G is expressed as:

Eglob5
1

N N21ð Þ
X

i; j 2 G

i 6¼ j

1
dij

(3)

This measure reflects how efficiently the information can be

exchanged over the network, considering a parallel system in which

each node sends information concurrently along the network. On the

other hand, the Eglobof G is defined as the average efficiency of the

local subgraphs:

Eloc5
1
N

X

i2G
Eglob Gið Þ (4)

where Gi is the subgraph of the neighbors of “i.” This measure reveals

how much the system is fault tolerant, showing how efficient the com-

munication is among the first neighbors of i when it is removed (Latora

and Marchiori, 2001). As above, nodes are considered neighbors when

a connection between them exists, which is not reduced to a physical

neighborhood concept.

2.10 | Nodal centrality: Normalized betweenness

centrality (NBC)

The “betweenness centrality” Bi of a node i is defined as the number of

shortest paths between any two nodes that run through node i (Free-

man, 1977). We measured the normalized betweenness centrality as

bi5Bi/<B>, where<B> was the average betweenness of the network.

bi is a global centrality measure that captures the influence of a node

over information flow between other nodes in the network. In our case,

betweenness centrality bi could be used to reflect the effects of aging

on the global roles of regions in the Myelin-Nets. Hubs were selected as

those with bi superior to 1.5 similarly to what has been proposed in pre-

vious investigations (He, Chen, & Evans, 2008; Melie-García, Sanabria-

Diaz, & S�anchez-Catas�us, 2013; Yao et al., 2010; Zhu et al., 2012).

2.11 | Methodology for studying differences in the
myelination correlation across brain lobes

To investigate differences in myelination correlation (interconnectivity)

between age groups across brain lobes we used the anatomical subdivi-

sion of the brain in lobes proposed by Tzourio-Mazoyer et al. (2002). We

assessed the intra lobe myelination connectivity as the mean of the abso-

lute correlation coefficient values (first converting the absolute correla-

tion coefficient values to z using Fisher’s r-to-z transformation, taking the

mean and transforming back to correlation through the inverse Fisher

transformation) among intralobe structures in the limbic, frontal, parietal,

occipital, temporal lobes, insula, and subcortical nuclei for each group and

all bootstrap samples of the correlation matrices. To test differences

between groups, we used the statistical procedure described below.

2.12 | Statistical methods to study aging modulation

of Myelin-Nets properties

Network properties (NP) of the myelination correlation matrices were

computed for each sparsity degree values and different bootstrap sam-

ples in each age group. Thus, we had a set of Nboot52000 NP curves

for each network property showing the change in NP with the sparsity

degree. The area under the curve was computed for each network

attribute to contrast the global behavior of these attributes (He et al.,

2009; Wu et al., 2011b). It is worth noting that the monotonic changes

of the NP curves with the sparsity degree make the area under the

curve a suitable descriptor of the global performance of the networks.

We followed three main steps to examine differences in network

properties between groups: (a) construction of the empirical boot-

strapped distribution of differences by subtracting the corresponding

bootstrap samples between groups; (b) definition of the statistical sig-

nificance level: a 95% confidence interval (CI) (biased corrected
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percentile bootstrap CI) (Efron, 1982) of the empirical differences distri-

bution is estimated; (c) hypothesis testing: a significant difference

between groups is accepted if CI does not contain zero, no significant

difference is considered otherwise.

2.13 | Methodology to study robustness of the

Myelin-Nets: Targeted attack analysis

We calculated a surrogate measure of the resilience of the Myelin-

Nets against targeted attack. In a simulated targeted attack study, net-

work hubs are removed one by one in order of betweenness centrality

(NBC). Each time a node was removed from the network, the size of

the largest connected component was recomputed. We defined the

robustness parameter as the area under the curve showing the size of

the relative largest connected component versus the number of nodes

removed (Achard, Salvador, Whitcher, Suckling, & Bullmore, 2006).

Robust networks retain large connected components even when sev-

eral nodes have been knocked out, as represented by a large area

under targeted attack curve. As before, we repeated this procedure for

each Nboot52000 bootstrapped connectivity matrices in the 21 spar-

sity degree points. The same statistical procedure used for evaluating

aging effect of Myelin-Nets properties was applied to explore network

robustness differences between groups.

2.14 | Age modulation of the Myelin-Nets global

network properties: influence of the gray matter

parcellation

There is empirical evidence that topological properties of brain net-

works depend on the gray matter parcellation used (Zalesky et al.,

2010). In order to study the effect of grey matter parcellation on the

Myelin-Nets and their modulation with age, we selected, in addition to

the Neuromorphometrics atlas, three alternative atlases of diverse

nature, different number and distributions of anatomical structures.

These atlases were (a) AAL atlas with N590 structures (Tzourio-

Mazoyer et al., 2002); (b) Brainnetome Atlas (Fan et al., 2016) with

N5246 structures, a cross-validated atlas containing information on

both anatomical and functional connections, and (c) Gordon atlas (Gor-

don et al., 2016) with N5333 cortical regions based on the homoge-

neity of resting-state functional connectivity patterns. The Myelin-Nets

and its topological attributes were assessed for each of these atlases as

described in the previous sections.

