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a b s t r a c t 

Crop models are the primary means by which agricul- 

tural scientists assess climate change impacts on crop pro- 

duction. Site-based and high-quality weather and climate 

data is essential for agronomically and physiologically sound 

crop simulations under historical and future climate sce- 

narios. Here, we describe a bias-corrected dataset of daily 

agro-meteorological data for 109 reference weather stations 

distributed across key production areas of maize, millet, 

sorghum, and wheat in ten sub-Saharan African countries. 

The dataset leverages extensive ground observations from the 

Global Yield Gap Atlas (GYGA), an existing climate change 

projections dataset from the Inter-Sectoral Model Intercom- 

parison Project (ISIMIP), and a calibrated crop simulation 

model (the WOrld FOod Studies –WOFOST). The weather data 

were bias-corrected using the delta method, which is widely 
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used in climate change impact studies. The bias-corrected 

dataset encompasses daily values of maximum and minimum 

temperature, precipitation rate, and global radiation obtained 

from five models participating in the Sixth Phase of the Cou- 

pled Model Intercomparison Project (CMIP6), as well as sim- 

ulated daily growth variables for the four crops. The data 

covers three periods: historical (1995–2014), 2030 (2020–

2039), and 2050 (2040–2059). The simulation of daily growth 

dynamics for maize, millet, sorghum, and wheat growth was 

performed using the daily weather data and the WOFOST 

crop model, under potential and water-limited potential con- 

ditions. The crop simulation outputs were evaluated using 

national agronomic expertise. The presented datasets, includ- 

ing the weather dataset and daily simulated crop growth 

outputs, hold substantial potential for further use in the in- 

vestigation of future climate change impacts in sub-Saharan 

Africa. The daily weather data can be used as an input 

into other modelling frameworks for crops or other sectors 

(e.g., hydrology). The weather and crop growth data can pro- 

vide key insights about agro-meteorological conditions and 

water-limited crop output to inform adaptation priorities and 

benchmark (gridded) crop simulations. Finally, the weather 

and simulated growth data can also be used for training ma- 

chine learning techniques for extrapolation purposes. 

© 2024 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND 

license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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pecifications Table 

Subject Global and Planetary Change 

Specific subject area Climate change; Agro-meteorology; Crop modeling. 

Type of data Table, Processed, Simulated 

Data collection Comparing the ISIMIP data with the measured weather data from the Global 

Yield Gap Atlas (GYGA; www.yieldgap.org) revealed systematic bias, with 

substantial effect on crop simulations. We used the delta method to correct 

the bias in the ISIMIP weather data. Reference weather station (RWS) data was 

gathered from the GYGA. Daily simulated crop growth data was generated 

using the bias-corrected weather data and the WOFOST crop model. GYGA 

provided other required inputs for running the WOFOST crop model. 

Data source location Plant Production Systems Group, Wageningen University & Research 

Data accessibility Repository name: Mendeley Data 

DOI: 10.17632/7s4frszjmz.2 

https://data.mendeley.com/datasets/7s4frszjmz/2 

Related research article Climate change impact and adaptation of rainfed cereal crops in sub-Saharan 

Africa 

https://authors.elsevier.com/sd/article/S1161-0301(24)0 0 058-3 

. Value of the Data 

• The dataset harbors substantial potential for use by the broader crop modelling community

because (1) it covers all key weather inputs for crop simulation in ten countries and in areas

of importance for agricultural production; (2) it is based on ground-truth data collected over

the course of nearly a decade by the GYGA project team; and (3) it extends the weather data

with crop state variables derived from crop simulations with WOFOST (WOrld FOod STudies);

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.17632/7s4frszjmz.2
https://data.mendeley.com/datasets/7s4frszjmz/2
https://authors.elsevier.com/sd/article/S1161-0301(24)00058-3
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a well-established model for four cereal crops (maize, millet, sorghum, wheat) that are of

importance for food security. 

• This dataset includes bias-corrected daily values of maximum and minimum temperatures,

precipitation rate, and global radiation obtained from five Global Circulation Models (GCMs)

under two shared socio-economic pathway (SSP) scenarios, SSP3-7.0 and SSP5-8.5, for three

time periods: historical (1995–2014), 2030 (2020–2039), and 2050 (2040–2059). The utiliza-

tion of data from five GCMs and two SSP scenarios facilitates the implementation of multi-

model ensemble analysis, which is widely recognized as crucial in climate projection and

climate risk analysis [2] . 

