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Dynamic creation of a 
topologically-ordered Hamiltonian 
using spin-pulse control in the 
Heisenberg model
Tetsufumi Tanamoto1, Keiji Ono2, Yu-xi Liu3,4,5 & Franco Nori4,6

Hamiltonian engineering is an important approach for quantum information processing, when 
appropriate materials do not exist in nature or are unstable. So far there is no stable material for the 
Kitaev spin Hamiltonian with anisotropic interactions on a honeycomb lattice, which plays a crucial 
role in the realization of both Abelian and non-Abelian anyons. Here, we show two methods to 
dynamically realize the Kitaev spin Hamiltonian from the conventional Heisenberg spin Hamiltonian 
using pulse-control techniques based on the Baker-Campbell-Hausdorff (BCH) formula. In the first 
method, the Heisenberg interaction is changed into Ising interactions in the first process of the pulse 
sequence. In the next process of the first method, we transform them to a desirable anisotropic 
Kitaev spin Hamiltonian. In the second more efficient method, we show that if we carefully design 
two-dimensional pulses that vary depending on the qubit location, we can obtain the desired 
Hamiltonian in only one step of applying the BCH formula. As an example, we apply our methods to 
spin qubits based on quantum dots, in which the effects of both the spin-orbit interaction and the 
hyperfine interaction are estimated.

Topological quantum computation has attracted considerable interest due to its robustness to local per-
turbations1. Anyons, which obey different statistics from bosons and fermions, are also of fundamental 
interest in physics2. Kitaev3 provided an exactly-solvable model of a spin-1/2 system on a honeycomb lat-
tice with potential links to topological quantum computation, for both Abelian and non-Abelian anyons. 
The Kitaev Hamiltonian is given by an anisotropic spin model on a 2D honeycomb lattice

∑ ∑ ∑= − −
( )− − −

H J X X J Y Y J Z Z
1

K x
x

j k y
y

j k z
z

j k
links links links

where X j, Y j and Z j are the Pauli spin operators and the interaction type (x, y, and z links) depends on 
the direction of the bond between the two sites (Fig.  1). The model in Eq. (1) can be mapped to free 
Majorana fermions coupled to a 2  gauge field and has two types of interesting ground states, the 
so-called phase A and phase B, depending on the relative magnitude of J x, J y and J z. The region 
J J J

1 2 3
≤ +α α α , where iα  (i =  1,2,3) refers to x,y,z, is the gapless B phase in which non-Abelian anyons 

appear, and the other region is the gapped phase A, where Abelian anyon statistics is expected. In the B 
phase, an additional external magnetic field opens an energy gap. This Kitaev model has opened a new 
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possibility of realizing anyon based on spin systems. However, it is not easy to find materials that have 
such anisotropic spin-spin interactions.

Even if we can find a possible material for realizing a desired Hamiltonian, we have to integrate 
and fabricate it by attaching many electrodes and probes to confirm whether it is sufficiently control-
lable4,5. Regarding artificial realizations of the Kitaev Hamiltonian, theoretical proposals have been 
made using optical lattices6,7 and superconducting qubits8. In Ref. [You]=>[8], You et al. used different 
qubit-qubit interactions depending on the coupling direction. Here, we consider how to generate the 
Kitaev Hamiltonian starting from the Heisenberg Hamiltonian.

The Heisenberg Hamiltonian describes two-body interactions in many magnetic materials and artifi-
cial systems such as cold atoms6, semiconductor quantum dot (QD) systems9–15, donor systems16–19, and 
nitrogen-vacancy (NV) centers20–22. The Heisenberg Hamiltonian is given by
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where only the nearest-neighbor interactions are assumed here. The problem to be solved is to find a way 
to derive the Kitaev Hamiltonian Eq. (1) from the Heisenberg Hamiltonian of Eq. (2). The difficulty is 
to derive the anisotropic interaction of the Kitaev Hamiltonian from the uniform interaction of the 
Heisenberg Hamiltonian. For example, although the tunneling couplings J J J Jx y z= = =  of the spin 
qubits based on QDs can be varied uniformly by attaching gate electrodes, we cannot control the aniso-
tropy of the interactions by only changing the strength of the tunneling couplings23. The purpose of this 
paper is to propose two methods to dynamically derive the Kitaev Hamiltonian from the Heisenberg 
Hamiltonian.

The two methods provided here are based on pulse-control technique using the 
Baker-Campbell-Hausdorff (BCH) formula between the Heisenberg Hamiltonian and the transformed 
Hamiltonians. These transformed Hamiltonians are produced by applying appropriate pulse sequences 
to the Heisenberg Hamiltonian. The BCH formula is useful for creating desirable effective Hamiltonians24. 
However, because unwanted terms are generated by the BCH formula, it is desirable to reduce the num-
ber of times the BCH formula is applied to different transformed Hamiltonian.