2.15 | Methodology for studying the aging trajectory

of the Myelin-Net’s global network attributes

To uncover dynamical properties of the Myelin-Nets topological organi-

zation with age, we proposed a continuous aging trajectory analysis

based on a sliding window approach. This methodology has been used in

two forms to study networks of anatomical covariance: (a) using a

weighted contribution of the data points in the windows to the correla-

tion coefficient at the agewindow centers (Zalesky et al., 2015); (b) using

a fixed number of data points (subjects) per window, the overlap

between contiguous windows being selected heuristically (Vasa et al.,

2017). Here, we kept the number of subjects per window constant, equal

to the number of subjects of the Young-Age group (73), to keep the cor-

relationmatrices and their topological features across windows unbiased

by the number of data points. For each slid, the youngest subject of the

current windowwas replacedwith the nearest older participant (i.e., step

size51: two contiguous windows only differed by one subject). This

process was repeated iteratively across the age range548–75 years old

(Section 2.1). For each sliding-window, the Myelin-Nets and their topo-

logical attributes were calculated using the methodology described in

Construction of the Myelin correlation matrix section without bootstrap-

ping. The sliding window “age”was defined as themedian age of the par-

ticipants in each window. The minimum “age” difference between

contiguous windows was 0.01 (�4 days) and the maximum was 0.6

(�half a year). The maximum age difference between the youngest and

oldest subjects within a window was 9.16 years (around the “window

age”574 years old), the minimum3.29 years and themean 5.3 years.

We focused our attention on the main global network attributes of

the Myelin-Nets: clustering index, characteristic path length, local and

global efficiency, global connectivity, and the connectivity strength

between homologous regions. Additionally a study of the aging trajec-

tory of the normalized betweenness centrality (NBC), as nodal network

property, was performed.

The aging trajectory of the Myelin-Nets attributes were fitted as a

function of the “window age” using a polynomial model. The order of

the polynomial fitting was determined by the Akaike’s Information Cri-

terion (AIC) (Bozdogan, 1987). The statistical significance of the polyno-

mial coefficients was assessed through Student’s t test in the linear

regression model.

3 | RESULTS

3.1 | Global gray matter myelination changes with age

Before detrending for age, visualization of the full 562 dataset showed

that the global myelination in gray matter followed an inverted-U shape

trajectory with age (Figure 3).

This motivated the use of a second-order polynomial model to fit

the age dependence of the MT data for the detrending (using “polyfit.

m” subroutine implemented in MATLAB 2015a), with significant coeffi-

cients (p< .05). Aging was found to have a heterogeneous effect on

myelination across gray matter regions (Supporting Information, Figures

S1–S4). The peak in myelination was found to take place between 40

and 50 years of age for most of brain anatomical regions (Supporting

Information, Figure S2). The modeled age-dependence of the regional

MT values was detrended from the original values before calculation of

the correlation matrices.

3.2 | Aging modulates the correlation strength
between homologous regions but not the global
myelin correlation strength

Figure 4 (panel b) shows the MT correlation matrices for each age

group. We found a significant effect of age on the mean MT
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correlations between homologous regions (Figure 4, Panel a, b), the

Old-Age group showing significantly (p< .05) higher correlations than

the Young-Age group. However no statistical difference in global con-

nectivity was found between groups (Figure 4, panel C). The results of

the statistical analysis including confidence intervals can be found in

Table SIV, Supporting Information.

3.3 | Aging modulates the correlations in myelination

in brain lobes

As shown in Figure 5, the correlation in myelination within brain lobes

(pulled from both hemispheres) is differently modulated by age. The

Old-Age group showed higher intra-lobe correlation strength than the

Young-Age group except for the temporal, parietal, and occipital lobes,

where no significant differences were found (the detailed statistical

results can be found in Supporting Information, Table SII).

3.4 | Most connected structures in Myelin-Nets

In a more detailed study of the correlations in myelination, we found a

set of structures where the variations in myelination were particularly

strongly correlated with myelination changes in other gray matter

regions. Figure 6 shows the 15 structures with the strongest mean

inter-regional covariations in each age group (the cortical surface plots

were created using the BrainNet Viewer package (http://www.nitrc.

org/projects/bnv) (Xia, Wang, & He, 2013)). Table 1 provides the full

list of these structures, highlighting in bold those that are common for

both age groups.

The most connected regions were the Precuneus Left (PCu.L) and

Precentral Gyrus (PrG.R) for the Young and Old Age groups respec-

tively. The structures common to both groups were left superior parie-

tal lobule (SPL.L), left and right supplementary motor cortex (SMC.L,

SMC.R), right superior frontal gyrus (SFG.R), and the middle frontal

gyrus (MFG.R). Interestingly, the most connected region in each group

is not present in the other.

3.5 | Effects of age on the Myelin-Nets hubs

We also studied the effects of age on the hubs of the Myelin-Nets,

defined as having a Normalized Betweenness Centrality (NBC, a quan-

titative measure of the importance of structures in the Myelin-Nets)

over 1.5 (Figure 7, panel A).

The full list of hub structures can be found in Table 2. Left precu-

neus (PCu.L) and left middle temporal gyrus (MTG.L) were the struc-

tures with the highest NBC for the Young-Age and Old-Age groups,

respectively. Twelve hubs were common to both age groups (yellow

spheres in Figure 7, panel A). Among the hub structures, we examined

the age modulation of the NBC for the regions with the highest NBC

for each group (Precuneus Left (PCu.L) and left posterior cingulate

gyrus (PCgG.L) for Young-Age and Old-Age groups, respectively (Figure

7, panel b). The PCu.L showed significantly higher NBC in Young-Age

than Old-Age. On the contrary, NBC of the PCgG.L was significantly

higher in the Old-Age group (the detailed statistical results can be

found in Supporting Information, Table SIII). The aging trajectory of

both PCu.L and PCgG.L can be found in Supporting Information,

Figure S3.

3.6 | Effects of age on the properties of the Myelin-

Nets

Significant differences in characteristic path length, clustering index,

local, and global efficiency were observed between groups (Figure 8).

The Old-Age group showed the largest area under the curve (AUC)

values for the characteristic path length, clustering index (Figure 8), and

local efficiency (Figure 9, panel b).

In contrast, the Young-Age group depicted higher global efficiency

(Figure 9, panel a). Details of the results of the statistical tests can be

found in Supporting Information, Table SIV.

3.7 | Effects of age on the resilience of the myelin

networks to targeted attack

In the “Targeted Attack” study, we found that the resilience to virtual

damage of the principal structures in the Myelin-Nets increases with

age: the Old-Age group showed higher resilience after “simulated

attacks” to the Myelin-Net hubs (Figure 10).