• Under potential and water-limited conditions, the daily simulated variables include pheno-

logical stage, dry matter, root depth, leaf area index, and evapotranspiration ( Table 2 ). These

simulations allow exploring a wide range of plausible crop productivity futures, providing in-

sights on growth dynamics under future climate scenarios. Both the weather data and the

daily crop growth data can serve three key purposes: (1) the analysis of climate change im-

pacts on agriculture in SSA; (2) simulation and benchmarking of crop growth responses with

other crop models; and (3) training of machine learning meta-models for spatiotemporal ex-

trapolation purposes. Our dataset is the first site-specific weather and crop growth dataset

with multi-crop and multi-country coverage that focuses on the CMIP6 climate model en-

semble in SSA. 

2. Background 

Gridded climate scenario data for climate change impact assessments in agriculture is avail-

able from a variety of data sources. The Inter-Sectoral Model Intercomparison Project (ISIMIP)

dataset was used as a source of daily weather for crop simulation in several existing studies e.g.,

[3 , 4] . Systematic bias in the ISIMIP dataset, however, precludes robust crop simulations at the

site-specific scale. Thus, secondary bias correction of the ISIMIP dataset is necessary [5 , 6] . How-

ever, such process is challenging in regions such as sub-Saharan Africa (SSA) due to limited mea-

sured weather data. We leveraged the extensive Global Yield Gap Atlas (GYGA) network of col-

laborations and data gathering efforts to produce a site-specific and second bias-corrected ver-

sion of ISIMIP for 109 sites of relevance to maize (105 sites), millet (69 sites), sorghum (72 sites),

and wheat (16 sites) production in ten countries in SSA. Moreover, the inputs for WOFOST were

gathered from a comprehensive management and soil dataset from the GYGA project, which

were verified for each station by local experts. The GYGA dataset specifies cultivars, planting

calendars, and soil hydrological properties, which allowed for realistic simulations of potential

and water-limited potential yield across the 10 sub-Saharan African (SSA) countries. 

The focus of the published paper is on presenting results obtained under water-limited con-

dition. In addition to the simulated results under water-limited conditions, this dataset also in-

cludes daily simulations for potential conditions. Furthermore, the dataset encompasses both the

weather data and simulated outcomes for the time horizon of 2030, which are not present in

the published paper. 

3. Data Description 

The dataset presented herein is unique in that it has multi-country, multi-location, multi-

crop, and multi-scenario (GCM, SSP, period) coverage. It has been produced by leveraging a pub-

licly available dataset (the ISIMIP dataset) and several high-quality local datasets from the Global

Yield Gap Atlas. We foresee three key uses of the data: 

(1) The analysis of climate change impacts on agriculture in SSA. The data presented cov-

ers multiple climate and agricultural futures and therefore can be used to derive key

insights on agro-meteorological conditions for maize, millet, sorghum, and wheat across
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multiple countries in SSA. Importantly, the daily resolution of the dataset allows techni-

cal and scientific enquiry of agronomic performance in tandem with meteorological and

eco-physiological analysis. 

(2) Simulation and benchmarking of crop growth responses with other crop models. Our sim-

ulations use a well-established and calibrated crop model (WOFOST), and compare well

with field observations of water-limited yield potential [ 1 ]. The weather input datasets

we provide can be used as input for other crop modeling frameworks, whereas the simu-

lated crop growth can be used to benchmark simulations from other models. Such kind of

benchmarking can help reduce uncertainties and establish crop-climate model ensembles

(e.g., [2 , 7 , 8] ). 

(3) Training of machine learning meta-models for spatiotemporal extrapolation purposes. The

combination of weather and crop status variables presented here allows building machine

learning models that capture key growth dynamics and therefore overcome the extrapo-

lation challenges typical in empirical models. 

The dataset described in this article includes daily weather data and simulated crop growth

ata for 109 sites across ten countries in SSA. Whereas the weather data covers all sites, the sim-

lated growth data for the four crops (maize, millet, sorghum, wheat) covers subsets of the sites

epending on the geographic distribution of cultivation areas for the given crop ( Fig. 1 ). Table 1

ffers a full list of dataset specifications. Table 2 presents additional information regarding the

ata stored in the repository. 