In the first method provided here, which we call the direct method, the Heisenberg interaction is 
changed into XX, YY  and ZZ Ising couplings, by using the corresponding transformed Hamiltonians in 
the first process. In the second process of the direct method, three other transformed Hamiltonians are 
used to change the Ising couplings into the desired x, y and z-links. When we count the number of the 
steps required to obtain the different transformed Hamiltonians, the direct method requires six steps to 
obtain the Kitaev spin Hamiltonian. In the second method, which we call the efficient method, we show 
that if we carefully design two-dimensional (2D) pulses that vary depending on the qubit location, we 
can obtain the desired Hamiltonian in only one step where one transformed Hamiltonian is used.

Because the engineered Hamiltonian is effective only for a finite time interval, the dynamical approach 
requires a refresh process in which the same pulse sequence for generating the Kitaev Hamiltonian is car-
ried out. The idea of repeating the production process is very common in conventional digital computers, 
such as dynamic random access memory (DRAM), which essentially is a big capacitor and the amount 
of electric charge is lost over time25. We consider the refresh overhead of the dynamical methods, and 
compare the two proposed methods quantitatively.

As a concrete example of the application of our methods, we consider the spin qubits based on QDs. 
In general, QDs have both spin-orbit interactions26–28 and hyperfine interactions29–31. Therefore, we will 
discuss the effects of these interactions, other than the unwanted terms derived from the BCH formula, 
on the topological Hamiltonian, focusing on the gapped phase (phase A).

Results
Dynamical creation of the Kitaev spin Hamiltonian from the Heisenberg model. Now, we 
explain how to derive Eq. (1) from the Heisenberg Hamiltonian Eq. (2). The “creation” of Eq. (1) is carried 
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Figure 1. Kitaev model on a honeycomb lattice. The Kitaev model has nearest neighbor interactions on 
the vertices of a honeycomb lattice, where the x-links have XX interactions, the y-links have YY interactions, 
and the z-links have ZZ interactions.
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out by combining H S with a transformed Hamiltonian H R, which is produced by applying a customized 
pulse sequence to H S, like in nuclear magnetic resonance (NMR), by a repeated application of the BCH 
formula. Concretely, the target Hamiltonian H tgt is approximately obtained by = +H H HS Rtgt , such 
as

it H it H it H H t H Hexp exp exp [ ] 2 3S R S R S R
2(− ) (− ) ≈ (− ( + ) − , / + ..), ( )

when α J t 1. In the exponent of the right side of this equations, the terms O t 2( ) beyond the first term 
are the unwanted ones. The transformed Hamiltonian H R is produced by using rotations of the Pauli 
operators, X Xi i→ − , Y Yi i→ −  and Z Zi i→ − . These rotations are obtained by the operations given 
by

i Y X i Y i Z X i Z Xexp 2 exp 2 exp 2 exp 2 4π π π π( / ) (± / ) = ( / ) (± / ) = − , ( ) 

and i X X i X Xexp 2 exp 2π π( / ) ( ± / ) =
. We have similar equations for the rotations of the Y  and Z 

operators. In the following, we show that the first method (direct method) uses Eq. (3) six times, but the 
second method (efficient method) uses it only once.

Direct method
The direct way to convert Eq. (2) to Eq. (1) requires six steps, as shown in Fig. 2. The first process is to 
create the three Ising Hamiltonians, H J X Xx i j x i j= ∑ , , H J Y Yy i j y i j= ∑ , , H J Z Zz i j z i j= ∑ , , from Eq. 
((2)) ==> (2) as shown in Figs. 2(a,c,e). The generated Ising Hamiltonians are described by

= ( ) ( ) /( ), ( )
ααH it H itH itlog[exp exp ] 5S rstep1 1

where H P H Pr S1 1 1=α α α†  ( x y zα = , , ) is a rotated Hamiltonian, in which P1
α shows 2π/ -pulse rotations 

around the α-axes on the lattice sites of Figs. 2(a,c,e). The next process is to eliminate unnecessary Ising 
interactions, such as
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Figure 2. Direct method to dynamically produce a Kitaev Hamiltonian from the Heisenberg model. The 
symbols x, y and z in the lattice sites show the application of 2π/ -pulses around x, y and z, respectively. The 
bonds with dotted lines indicate that there is no interaction between the connected sites. (a) Pulse mapping 
of Px