In contrast, the Young-Age group was more vulnerable than the

Old-Age group. The relative size of its largest component was severely

degraded by targeted attack. The difference between groups was stat-

istically significant. Details of the statistical results can be found in Sup-

porting Information, Table SIV.

3.8 | Aging trajectory of the Myelin-Net’s global
network attributes

Figure 11 shows the aging trajectories of the Myelin-Nets global net-

work properties (NPs) for a period of 27 years from 48 years old to 75

years old. The best polynomial fit of the age trajectories was obtained

FIGURE 3 Global gray matter MT values versus age for the 562
subjects of the cohort. The MT values (blue scatter plot) followed
an inverted-U shape trajectory that was fitted with a second-order
polynomial model (red plot). The blue and red boxes highlight the
age range of the Young and Old Age categories that were used in
the covariance analysis [Color figure can be viewed at wileyonline-

library.com]
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with order n53, (based on AIC) for all NPs. In each case the polyno-

mial coefficients were statistically significant (p< .05). The clustering

index and local efficiency showed (Figure 11 panel a and b, respec-

tively) an inverted U-shape aging trajectory. The minimum value for

both was found at 48 years old, and the maximum around 60 years

and 60–65 years for the clustering index and local efficiency,

respectively.

On the other hand, the characteristic path length (Figure 11, panel

c) showed a minimum at 48 years old and a maximum around 55 years.

The age trajectory of the global efficiency (Figure 11, panel d) showed

a U-shape with a minimum peak between 55 and 60 years old and a

maximum value at 48 years old. Moreover, the global connectivity (Fig-

ure 11, panel e) was minimum at 48 years old with a maximum peak

between 55 and 60 years old, whereas the strength of correlation

between homologous regions (Figure 11, panel F) showed a monotonic

increasing behavior starting at 48 years old.

3.9 | Aging trajectory of the precuneus and posterior

cingulate gyrus: structures with highest NBC in young

and old age groups

Here we focused our attention (Figure 12) on the NBC age trajectory

of the precuneus left (PCu.L) and left posterior cingulate gyrus (PCgG.

L), the regions with the highest NBC in the Young-Age and Old-Age

groups, respectively (see Figure 7, panel b). We also show the age tra-

jectory of the contralateral homologous structures.

FIGURE 4 Age modulation of the correlation strength between homologous regions (Panel a). Panel b depicts the correlation matrices for
each group. The global myelination correlation strength in both Young-Age and Old-Age groups is represented in panel c. The bar’s height
represents the mean magnitude of the correlation, and the error bars represent their standard deviations. In panel b, the “R–R” and “L–L”
quadrants represent the intrahemispheric myelin correlations in the right and left hemispheres, respectively. The “R–L” and “L–R” quadrants
depict the interhemispheric interactions. The diagonal of the “L–R” quadrant, highlighted in black shows the correlations in myelination
between homologous structures across hemispheres. The asterisk denotes significant differences between groups [Color figure can be
viewed at wileyonlinelibrary.com]
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The Precuneus shows a nonmonotonic and complex temporal

dynamic (best polynomial order n56, based on AIC), with two principal

maxima between 50–55 years and 65 years old (Figure 12, panel a and

b). The PCu.L and PCu.R NBC minima were approximately at 60 and

73 years with a NBC<1.5. The NBC in both precunei is reduced at the

second maxima as compared with the former peak.

On the other hand, PCgG.R and PCgG.L (Figure 12, panel c and d)

showed less complex trajectory (best polynomial order n53, based on

AIC) with maxima around 50 and 65 years for PCgG.R right and PCgG.

L, respectively.

3.10 | Influence of the gray matter parcellation over
aging effects of Myelin-Nets global network
properties

Figure 13 shows the correlation matrices associated to Myelin-Nets for

the Young-Age (panel A) and Old-Age (panel B) groups and the differ-

ent gray matter parcellations (AAL, Neuromorphometrics, Brainnetome,

and Gordon atlases).

Table 3 shows the summary of the network property (AUC) statis-

tics and targeted attack study, comparing both age groups, for the

FIGURE 5 Modulation of the strength in myelination correlation by age within the brain lobes and the subcortical nuclei. The height of the
bars represents the mean magnitude of the correlations and the error bars their standard deviation. The asterisks denote significant
differences between groups. For reference, we show at the center of the figure the distribution of the nodes in different colors for each

lobe [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Top 15 regions with the largest myelin covariance (most connected) in the Myelin-Nets for the Young and Old Age Groups
[Color figure can be viewed at wileyonlinelibrary.com]
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different atlas parcellations. More details about the statistics results

can be found in Supporting Information, Tables S5–S7. The AAL-based

parcellation did not yield group differences in any of the topological

network properties and depicted the lowest statistical sensitivity of all

the parcellations. Interestingly, the AAL atlas was also reported to yield

the lowest homogeneity in resting state activity in Gordon’s study

(Gordon et al., 2016). In contrast, the Neuromorphometrics atlas pro-

vided the highest sensitivity to differences between age groups in all

TABLE 1 The 15 regions with the highest inter-regional correlations in myelination for the Young and Old Age Groups

Young Age Group Old Age Group

Structure name
Corr.
value Structure name

Corr.
value

Precuneus (PCu.L) 0.492 Precentral gyrus (PrG.R) 0.493

Middle temporal gyrus (MTG.R) 0.472 Supramarginal gyrus (SMG.L) 0.470

Precentral gyrus medial segment (MPrG.L) 0.470 Middle frontal gyrus (MFG.R) 0.467