.1. Geographic coverage of the dataset 

Fig. 1 illustrates the spatial distribution of weather stations for each crop in the ten coun-

ries. The stations can represent 65 % of the harvested area for maize, 90 % for millet, 83 % for

orghum, and 59 % for wheat; For the four crops together 72 % of the total harvested area in

hose countries can be represented ( Table 3 ). When determining coverage areas, it was assumed

hat a station with a specific climate can serve as representative for the climate zone in which

he weather station is located. 
Fig. 1. The spatial distribution of weather stations for each crop. 
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Table 1 

General technical specifications of the dataset. 

Characteristic Description 

Continent Africa 

Countries covered Burkina Faso, Ethiopia, Ghana, Kenya, Mali, Niger, Nigeria, 

Tanzania, Uganda, Zambia 

Number of sites 109 

Crops covered Maize ( n = 105 sites), millet ( n = 69 sites), sorghum 

( n = 72 sites), wheat ( n = 16) 

Periods Historical (1995–2014), 2030 (2020–2039), 2050 

(2040–2059) 

Shared Socioeconomic Pathways (SSPs) SSP3-7.0, SSP5-8.5 

General Circulation Models (GCMs) GFDL-ESM4 (GFDL), IPSL-CM36A-LR (IPSL), MPI-ESM1-2-HR 

(MPI), MRI-ESM2-0 (MRI), and UKESM1-0-LL (UKESM) 

Climate variables Precipitation, maximum temperature, minimum 

temperature, downwards shortwave solar radiation 

Crop model WOrld FOod STudies (WOFOST) 

Growth variables Development stage, total above ground dry matter, dry 

matter for grain, root depth, leaf area index, and 

evapotranspiration (see also Table 2 ). 

Temporal resolution Daily 

Table 2 

The data information stored in the repository. 

Data group Variable Time step unite Abbreviation 

Weather Minimum temperature daily °C TMIN 

Maximum temperature daily °C TMAX 

Precipitation daily mm RAIN 

Radiation daily kJ IRRAD 

Wind ∗ daily m/s WIND 

Vapor pressure ∗∗ daily kPa VPA 

Agronomic (potential 

and water-limited 

potential conditions) 

Development stage daily – DVS ∗∗∗

Total above ground dry matter daily kg/ha TAGP 

Dry matter for leaf daily kg/ha TWLV 

Dry matter for stem daily kg/ha TWST 

Dry matter for root daily kg/ha TWRT 

Dry matter for grain daily kg/ha TWSO 

Root depth daily cm RD 

Leaf area index daily – LAI 

Evapotranspiration daily cm ET 

Transportation daily cm TRA 

Evaporation daily cm EVS 

Water stress index daily – RFWS ∗∗∗∗

∗ The wind data in this study are sourced from ISIMIP and have not undergone bias correction. 
∗∗ The methodology employed by [9] was used to compute daily vapor pressure data using bias-corrected maximum 

and minimum temperatures. 
∗∗∗ For further details, refer to [10] . 
∗∗∗∗ It ranges from 0 to 1, with 1 indicating no water stress and 0 indicating no available water for crops. 

 

3.2. Data table structure 

Besides the variables in Table 2 , there are extra columns in the data table explained in

Table 4 . 
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Table 3 

Number of reference weather stations for each crop and the percentage of national crop area coverage by the climate 

zones that are represented by the weather stations in each country. 

Country Number of sites for doing simulations The harvested area coverage by selected sites for 

each crop (%) ∗∗

maize millet sorghum wheat maize millet sorghum wheat 

Burkina 

Faso 

8 8 8 0 87 99 98 –

Ethiopia 26 13 19 9 71 79 60 62 

Ghana 6 2 2 0 90 93 94 –

Kenya 9 8 8 6 50 46 61 24 

Mali 9 8 8 0 92 97 94 –

Niger 4 4 2 0 ∗ 60 93 97 97 ∗

Nigeria 17 10 12 0 ∗ 68 81 79 89 ∗

Tanzania 6 2 3 1 34 59 54 29 

Uganda 12 8 10 0 ∗ 86 88 67 54 ∗

Zambia 8 6 0 ∗ 0 ∗ 94 88 62 ∗ 94 ∗

Total 105 69 72 16 65 90 83 59 

∗ While we did not simulate crop growth for these specific crop and country combinations, it is possible to cover the 

harvested area of these crops with selected stations designated for other crops within the country (see ∗∗). 
∗∗ It was assumed that the climate in the buffer zone of the stations can serve as representative for the climate zone 

in which the weather station is located. 

Table 4 

Data tables’ columns. 

