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Pathogens that expand host range by shifting to a novel host taxon are a key factor for diversifi-

cation and evolution of host–pathogen associations [1]. Such shifts are often also the initial

spark for new emerging infectious diseases [2]. As a result, pathogen host shifts are of consider-

able concern for humans, wildlife, and agriculture, with obvious economic and public health

impacts that threaten food biosecurity and human health [2,3]. Shifting to a new host may have

a large impact on the evolution and genetic organization of the pathogen [4]. Indeed, many

recent studies have investigated past and ongoing pathogen host shifts using genomic and pop-

ulation genetic methods [5–11], with much emphasis placed on characterizing the mutations,

hybridizations, chromosomal reorganizations, or horizontal gene transfer events involved in

host-shift genetics [12–14]. The rationale behind these studies is that such genomic changes

often represent pathogen adaptation in response to the new environment of a new host. Because

of the usually slow accumulation of mutational nucleotide changes (Fig 1), these genomic

changes do not necessarily represent the factors responsible for facilitating the host shift in the

first place. Instead, the extent to which a pathogen is able to adjust and produce a phenotype

that can survive in the novel host, either via phenotypic plasticity [15,16] or cryptic genetic vari-

ation in the pathogen population [17–19], is increasingly recognized as an important driver for

evolutionary innovation that can lead to niche expansion and pathogen host shifts [20–22].

The process of host shifting involves several stages that each represent different ecological

and evolutionary barriers for a new host–pathogen association to become established (Box 1).

When ecological and spatial hindrances are overcome, pathogens are generally considered to

shift hosts in either of two ways [21,23]. First, pathogens may colonize new hosts that represent

a very similar resource to the ancestral host, i.e., ecological fitting via resource tracking (Fig

2A). This can occur if the original and new hosts are closely related or if the pathogen is

exploiting traits that are evolutionarily conserved between the two host species. Hosts may be

genetically diverse [24] or variably express the traits targeted by pathogens [25] so that only

part of the new host population is susceptible at any given point in time. Second, pathogens

may colonize new hosts that represent previously unencountered resources, i.e., ecological fit-

ting via adaptive plasticity to host traits outside the range of conditions in which the pathogen

evolved (Fig 2B). The completely novel and potentially stressful environment that a new host

represents is, under this scenario, considered to “release” cryptic genetic variation in plasticity

[26]. This variation in plastic responses leads to greater variation in pathogen phenotypes that

provide the raw material for natural selection to shape the evolution of pathogenically relevant

traits [20,27,28]. In cases where such plasticity produces an adaptive phenotype with improved

fitness on the new host, it seems unproblematic to envisage how these novel and apparently

“preadapted” pathogen phenotypes can eventually lead to a host shift (Fig 2B).

Here, I propose a third route for pathogenic host shifts that occur when the induced patho-

gen phenotypes on the new host are the result of nonadaptive plasticity (Fig 2C). Nonadaptive
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plasticity leads to an induced pathogen phenotype in the new host that, on average, has

reduced fitness [26]. Nonadaptive plasticity may reflect a breakdown in an organism’s ability

to maintain homeostasis and proper function, and this is usually considered to prevent patho-

gen host shifts from occurring [21,23,29]. However, similar to adaptive plastic responses, non-

adaptive plasticity also exposes standing genetic variation to new regimes of natural selection.

Evidence gathered to date, mainly from studies on interactions between nonpathogenic organ-

isms, suggests that nonadaptive plasticity can have a major evolutionary impact and potentiate

rapid adaptive evolution [28,30]. For example, in an experiment under natural conditions,

Fig 1. Heritable variation and phenotypic plasticity in combination shape–adapted phenotypes. Heritable variation consists of genetic variation and

transgenerational epigenetic variation that differ in the rate at which changes occur. The most rapid changes occur in epigenetic variation that results in phenotypic

plasticity within an organism’s lifetime, which generally are exempt from natural selection that only acts on heritable variation.

https://doi.org/10.1371/journal.ppat.1006961.g001

Box 1. The biology of pathogen host shifts.