Central operculum (CO.R) 0.458 Superior parietal lobule (SPL.L) 0.464

Inferior temporal gyrus (ITG.R) 0.447 Postcentral gyrus (PoG.L) 0.462

Superior parietal lobule (SPL.L) 0.446 Postcentral gyrus (PoG.R) 0.456

Precuneus (PCu.R) 0.446 Precentral gyrus medial segment (MPrG.R) 0.452

Supplementary motor cortex (SMC.L) 0.444 Middle cingulate gyrus (MCgG.R) 0.452

Angular gyrus (AnG.L) 0.437 Posterior cingulate gyrus (PCgG.L) 0.450

Superior frontal gyrus (SFG.R) 0.437 Supplementary motor cortex (SMC.R) 0.447

Supplementary motor cortex (SMC.R) 0.436 Superior frontal gyrus (SFG.R) 0.447

Superior frontal gyrus (SFG.L) 0.432 Middle temporal gyrus (MTG.L) 0.444

Middle frontal gyrus (MFG.R) 0.430 Precentral gyrus (PrG.L) 0.442

Putamen (Put.R) 0.428 Thalamus Proper (Thal.R) 0.440

Inferior temporal gyrus (ITG.L) 0.424 Supplementary motor cortex (SMC.L) 0.440

The structures present in both groups are highlighted in bold.

FIGURE 7 Hub regions in Young-Age and Old-Age groups (Panel a). Panel b shows the modulation of the normalized betweenness central-
ity (NBC) by age in the Precuneus left (PCu.L, orange shaded) and Left Posterior cingulate gyrus (PCgG.L, green shaded): the regions with
the highest NBC Young and Old Age groups, respectively. The sphere diameter denotes the NBC values. Spheres in yellow are hubs com-
mon in both groups. The blue and red hubs are those unique to the Young and Old age groups, respectively. In panel b, the bar heights rep-
resent the mean magnitude of the NBCs and the error bars represent their standard deviation. The asterisks denote significant differences
between groups [Color figure can be viewed at wileyonlinelibrary.com]
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NPs except for the global connectivity attribute. It is important to point

out that clustering index, characteristic path length, and local and global

efficiency were the most reproducible measures across brain parcella-

tions. Another relevant and consistent result is that global connectivity

showed no significant differences between age groups independently

of the brain parcellation.

4 | DISCUSSION

In this study, we provide empirical evidence that myelination processes

in gray matter are spatially correlated, irrespective of the distance

between brain regions. When pooling together all possible covariations

between pairs of structures, a nonrandom network of concurrent

changes emerged: the network of myelination covariance (Myelin-Net).

The Myelin-Net showed well-structured topological patterns strongly

modulated by age. Our findings can be summarized as follows: (a) Aging

modulates the correlation strength between homologous regions but

not the global myelin correlation strength. (b) The topological attributes

of the Myelin-Nets depict a strong aging modulation. (c) Aging shapes

the distribution of the central regions (hubs) of the Myelin-Nets. (d) The

aging process increases the resilience of the Myelin-Nets to damage to

the network’s hubs. These findings are discussed in the following

subsections.

TABLE 2 List of hub regions for the Young and Old age groups, defined as the nodes with Normalized Betweenness Centrality above 1.5

Young Age Group Old Age Group

Structure name NBC Structure name NBC

Precuneus (PCu.L) 3.8849 Middle temporal gyrus (MTG.L) 3.7686

Putamen (Put.R) 3.425 Precentral gyrus (PrG.R) 3.7563

Middle temporal gyrus (MTG.R) 3.2859 Thalamus Proper (Thal.R) 3.5141

Inferior temporal gyrus (ITG.L) 2.656 Central operculum (CO.R) 3.0556

Middle frontal gyrus (MFG.R) 2.5353 Thalamus Proper (Thal.L) 3.071

Central operculum (CO.R) 2.5039 Posterior cingulate gyrus (PCgG.L) 2.8282

Precuneus (PCu.R) 2.3277 Middle frontal gyrus (MFG.R) 2.8084

Inferior temporal gyrus (ITG.R) 2.2482 Temporal pole (TMP.R) 2.4644

Superior frontal gyrus (SFG.R) 2.1854 Supramarginal gyrus (SMG.L) 2.458

Posterior orbital gyrus (POrG.R) 2.1587 Supramarginal gyrus (SMG.R) 2.2991

Precentral gyrus medial segment (MPrG.L) 2.1213 Superior parietal lobule (SPL.L) 2.2354

Anterior insula (AIns.R) 1.9716 Posterior cingulate gyrus (PCgG.R) 2.1277

Middle occipital gyrus (MOG.R) 1.939 Postcentral gyrus (PoG.R) 2.0551

Supplementary motor cortex (SMC.R) 1.8457 Putamen (Put.R) 1.9975

Superior parietal lobule (SPL.L) 1.7905 Posterior orbital gyrus (POrG.L) 1.9523

Angular gyrus (AnG.L) 1.762 Anterior insula (AIns.R) 1.929

Angular gyrus (AnG.R) 1.7384 Putamen (Put.L) 1.8917

Superior frontal gyrus (SFG.L) 1.6695 Angular gyrus (AnG.L) 1.8883

Planum polare (PP.R) 1.6546 Superior parietal lobule (SPL.R) 1.8642

Middle frontal gyrus (MFG.L) 1.5893 Inferior temporal gyrus (ITG.L) 1.7996

Caudate (Cau.R) 1.5847 Caudate (Cau.L) 1.7878

Posterior orbital gyrus (POrG.L) 1.5642 Postcentral gyrus (PoG.L) 1.7645

Supplementary motor cortex (SMC.L) 1.5616 Middle cingulate gyrus (MCgG.R) 1.7474

Posterior cingulate gyrus (PCgG.L) 1.5565 Precuneus (PCu.R) 1.6615

Pallidum (Pal.L) 1.5257 Precuneus (PCu.L) 1.6509

Entorhinal area (Ent.L) 1.5054 Inferior temporal gyrus (ITG.R) 1.6285

Precentral gyrus (PrG.L) 1.5645

Superior temporal gyrus (STG.L) 1.5463

The structures common to both groups are highlighted in bold font.
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4.1 | Correlated myelination processes in the brain:
Possible mechanisms

In this article, we found that myelination fluctuates concurrently across

the brain gray matter with well-defined patterns. Several mechanisms

have been proposed to explain the concurrent fluctuations between

the spatially distinct regions of the networks of anatomical covariance:

(a) common normal/pathological vulnerabilities; (b) neurodevelopment;

(c) genetic factors (Alexander-Bloch et al., 2013); and (d) the presence

of axonal connections between brain structures (Gong, He, Chen, &

Evans, 2012). We hypothesize that these putative mechanisms may

explain the synchronicity of myelination processes between gray mat-

ter regions.