Data group variable Description 

Weather country_name The name of the country 

GCM The name of the GCM 

Station_id An ID for a given station. This ID serves 

as a connector between different files. 

lon Longitude of the station 

lat Latitude of the station 

DAY Date (YYYYMMDD) 

SNOWDEPTH The depth of snow which is 0 

Agronomic (potential and water-limited 

potential conditions) 

run-id An ID for each combination 

(country∗station∗soil∗cycle∗crop∗time 

horizon∗SSP∗GCM∗year) 

country The name of the country 

Station_id An ID for the given station. This ID 

serves as a connector between 

different files 

lon Longitude of the station 

lat Latitude of the station 

soil A code for the soil type. The 

information of each soil type is 

presented in excel file named “soil 

data” in the repository. 

cycle Mono cropping (1) or double cropping 

(1 and 2) at a given station 

crop The name of the crop 

SSP Future climate change scenario. If it is 

HIS, it means it is for the historical 

condition. 

GCM The name of the GCM. 

Irrigation_status It shows if the simulation is for 

potential (Irrigated) or water-limited 

(Rainfed) conditions 
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4. Materials and methods 

4.1. Weather station selection 

The data of 105 weather stations for maize, 69 for millet, 72 for sorghum and 16 for wheat

representing the key production areas of these rainfed crops ( Table 3 ) were extracted from the

GYGA dataset for the ten countries in SSA ( https://www.yieldgap.org ). The GYGA protocol selects

the key climate zones (designated climate zones, DCZ) and crop combination for each coun-

try based on harvested area and information from local agronomists. Within those DCZs, local

weather stations are identified. Next, a 100-km radius buffer area surrounding each weather sta-

tion is created and clipped by the borders of the DCZ and the country to ensure that the buffer

zone is within a unique climate zone and country combination [11] . 

4.2. Reference weather station data 

Ground-based weather station (also referred to as reference weather station, RWS) data were

extracted from the GYGA dataset. GYGA gathered these datasets from local partners, including

National Meteorological Agencies and National Agricultural Research Organizations. The data in-

cluded daily maximum and minimum temperatures, precipitation, and solar radiation for the

period 20 0 0–2019 ( https://www.yieldgap.org ). When there is no long-term weather data for a

given RWS, the GYGA project uses a method to create long-term weather series based on a few

years of observed daily temperature. The approach is referred to as data propagation (see [12] ).

The propagated data are comprised of uncorrected gridded solar radiation from the Prediction

of Worldwide Energy Resource dataset from the National Aeronautics and Space Administra-

tion (NASA–POWER), rainfall from the Tropical Rainfall Measuring Mission (TRMM) dataset, and

site-specific calibration of NASA–POWER maximum and minimum temperatures using a limited

amount of observed daily temperature data. For further details, the reader is referred to [12] . 

4.3. CMIP6 weather data 

The weather data of the historical, 2030, and 2050 time periods of the Coordinated Mod-

elling Intercomparison Project-Phase 6 (CMIP6) were gathered from the ISIMIP project ( https:

//www.isimip.org ). ISIMIP provides global gridded daily weather data for our variables of inter-

est (precipitation, maximum and minimum temperature, solar radiation, wind). We downloaded

ISIMIP data from the ISIMIP data repository. 1 ISIMIP provides data for five different GCMs, in-

cluding GFDL-ESM4 (GFDL), IPSL-CM36A-LR (IPSL), MPI-ESM1-2-HR (MPI), MRI-ESM2-0 (MRI), 

and UKESM1-0-LL (UKESM). We gathered data for the five GCMs and two shared socioeconomic

pathways (SSPs), namely, SSP3-7.0 and SSP5-8.5. The ISIMIP project provides these datasets with

a daily temporal resolution, and a regular 0.5 ° × 0.5 ° global grid spacing ( ∼50 × 50 km pixel

size at the equator). The data are produced by primary bias correcting raw CMIP6 data using

quantile mapping approach and a bias-adjustment method, with the observational W5E5 v.1.0

dataset as a reference [13] . For each reference weather station ( Fig. 1 ; Table 3 ), the ISIMIP cli-

mate data were extracted from the grid cells corresponding to the locations of the reference

weather stations. Hereafter, we use the term ’raw ISIMIP data‘ to describe this dataset. 
1 https://data.isimip.org/ 

https://www.yieldgap.org
https://www.yieldgap.org
https://www.isimip.org
https://data.isimip.org/
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Fig. 2. The monthly mean temperature delta value (the ISIMIP historical data minus the measured data) in all reference 

weather stations for maize, millet, sorghum, and wheat areas in SSA using five different GCMs (different boxplot colors). 