1  to create the Ising Hamiltonian, = ∑ ,H J X Xx
i j x i jstep1  in ( ) = ( ) ( )†itH itH itP H Pexp exp expx

S
x

S
x

step1 1 1 . (b) 
Pulse mapping to select only the x-link of the Kitaev Hamiltonian from the Ising Hamiltonian of (a). (c) and 
(e) express pulse distributions for generating H J Y Yy i j y i j= ∑ ,  and H J Z Zz i j z i j= ∑ , , respectively. (d) and (f) 
show pulse pattern to select only the y and z links, respectively.
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where =α α α α†H P H Pr2 2 step1 2  is obtained by applying a 2π/ -pulse operation P2
α depending on the links in 

Figs. 2(b,d,f).
Thus, the Kitaev Hamiltonian is dynamically obtained by

( )( ) ( )( ) = 




/( ) ( )H t itH itH itH itlog exp exp exp 7K

x y zdir
step2 step2 step2

(See also Sec. I of the supplementary information). Note that parts of the Kitaev Hamiltonian do not 
commute, i e. ., 

∑ , ∑ 
 ≠− −X X Y Y 0x j k y j klinks links . Therefore, the unwanted terms emerge even in the 

process Eq.((7)) ==> (7) of combining the XX, YY  and ZZ Ising couplings. In the following, we show a 
better method in which the XX, YY  and ZZ Ising couplings are generated in a single process.

Efficient method.
Because the coherence time is limited, a generation method using less time can be regarded as more 
efficient. When we apply rotation pulses more compactly, the Kitaev Hamiltonian H K  is produced more 
efficiently from H S. Fig. 3 shows the distributions of the rotation pulses Peff  by which the BCH formula 
is used only once, such that

τ τ= ( + ), ( )H H H2 8K S R
eff eff

with = †H P H PR S
eff

eff eff . The x-link of the colored honeycomb is produced by applying a rotation around 
the y-axis and that around the z-axis on both sides of the link. Similarly, the y (z)-link is produced by 
a rotation around the z (x)-axis and around the x (y)-axis on both sides of the link (see also Sec. II of 
the supplementary information).

Refresh overhead
If τ rot denotes the time of a single-qubit rotation, it takes τ τ( + )2 2 rot  and τ τ( + )12 2 rot  to produce the 
rotations τ( − )i Hexp 2 K

eff , and τ( − )i Hexp 4 K
dir , respectively. Similar to the conventional DRAM, here 

we define the refresh overhead as the effectiveness of the refresh of the quantum state:

≡ = . ( )r refresh overhead
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The refresh overhead of the efficient method presented above is
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and that of the direct method shown previously is

τ= ( + ), ( )r J3 2 1 11zoh
dir

rot

yxyxyx

xyxyxy

yxyxyx

xyxyxy

zz

zzz

zzz

zz

1
2

345

6
1

2

345

6
1

2

345

6

1
2

345

6
1

2

345

6

Figure 3. Efficient method to dynamically produce a Kitaev Hamiltonian from the Heisenberg model. 
The efficient pulse distribution Peff  for = †H P H PR S

eff
eff eff , in order to dynamically produce a Kitaev 

Hamiltonian from the Heisenberg model via one step. The x, y and z on the lattice sites show the 
application of 2π/ -pulses around x, y and z, respectively.
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for τ J 1z . Thus, the efficient method is three times more efficient than the direct method.

Fidelity
Let us numerically estimate the improvement of the efficient method by calculating a time-dependent gate 
fidelity32. The time-dependent gate fidelity is defined by

F t r it H U tT [exp ] 2 12K
N

P( ) = ( ) ( ) / , ( )

where U tP( ) denotes the evolution operator of the pulsed system. The gate fidelity shows how well the 
transformed Hamiltonian evolves compared with H K . For the direct method, ( )U tP

dir  is given by
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i( ) = ( − ) ( − )α αα
( ) ( ) ( ), for i 1 2= ,  and x y zα = , , . Note that R 1

α
( ) and 

R 2
α
( ) transform H S into the rotated ones shown in Figs. 2(a,c,e) and (b,d,f), respectively. In contrast, for 

the efficient pulse arrangement, ( )U tP
eff  is expressed by

( ) = (− ) (− ). ( )U t it H itHexp exp 14S RP
eff eff

Thus, the evolution operator Eq. (14) of the efficient method is much simpler than that of the direct 
method Eq. (13). Here we consider the general case in which the spin-orbit interaction and the hyperfine 
interaction are added to the Heisenberg Hamiltonian Eq. (2), assuming the spin qubits based on QDs. 
The spin-orbit interaction is expressed by