One could expect that if two brain structures are anatomically con-

nected by nervous fibers, and if the density of myelin along the fiber

trajectories is relatively constant and distributed across axonal

branches inside each region, these distant structures might show corre-

lated myelin densities. If a proportion of nervous fibers were to degen-

erate, myelin density in the gray matter structures connected by these

fibers might concurrently decrease. Alternatively, intracortical myelin

changes may act to optimize synchronicity and timing between struc-

tures and their reciprocal connections (Haroutunian et al., 2014). These

homeostatic mechanisms may be responsible for correlated myelination

processes, acting to preserve an optimal conduction delay (timing) and

thus synchrony of neural information processing between connected

structures (Kimura and Itami, 2009; Salami, Itami, Tsumoto, & Kimura,

2003). Hunt et al. (2016) and Huntenburg et al. (2017) have recently

provided empirical evidence in support of this idea. The former showed

that the occurrence of concurrent myelination changes between brain

anatomical structures has a high predictive value of electrophysiological

functional connectivity. Moreover, Huntenburg et al. demonstrated

that functional connectivity (using fMRI) is higher between brain areas

with similar intracortical myelin levels. Therefore, if two regions are

axonally wired and so functionally coupled, myelination correlations are

necessarily induced: anatomical connectivity, myeloarchitecture, and

functional networks are intimately linked.

FIGURE 8 Panels (a) and (c) show the network attributes trajectory for different sparsity degrees. The area under the curves (AUC) of the
Myelin-Net’s global properties are represented in panels (b) and (d). The bar heights represent the mean of the network properties and the
error bars are their standard deviation. The asterisks denote significant differences between groups (p< .05) [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 9 Area under the curve measures of Myelin-Net (a) global
and (b) local efficiencies. The bar heights represent the mean of
the network properties and the error bars are their standard
deviation. The Young-Age group showed higher global efficiency
(p< .05) and the Old-Age higher local efficiency (p< .05) [Color fig-
ure can be viewed at wileyonlinelibrary.com]
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Other factors that could be playing an important role are the

shared vulnerability of gray matter regions and neural compensation by

normal and abnormal processes. It is well known that myelination is

highly dynamic and can be modulated by experimental manipulations

and environmental factors (Chang, Redmond, & Chan, 2016; Fields,

2005; Yeung et al., 2014). The Scaffolding Theory of Aging and Cogni-

tion (STAC) model (Reuter-Lorenz and Park, 2014) is based on this

observation and attempts to explain how the brain reacts to different

challenges. This theory represents the brain as a dynamically adaptive

structure that changes in both positive and negative ways with age.

During neurodevelopment and normal aging, myelination processes are

expected to correlate among groups of structures as a consequence of

the establishment and consolidation of neural circuits in the former

case, and to compensate aging-related neural degradations (i.e., cortical

thinning, myelin deterioration, etc.) in the latter. It is known that the

degradation of myelin (presence of balloons, etc.) across the lifespan

triggers continuous remyelination as repair mechanism (Peters, 2002).

This phenomenon can be thought of as one that would increase corre-

lations in myelination between structures if they are involved in the

same pathological events. Also the need to recruit additional neural

resource to sustain cognitive performance in middle-age and old-age

brains increases the chance of new myelination correlations to emerge.

On the other hand, there is no doubt that genetics is a key player

influencing concurrent changes between regions in morphometric,

functional, and tissue properties (Alexander-Bloch et al., 2013; Brown

et al., 2011; Goryawala et al., 2015; Shu et al., 2015; Yao et al., 2015).

Twin studies have demonstrated that specific anatomical co-variations

rest on shared genetic influences (Alexander-Bloch et al., 2013; Schmitt

et al., 2008, 2009, 2010). Myelination processes could be modulated

by shared genetic influences due to a single gene, as a putative mecha-

nism of synchronization of these processes among brain regions during

neurodevelopment and aging. This mechanism has previously been pro-

posed studying other brain anatomy variables (Meyer-Lindenberg et al.,

2007; Pezawas et al., 2005). Along the same line of thought, the inter-

action of different genes involved in brain myelination (related to mye-

lin structure, composition, development, or maintenance; Jungerius

et al., 2008) may contribute to correlations in myelination between

regions.

Further experimental work (animals and humans, in vivo and ex

vivo) and theoretical modelling need to be conducted to support or dis-

prove the impact of these putative factors and mechanisms on correla-

tions in myelination between gray matter regions.