The boxes contain monthly bias values for all stations situated within the country under historical conditions. The box 

covers 25–75 % of the data, the thick horizontal line corresponds to the median, and the whiskers extend to 5–95 % of 

the data points. 

Fig. 3. The monthly precipitation bias value (the ISIMIP historical data minus the measured data) in all reference 

weather stations for maize, millet, sorghum, and wheat in SSA using five different GCMs (different boxplot colors). The 

boxes contain monthly bias values for all stations situated within the country under historical conditions. The box covers 

25–75 % of the data, the thick horizontal line corresponds to the median, and the whiskers extend to 5–95 % of the data 

points. 
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.4. Bias in the historical data 

The monthly average of historical weather data from the raw ISIMIP data was compared with

he monthly average of measured weather data to examine the systematic bias in the ‘raw ISIMIP

ata’ ( Eq. (1) and (2) ; Fig. 2 ). Additionally, a comparison was conducted between the simulated

rop growth results based on the measured data and the historical raw ISIMIP data. A substantial

ias was observed in the raw ISIMIP data for some RWSs in some countries ( Figs. 2 and 3 ). The

ize and effect of this bias in the crop model simulations suggests additional bias correction is

eeded. 

Vbia sm.g = Visim ip ( m.g) − Vmes ( m) (1)
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Vbias m.g : the monthly bias in the raw ISIMIP temperature data for GCM g in month m 

V mes(m) : the monthly mean, maximum, or minimum temperature of the measured data (mes)

in month m 

V isimip(m.g) : the monthly mean, maximum, or minimum temperature of the raw ISIMIP data for

GCM g in month m 

Xbia sm.g =
Xisim ip ( m, g) − Xmes ( m) 

Xmes ( m) 
∗ 100 (2) 

Xbias m.g : the monthly bias in the raw ISIMIP precipitation or radiation data for GCM g in month

m 

X mes(m) : the monthly mean precipitation or radiation of the measured data (mes) in month m 

X isimip (m.g) : the monthly mean precipitation or radiation of the raw ISIMIP data for GCM g in

month m 

4.5. Secondary bias correction of the historical data 

We used the delta method as the form of bias correction of weather data, which is the sim-

plest form of error removal for climate change simulation data [14 , 15] . In our case, it is used

as the secondary bias correction method to correct the systematic bias of ‘the raw ISIMIP data’

[5 , 6] identified (see Section 4.4). This bias correction of the raw ISIMIP data was labelled as

the secondary bias correction [6] because it was applied after the primary bias correction, i.e.,

the quantile mapping approach of the ISIMIP climate data. We assume that this secondary bias

correction addresses remaining errors in the ISIMIP dataset not addressed by the original cor-

rection, while also addressing scale differences between site (GYGA weather data) and grid cell

(raw ISIMIP data). It is worth noting that the methodology employed by [9] was used to compute

daily vapor pressure data, employing second bias corrected maximum and minimum tempera-

tures. Due to a lack of measured wind data, the ISIMIP wind data was not corrected. 

To perform secondary bias correction, the mean bias of the raw ISIMIP data was calculated

for each GCM and for each month in the period from 1995 to 2014. We used the absolute dif-

ferences for the minimum and maximum temperatures ( Eq. (3) ) and the relative differences for

precipitation and radiation ( Eq. (4) ). The use of relative changes for precipitation and radiation

avoids arriving at negative values when applying delta values onto the historical raw ISIMIP

weather data [14] . 

Visimip_sbc( m, g ) = Visimip( m, g ) + (v̄mes( m) − v̄isimip( m, g ) ) (3) 

Xisimip_sbc( m, g ) = Xisimip( m, g ) ∗
(

x̄mes( m) 

x̄isimip( m, g ) 

)
(4) 

V : daily minimum or maximum temperature for GCM g in month m 

isimip_sbc: ISIMIP secondary bias-corrected data, 

isimip: the raw ISIMIP data, 

mes : the measured data, 

v̄ : the 20-year mean of maximum or minimum temperature for GCM g in month m 

X: daily radiation or precipitation for GCM g in month m 

x̄ : the 20-year mean of radiation or precipitation for GCM g and in month m 

4.6. Secondary bias correction of the future weather data 

The delta method was also used to correct the bias of the future weather data [14] . According

to this method, the anomaly (delta change) for future periods was computed by comparing them
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o the historical climate of the same GCM for each variable and month. 