∑ σ σ σ σ= 
 ⋅ ( − ) + ⋅ × 

, ( )
V c d

15jk
j k j kso so so

where X Y Zj j j j( )σ = , , , and the magnitudes of the spin-orbit vectors = ( , , )c c c cx y zso  and 
= ( , , )d d d dx y zso  are 10−2 smaller28 than J z. The hyperfine interaction is given by the fluctuation of the 

field30, such as ( )δ δ δ= − ∑ + +V h X h Y h Zj x j y j z jhp . We treat the hyperfine field as a static quantity 
because the evolution of the hyperfine field is ~10 µs and much slower than the time-scale of11 the 
pulse-control ~100 ns. The total Hamiltonian of this system is = + +H H V VS so hp. The Chebyshev 
expansion method is used for calculating the time-dependent behavior until its 6th-order term33. We 
have considered several parameter regions such as (i) J J J0 3x y z= = . , d 0=α , and h 0δ =α , (ii) 
J J J0 3x y z= = . , d 0 1= .α , and h 0 1δ = .α , and (iii) J J Jx y z= = , d 0 3= .α , and h 0 3δ = .α  ( x y zα = , , ). 
Figure 4 shows for the numerical results for N 10=  qubits (two honeycomb lattices) for Jx = Jy = 0.3 Jz, 
dα = 0.1 and δhα = 0.1. In various parameter regions, the overlap with the Kitaev Hamiltonian is excellent 
when using the pulse-controlled method. We also find that iterating the same BCH formula34 greatly 
increases the gate fidelity, which is similar to the bang-bang control35.
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Figure 4. Numerically-calculated gate fidelity. Here “dir” corresponds to the direct method (Fig. 2), and 
“eff ” corresponds to the efficient method (Fig. 3), respectively. “BCH–n” means that the BCH formula is 
applied n times. Repeatedly applying the BCH formula corresponds to a refresh process, which improves the 
gate fidelity. Jx = Jy = 0.30 Jz, dα = 0.1 and δhα = 0.1.
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Time-dependent Eigenvalue
In order to directly see the effects of the unwanted terms, spin-orbit terms, and hyperfine terms, we 
calculate the time-dependent eigenvalues of the effective Hamiltonian 

= + − ( / ) , /H H H i t H H{ 2 [ ]} 2S R S Reff , of the efficient method. Because of limited computational 
resources, we show the numerical results for N 6=  and N 10= . We find that an energy gap opens up 
in the J t 1z  region. The energy gap becomes narrow for N 10= , compared for N 6= , because of 
finite-size effects. When we compare Fig. 5(d) with Fig. 5(c), we find that the spin-orbit terms and the 
hyperfine terms decrease the energy gap for large-N  systems. In many systems, we cannot neglect addi-
tional interactions other than the Heisenberg interactions. Here, the spin-orbit and the hyperfine inter-
actions represent such additional interactions. The results of Figs. 5(b,d) show that, although the energy 
gap between the ground state and the excited state of Kitaev Hamiltonian is modified by those interac-
tions, the energy gap is detectable as long as the effect of the additional interactions is small.

Toric code Hamiltonian
The unperturbed Hamiltonian of the A phase is given by = − ∑ −H J Z Zz z j k0 links , whose ground state is 
a degenerate dimer state. Then, = − ∑ − ∑− −V J X X J Y Yx x j k y y j k0 links links  acts as a perturbation and 
generates the toric code Hamiltonian3,36. Comparing the unwanted terms = − , /H it H H[ ] 4S Ruw , the 
spin-orbit terms, and the hyperfine terms, with the effective toric code Hamiltonian in Ref.3 implies the 
constraints

δ δ, / , / < , ( )α{ }t J J d d J h h J J2 16z x y z x y z
2 2

eff
K

where x yα = ,  and = ( / )J J J J16x y zeff
K 2 2 3  (see Sec. VI of the supplementary information). From these 

estimates, in order to realize the topological quantum computation, both the spin-orbit and the hyperfine 
interactions should be as small as possible.