4.2 | Concurrent myelin changes in the brain: Aging

effects

The study of myelination processes is crucial to understand brain anat-

omy and function. Here we extended the standard analysis of exploring

myelin distributions across the gray matter (first-order analysis) to a

second order approach, where the amount of myelin in each anatomi-

cal region is no longer relevant (the mean regional myelination values

were detrended out before analysis). It is this approach that allows the

estimation of the interactions between structures by the Pearson cor-

relation coefficients. It has been proven that such type of analysis

reveals hidden organizational properties of brain anatomy that are diffi-

cult to detect through classical univariate approaches (Bassett et al.,

FIGURE 10 Panel (a) shows the dependence of the “area under targeted attack” on the sparsity degree. The error bars represent the
standard deviation over the bootstrap samples. The areas under the “targeted attack” curves are represented in panel (b). The bar heights
represent the mean values for the Young-Age and Old-Age groups and the error bars the standard deviations. The asterisks denote signifi-
cant differences between groups. The Old-Age group showed higher resilience after “simulated attacks” of the Myelin-Net hubs (p< .05).
Panel (c) represents the trajectories of the relative size of the largest components as the principal nodes are “deleted” (“attacked”) for the
sparsity degree highlighted in panel a (green box) [Color figure can be viewed at wileyonlinelibrary.com]
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2012; Li, Bin, Hong, & Gao, 2010; Melie-García et al., 2013; S�anchez-

Catas�us et al., 2017; Yu et al., 2013; Zalesky, Fornito, Egan, Pantelis, &

Bullmore, 2012).

Interestingly, we found that concurrent gray matter myelination

processes are largely shaped by age. The global correlation strength—

an aggregate measure of the correlation values between all possible

pairwise structures—showed no significant change between age

groups, suggesting that at the global level, mechanisms underlying

demyelination and neurodevelopment in Old-age and Young adults,

respectively, are similarly coordinated across subjects. However, the

local myelination correlations in brain lobes were different between

age groups. This suggests that multiple myelination mechanisms exist

and that the balance of their expression is diverse. For instance, tempo-

ral, parietal, and occipital lobes behaved similarly to the global pattern,

showing no modulation with age. The other lobes showed higher corre-

lation strength for the Old-Age group, suggesting that the myelination

mechanisms characteristic of old age are more homogeneous across

the aged brain. On the other hand, the aging trajectory of the global

correlation strength from middle age (>48 years) onwards showed a

minimum at 48 years (Figure 11, panel E). This could be explained by

the variability of the peak myelination age across structures and sub-

jects around 48 years old (Supporting Information, Figure S2) that

affects the synchronization of the myelination inter-individual differen-

ces and consequently induces lower correlation strengths between

anatomical structures.

It is important to point out the observed strong age modulation in

myelination covariance between homologous regions. The covariance

of homologous structures was found to increase significantly with age.

This suggests that interindividual differences in myelination due to neu-

rodevelopmental factors are less coordinated than the putative com-

pensatory, demyelination/remyelination and shared vulnerability

processes that become prominent in later life. Myelination changes in

old age are noticeably more synchronized and spatially extended than

in young age, in line with the scaffolding hypothesis of the STAC

theory of aging (Reuter-Lorenz and Park, 2014). More evidence was

found in the monotonically increasing aging trajectory of the myelina-

tion covariance between homologous regions (Figure 11, panel F) from

48 years old onwards. It is interesting to consider these results in the

FIGURE 11 Age trajectory of the MyelinNets Global Network properties. The Myelin-Nets segregation topological measures are repre-
sented in panel (a). clustering index, and panel (b), local efficiency. The integration topological measures: characteristic path length and
global efficiency are represented in panels (c) and (d), respectively. Panel (e) shows the global connectivity and panel (f), the connectivity
strength between homologous regions. The continuous line in red represents the polynomial fitted function. The light red shaded area sym-
bolizes the confidence interval of the polynomial fitted function, and the dark shaded area the standard deviation of the error in predicting
a future observation. Dots in red and black represent the topological network property values for each “age”—taken as the median age of
the participants in the window. In all cases the best fitted polynomial order, based on the AIC criterion, was n53, with coefficients statisti-
cally significant (p< .05) [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 12 Age trajectory of the normalized betweenness centrality (NBC) in the Precuneus (PCu) (panels a and b) and Posterior cingulate
gyri (PCgG) (panels c and d) structures. The continuous line in red represents the polynomial fitted function. In all cases the polynomial
coefficients were statistically significant (p< .05). The light red shaded area shows the confidence interval of the polynomial fit, and the
dark shaded area the standard deviation of the error in predicting a future observation. Dots in red and black represent the NBC values for
each “age”—taken as the median age of the participants in the particular window. Line in blue at NBC51.5 shows the NBC threshold for
which a region is considered as hub [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 13 Correlation matrices associated to Myelin-Nets for the Young Age (panel a) and Old Age (panel b) groups for the different gray
matter parcellations (AAL, Neuromorphometrics, Brainnetome and Gordon atlases). In panel a (similar to all plotted correlation matrices), the
“R–R” and “L–L” quadrants represent the intrahemispheric myelin correlations in the right and left hemispheres, respectively. The “R–L” and
“L–R” quadrants depict the interhemispheric interactions. The diagonal of the “L–R” quadrant shows the correlations in myelination between
homologous structures across hemispheres. The color bar on the right represents the scale of the Pearson correlation coefficients using a

“jet” color map [Color figure can be viewed at wileyonlinelibrary.com]
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light of the known increase in symmetry in brain function and anatomy

with age expressed by the recruitment of homologous areas, which

may operate to compensate for cognitive decline (Cabeza et al., 1997;

Cabeza, 2002; Grady, McIntosh, Rajah, Beig, & Craik, 1999; Park and

Reuter-Lorenz, 2009).

We also observed that the highest correlations were precisely

between homologous regions for both age groups. This finding has

been systematically reported in the literature using different functional

and anatomical variables (Eyler et al., 2011; Mechelli et al., 2005;

Melie-García et al., 2013; Sanabria-Diaz, Martínez-Montes, & Melie-

Garcia, 2013; Schmitt et al., 2009). We hypothesize that genetic factors

play an important role in fine-tuning the correlation of the myelination

processes between homologous structures.