�V( m, g ) = VisimipF ( m, g ) − VisimipH( m, g ) (5)

�X( m, g ) =
XisimipF ( m, g ) − XisimipH( m, g ) 

XisimipH( m, g ) 

(6)

V : the delta change of minimum or maximum temperature for GCM g in month m 

: the 20-year mean of the minimum or maximum temperature for GCM g in month m 

simipH: the raw ISIMIP data for the historical conditions 

simipF : the raw ISIMIP data for the future periods (2030 or 2050) 

X: the delta change of precipitation or radiation for GCM g in month m 

: the 20-year mean of the precipitation or radiation for GCM g in month m 

It is worth noting that the delta value in Eq. (6) was infinite for the months without

recipitation in SSA during the dry season. To avoid this, we set a threshold of 0.001 mm

er month for both the current and future GCM values, which prevents indetermination in

q. (6) . 

The variables calculated by using Eqs. (3) –(6) were used to generate the second bias-

orrected data for the future conditions: 

VF ( m, g ) = Visimip_sbc( m, g ) + �V( m, g ) (7)

XF ( m, g ) = Xisimip_sbc( m, g ) ∗
(
1 + �X( m, g ) 

)
(8)

F : the daily second bias-corrected minimum or maximum temperature for GCM g in month m 

F : the daily second bias-corrected precipitation or radiation for GCM g in month m 

.7. Daily simulated crop growth data 

The daily growth dataset for the four crops was produced using the Python Crop Simula-

ion Environment version of the crop model WOFOST ( https://pcse.readthedocs.io/en/stable/ ).

his crop model takes into account phenological development, leaf development, light intercep-

ion, CO2 assimilation, root growth, transpiration, respiration and partitioning of assimilates [16] .

aily weather data, crop cultivar parameters, soil parameters, and management data are needed

o run the model. All these data except weather data (see previous sections for origin) were

xtracted from the GYGA dataset for each crop and weather station ( https://www.yieldgap.org ).

he cultivar, soil, and management data in GYGA have been collected and evaluated through

n extensive network of agronomists and crop modelers that collaborate with the GYGA project

 https://www.yieldgap.org ). The cultivar is specified using thermal times derived from locally

vailable planting, flowering, and maturity times. Soil data were obtained from the Africa Soil

nformation Service (AfSIS; [17] ). Management inputs (crop calendars, rainfed or irrigated) were

athered in each country by expert agronomists. The WOFOST model was executed using the

aily second-bias corrected weather data for both historical and future conditions. We recorded

aily simulation output for development stage, dry matter, root depth, leaf area index, evapo-

ranspiration ( Table 2 ). 

It is worth noting that the input data for the crop model in the GYGA project were station-

pecific and have been verified by local experts for each station. The WOFOST model has been

sed in the GYGA project to simulate water-limited potential yields, and phenology related re-

ults have been evaluated by the agronomists and experts of the ten countries [18 , 19] . In ad-

ition, the crop model was evaluated against the highest yielding treatments from rainfed field

xperiments conducted in SSA under diverse climatic conditions, sourced from published arti-

les which showed a robust simulation of the water-limited potential yield of the four crops in

SA [1] . Due to the extensive nature of our dataset in terms of climate and agronomic variables,

ountries, and within-country location (see Table 3 ), and the known quality of the simulated

https://pcse.readthedocs.io/en/stable/
https://www.yieldgap.org
https://www.yieldgap.org
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output, we propose that it is a useful benchmark for other simulation studies seeking to under-

stand climate change impacts in SSA. 

Limitations 

The data is valid and limited to the buffer zones around the identified reference stations in

the ten countries for target crops. Significant crop area changes require addition of new reference

weather stations and measured weather data. It is important to acknowledge that the availabil-

ity of weather data collected from ground-based sources in SSA is restricted due to institutional

restrictions from the originating national partners (mostly National Meteorological Agencies).

However, the provision of the ISIMIP dataset with secondary bias correction circumvents these

restrictions by providing an improved version of the publicly available ISIMIP dataset. The delta

method relies on two assumptions: (i) bias in future data is the same as in historical data, and

(ii) within each month, future weather data exhibit the same variability as historical weather

data. Therefore, the monthly distribution shape remains unchanged, while the delta modifies

the values. Additionally, this approach is unsuitable for extreme events [20] . 
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