Effects of errors in rotations.
Let us consider the effects of errors in rotations. In Eq. (4), when there is a pulse error δ in 2θ π δ= / + . 
These rotations are carried out by the operations:

i Y X i Y X i Zexp exp cos 2 sin 2 17θ θ δ δ(− ) ( ) = − ( ) + ( ) , ( )

i Z X i Z X i Yexp exp cos 2 sin 2 18θ θ δ δ(− ) ( ) = − ( ) − ( ) . ( )
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Figure 5. Time-dependent eigenvalues of the effective Hamiltonian. Time-dependent eigenvalues of the 
effective Hamiltonian = + − ( / ) , /H H H i t H H{ 2 [ ]} 2S R S Reff , for N 6=  (a,b) and N 10=  (c,d). 
J J J0 3x y z= = .  (a,c) use d d h h 0x y x yδ δ= = = = . (b,d) use d d h h J0 1x y x y zδ δ= = = = . . Eigenenergies 
are scaled by Jz.
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We have similar equations for the Y  and Z components. When we apply these equations with 1δ =  to 
the Heisenberg Hamiltonian H S, we have

∑θ θ δ δ(− ) ( ) → + − − ( ) + − + ( ) ,
( ),

{ }i X H i X J X X Y Z Y Z Y Zexp exp [ 2 ] [ 2 ]
19

i S i
i j

ij i j i i j i i j

∑θ θ δ δ(− ) ( ) → − − ( ) + + − + ( ) ,
( ),

{ }i Y H i Y J Z X Y Y Y X Z Yexp exp [ 2 ] [ 2 ]
20

i S i
i j

ij i i j i j i i j

∑θ θ δ δ(− ) ( ) → − − ( ) + − + ( ) +
( ),

{ }i Z H i Z J X Y Z Y X Y Z Zexp exp [ 2 ] [ 2 ]
21

i S i
i j

ij i i j i i j i j

Thus, the unwanted terms from the pulse errors are counted in order of J12 δ. It is considered that these 
pulse errors can be reduced by using the conventional composite pulse method developed37,38 in NMR.

Discussion
Because our methods use many single-qubit rotations, a short τ rot is important such that all the opera-
tions can be carried out during the coherence time of the system. For example, when τ ≈rot  1 ns, the 
efficient method requires a time of τ ≈4 rot  4 ns and the direct method requires a time of 24 ns. In this 
case, the coherence time should be longer than at least 24 ns for the realization of both methods. As an 
example, we consider the spin-qubit based on QDs, in which the coherence time is estimated by the 
dephasing time. When the dephasing time is ∼T 2  10 ns as in Ref. [11], only the efficient method is 
applicable. When the dephasing time is ∼T 2  100 ns as in Ref. [12], both methods can be applied.

Next, let us discuss a measurement process of topological quantum computation in spin qubits. The 
toric code and the surface code are based on the stabilizer formalism39,40 where desired quantum states 
are obtained by stabilizer measurements. These measurements can be carried out using conventional 
spin-qubit operations by manipulating the Heisenberg model with appropriate magnetic fields. However, 
because the desired states are not always eigenstates of the Heisenberg Hamiltonian, the desired states 
are not preserved41. Thus, our proposed methods, which can preserve the desired states of the topologi-
cal quantum computation, are important after the measurement. Let us estimate the measurement time 
in more details. In each measurement process of the surface code, four CNOT gates and two Hadamard 
gates are required39. When each CNOT gate consists10 of two WAPS s and each WAPS  requires a time 
π/( )J8 meas , where J meas is a Heisenberg coupling strength for the measurement, one stabilizer measure-
ment cycle approximately requires a time π/J meas. Because a short measurement time and a long 
coherence-preserving time ( ∼ −J 1) are preferable, it is desirable for the coupling strength between qubits 
to be changeable, and therefore >J Jmeas  is desirable. The coupling J  of the Heisenberg interaction can 
be changed by the gate voltage in spin-qubit systems based on QDs.11–14. As an example, J 0 1≈ . -1µeV 
is obtained, when the voltage difference between two GaAs QDs is less than 10 mV11, and we can choose 
J 0 1µ≈ . eV and J 1easm µ≈ eV. When J 0 1µ≈ . eV (=  0.0116 K), the period Jt 1 corresponds to the 
refresh time ∼ .t 24 2 ns.

Because the fabrication process is not easy in qubits of any type, the variation of the coupling constant 
J  cannot be avoided in experiments. In this paper, we have shown the effect of the spin-orbit and the 
hyperfine interactions as examples of the unwanted terms of our methods. Thus, as long as the variation 
of J  is small, it can be included as a small perturbation without significant effects on the generation of 
the Kitaev Hamiltonian and the toric code Hamiltonian.

In summary, we proposed two methods to dynamically generate a Kitaev spin Hamiltonian on a 
honeycomb lattice from the Heisenberg spin Hamiltonian by using a dynamical approach. We also con-
sidered the effects of the unwanted terms of the BCH, the spin-orbit interaction, and the hyperfine inter-
action, for spin qubits based on QDs. We clarified that, if these terms are sufficiently small, a dynamic 
topological quantum computation is available by periodically reproducing the topological Hamiltonian.
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