4.3 | Most connected structures in Myelin-Net,

Myelin-Nets hubs, and aging effects

To better understand the topological organization of spatial myelina-

tion changes, we identified the structures where myelination processes

are the most correlated with the myelination variations across the rest

of the brain. Some structures were common to both age groups (e.g.,

bilateral supplementary motor cortex (SMC.L, SMC.R) and left superior

parietal lobe (SPL.L)). The presence of SMC as a network hub has been

described previously at different ages. In the case of the elderly con-

nectome (76–94 years), this structure is preserved as a hub (Hwang,

Hallquist, & Luna, 2013; Perry et al., 2015).

We evidenced a redistribution of hubs with aging (Figure 7). There

were 12 hub regions common to both groups. This result indirectly

reveals how the flux of information is reorganized by aging in the

Myelin-Nets. Along the same line, we found a profound age modulation

of the NBC (which objectively quantifies the central role of a region in

our Myelin-Nets) in Precuneus Left (PCu.L) and Left Posterior cingulate

gyrus (PCgG.L) structures (amongst the coincident hub structures, PCu.

L and PCgG.L showed the highest NBC in Young and Old age groups

respectively). The NBC of PCu.L/PCgG.L was lower/higher in the Old-

Age group. Both regions are part of the Default Mode Network and

impose high metabolic demand on the brain (Buckner, Andrews-Hanna,

& Schacter, 2008). It has been consistently shown that normal aging

induces a disruption of the connectivity and hubs within the DMN,

more specifically along the anteriorposterior axis of the network

(Andrews-Hanna et al., 2007; Biswal et al., 2010; Grady et al., 2010;

Jones et al., 2011; Meunier, Achard, Morcom, & Bullmore, 2009; Prei-

sig et al., 2009; Wu et al., 2011a)

4.4 | Organizational properties and aging effects of

myelin nets

The topological properties of the Myelin-Nets were also modulated by

aging. The “characteristic path length” in Old-Age was statistically

higher than the Young-Age group. This alteration has been reported

consistently in previous studies using other neuroimaging modalities

(Gong et al., 2009b; Petti et al., 2016; Zhao et al., 2015; Zhu et al.,

2012). The nature of this effect is unknown but could be related to

compensatory effects and common pathological processes or shared

vulnerability. These processes could influence the redistribution of

principal myelin covariations (the highest correlation values) to specific

regions, which ultimately may induce longer characteristic path lengths.

Additionally, we provide empirical evidences that after 48 years old

this network attribute present dynamic changes until 75 years old.

The “clustering index” was increased in the Old-Age group. This is

a measure of the similarity of myelin covariations among brain struc-

ture neighborhoods (not reduced to a physical neighborhood concept).

According to the graph theory, this increase could be generated by the

establishment of new densely connected local clusters which may gen-

erate an uncontrolled “flow of information” through the entire network.

This measure is related to the local efficiency of the “information flow”

of the networks and its abnormal performance could be attributed to

shared vulnerability and compensatory mechanisms. The increased

intralobe myelin covariation in 4 out of 7 lobes might explain the larger

clustering index in old age.

The increasing “local efficiency” was accompanied by a “global effi-

ciency” decline in Old-Age. In terms of the graph theory, these changes

affect network performance pointing to a higher “wiring cost” for paral-

lel “information transfer” between anatomical regions. The weakening

TABLE 3 Summary of Network properties (AUC) statistics and Targeted attack study comparing both age groups for different atlas parcella-
tions [Color table can be viewed at wileyonlinelibrary.com]

Network property
AAL atlas
(Nstruct590)

Neuromorphometric
atlas (Nstruct5 114)

Brainnetome atlas
(Nstruct5244)

Gordon atlas
(Nstruct5333)

Clustering index

Characteristic path length

Local efficiency

Global efficiency

Global connectivity

Targeted attack

Homologous regions connectivity

: Significant differences between Young and Old Age groups (p< .05, CI 95% does not contain zero); : nonsignificant differences between Young
and Old Age groups (p> .05, CI 95% contains zero).
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of the global efficiency is explained by the larger characteristic path

length present in old age.

The aging trajectory in both “clustering index” and “local efficiency”

showed a minimum at 48 years old that is related to global myelin cor-

relation strength changes and the cause producing that this attribute

has a minimum value at the same age. The maxima of these two net-

work properties and the maximum/minimum in characteristic-path-

length/global-efficiency are synchronized in some extend revealing

an unbalance between segregation and integration processes in

Myelin-Nets.

In our “Targeted Attack” analysis, we attempted to further investi-

gate the age-associated changes in the resilience of the Myelin-Nets.

Networks were “attacked” at key nodes of the highest betweenness

centrality (network hubs). We found that the Old-Age group showed

higher resilience to these simulated attacks. A possible explanation for

this finding may rest on the observed increase in symmetry and the

presence of aberrant local circuits leading to increased “local efficiency”

with age. Also the redistribution and the higher number of hubs in the

Old-Age group favored a higher resilience to target damage. Attacks to

hub regions in the Young-Age group produced devastating consequen-

ces in the integrity and stability of the network, where regional speciali-

zation is well defined.

The comparison of the networks of myelin reported in this study

and Networks of anatomical covariance may bring new light on the

interplay between tissue myelination and morphological changes in the

brain. Our results indicate that Myelin-Nets and Networks of anatomical

covariance have common topological features. For both brain net-

works, correlations between homologous regions are the highest and

are modulated by age. Also, the global network attributes—characteris-

tic path length, clustering index, and local efficiency—share the same

age modulation across networks (Chen et al., 2011; Wu et al., 2012;

Zhu et al., 2012). Additionally, Myelin-Nets and Networks of anatomical

covariance share common hub regions such as precuneus, middle and

superior frontal gyrus, prefrontal cortex, posterior cingulate cortex,

inferior temporal gyrus, and medial temporal gyrus (He et al., 2007; Wu

et al., 2012). These similarities suggest possible common principles driv-

ing the topological organization of the synchronized myelination and

morphological changes across the gray matter. However, a number of

differences are also apparent which might be due in part to differences

in the data and analysis methods used, which motivates further investi-

gation to be conducted using the same experimental conditions (same

subjects sample, brain parcellation, weighted/binary graphs, etc.) to

ease the comparability of the results.

Finally, a comparison between Myelin-Nets and white matter struc-

tural networks (WM-Nets) would shed light on the common principles

driving the correlated myelination processes and anatomical (axonal)

connectivity. A separate study, preferably based on Myelin- and WM-

Nets extracted from the same cohort, is necessary to highlight the

interplay between these processes. However, some similarities and dif-

ferences can be highlighted in light of the main anatomical connectivity

findings reported in the literature. First, in both myelin and anatomical

networks, the precuneus and posterior cingulate gyrus are observed as

centrally connected regions, independently of age (Gong et al., 2009a,

b; Iturria-Medina, Sotero, Canales-Rodríguez, Alem�an-G�omez, & Melie-

García, 2008). This observation is consistent with the study of (Hag-

mann et al., 2008), who identified a structural core within posterior

medial and parietal cortex in the cortical anatomical network. A region

equivalent to the precuneus was also observed as a hub in

the macaque cortical network (Sporns, Honey, & K€otter, 2007). Also,

putamen and superior parietal structures were identified as most vul-

nerable areas in WM-Nets (Iturria-Medina et al., 2008) as we found in

Myelin-Nets.

The topological efficiency of the WM-Nets exhibits an inverted U-

shaped trajectory across the lifespan, peaking around the third decade

of age (Zhao et al., 2015). Similarly, we found that the local efficiency

of the Myelin-Nets followed an inverted U-shaped between the ages of

48 and 75 years old, but with a peak between 60 and 65 years old. In

contrast, the global efficiency of the Myelin-Nets was found to follow a

U-shape with a minimum between 55 and 60 years. While the cluster-

ing index and characteristic path length of WM-Nets were found to fol-

low an inverted U-shaped trajectory (Zhao et al., 2015), these

topological attributes were found to exhibit different aging trajectories

in the Myelin-Nets in the age range 48–75 years. Interestingly, while

the WM-Nets become less connected with age (Gong et al., 2009b),

the connectivity in Myelin-Nets shows a tendency to increase with age

from 48 years old onward.

4.5 | Further considerations and future work

Some issues should be addressed in future works. We propose the use

of parcellations closer to the myelo-architectonic organization of the

cortex to study Myelin-Nets topological properties. The Neuromorpho-

metrics, AAL, Brainnetome, and Gordon atlases employed in this study

do not take into account this key organization feature of the cerebral

cortex. Partial correlation, instead of the Pearson correlation, should be

favored to compute the interaction between anatomical structures

accounting for the effect of other structures and possible global varia-

bles. An increase in the number of subjects per age group in an inde-

pendent dataset would provide evidence for the reproducibility of our

results.

A natural extension of the presented work is the parallel character-

ization of morphological and myelin covariance networks in gray mat-

ter. This combined study, combining micro and mesoscopic measures

of the brain, would shed a new light into the biophysical mechanisms

underlying the emergence of such networks. It should be highlighted

that myelin is the primary contributor to MR image contrast (Geyer,

Weiss, Reimann, Lohmann, & Turner, 2011), with a clear impact on

local gray matter volume estimates (Helms et al., 2009; Lorio et al.,

2016). The parallel study of morphological and myelination change

would therefore allow disambiguating true morphological brain changes

and spurious changes arising from changes in myelination.

An important line of future research is the exploration of potential

deviations in the correlation of myelination processes in pathologies

like Alzheimer, Schizophrenia, Multiple Sclerosis, and Epilepsy. Further-

more, the combined study of anatomical, myelin, functional brain net-

works, by combining structural DWI, magnetization transfer-MRI, and

MELIE-GARCIA ET AL. | 1549



functional MRI techniques in a same set of subjects would be tremen-

dously useful for discovering similarities and differences to brain net-

work properties obtained from different physiological variables. This

would help to understand how changes in the topological organization

of myelination processes are related to brain function. The study of the

association between gray and white matter myelination processes over

the lifespan will help to improve our knowledge about the basic princi-

ples of the brain topological organization. Finally, we find two potential

limitations of our methodology: (a) some of the identified age-related

differences in Myelin-Net topological organization may be because of

possible registration errors in the Neuromorphometrics atlasing labeling

methodology. However, these sources of bias were minimized by using

a nonlinear advanced registration algorithm (geodesic shooting registra-

tion; Ashburner and Friston, 2011) and a probabilistic labeling

approach. The influence of our results by the utilization of surface-

based and volume-based registration algorithms should be evaluated in

future studies. (b) Although myelination largely dominates the MT con-

trast other processes such as inflammation (B�elanger, Allaman, & Mag-

istretti, 2011; Gloor, Scheffler, & Bieri, 2008), metabolism (Giulietti

et al., 2012), and pH changes (Gillies, Raghunand, Garcia-Martin, &

Gatenby, 2004; Gloor et al., 2008; Kucharczyk, Macdonald, Stanisz, &

Henkelman, 1994) appear to contribute to this signal (Harrison et al.,

2015). The neuroinflammation, for instance, is present during aging

(Chung et al., 2009; Franceschi et al., 2007); therefore, our results may

be influenced by the heterogeneity of this process in our age groups.

5 | CONCLUSIONS

In this article, we provide empirical evidence that myelination processes

are spatially correlated across cortical gray matter. The patterns of

myelination covariance show specific topological organization revealed

using a graph theoretical approach. A number of specific correlated

myelination phenomena were strongly modulated by age. In particular,

we brought evidence that aging increases synchronicity between

homologous regions. Our results are an important step toward elucidat-

ing the organizational principles behind the dynamics of the human

brain anatomy across the lifespan. In particular, myelination processes

are at the cross-way of several psychiatric and neurodegenerative brain

diseases and are therefore crucial for their understanding.
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