The process of host shifts incorporates several steps. First, the pathogen must have the

opportunity to shift hosts by exposure of the new host species to the pathogen. Many

ecological barriers to transmission are breached by global trade, modern agricultural

practices, and climate change, which facilitate more pathogen encounters and opportu-

nities for infecting new potential hosts [68]. Second, the pathogen must be able to infect

the new host. For example, viral pathogens use phylogenetically conserved receptors to

infect host cells, and only hosts with appropriate cell receptors are compatible hosts [69].

The third and final step is for the pathogen to be sufficiently able to spread between indi-

viduals in the new host population. Between-host transmission is necessary for establish-

ing the long-term associations characterizing a successful host shift in contrast to

occasional spillover pathogen infections in the new host [70,71].
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wild guppy populations (Poecilia reticulata) were experimentally transplanted between streams

with or without natural cichlid predators. After only 3 to 4 generations in the new environ-

ments, patterns of brain gene expression were shifted further away from the local optimum—

i.e., nonadaptive plasticity—and potentiated adaptive evolution by increasing the strength of

directional selection [30]. Nonadaptive plastic responses of pathogens undergoing a host shift

Fig 2. Scenarios of ecological fitting leading to pathogen host shifts. (A) The pathogen (blue P) is adapted to the native host (blue H), drawn as compatible pathogen

and host shapes. During pathogen colonization of a new host (red H), the pathogen is readily able to infect the new host because of similarity in traits between the old

and new host (compatible shapes between blue P and red H), which facilitates subsequent pathogen adaptation to the new host (red P and H). (B) When there is no

similarity in traits between old (blue H) and new (red H) hosts, the pathogen cannot readily infect the new host. Instead, given that the pathogen changes phenotype via

adaptive plasticity, it becomes more compatible with the new host (a close but not perfect match between shapes of blue P and red H). Such adaptive pathogen plasticity

to previously unencountered host traits can thus facilitate subsequent pathogen adaptation to the new host (red P and H). (C) Similar to scenario B, there is no similarity

in traits between old (blue H) and new (red H) hosts, and the pathogen cannot readily infect the new host. In this scenario, the pathogen changes phenotype via

nonadaptive plasticity, which initially results in low compatibility between the pathogen (blue P) and the new host (red H). Such plastic responses with initially negative

pathogen fitness on the novel host often expose hidden genetic variation to new regimes of natural selection. This genetic variation, previously shielded from natural

selection, may then facilitate subsequent pathogen adaptation to the new host.

https://doi.org/10.1371/journal.ppat.1006961.g002
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therefore have the ability to further enhance the strong directional selection from the new

host. Such pathogens will, however, initially have reduced fitness on the new hosts, which

requires that the new host niche is initially not very competitive or that the new host compen-

sates a lower rate of host exploitation by enhancing transmission. Furthermore, it is assumed

that pathogen populations can persist for extended periods on suboptimal hosts, which is sup-

ported as a likely scenario in recent theoretical studies [29]. Finally, the new host population is

assumed to vary in susceptibility to pathogen infection [24,31], which is characteristic of many

host–pathogen systems and also supported by theoretical models [25].

Pathogens often display considerable phenotypic plasticity in response to changing envi-

ronmental conditions in the host [32]. The expression of virulence traits may, for example, be

contingent upon whether the host is infected with a single or multiple pathogens [33], and

growth and size of pathogenic nematodes and trematodes can vary more than 10-fold, de-

pending on infection intensity and host environment [34–37]. Pathogen plasticity may also

be present as discrete phenotypes (polyphenisms), such as the lancet liver fluke Dicrocoelium
dendriticum, in which a single cercaria usually positions itself against the subesophageal gan-

glion in the brain of the intermediate Formica spp. ant host, whereas the remaining cercariae

develop into metacercariae in the gaster [38,39]. Plastic gene expression underlies phenotypic

plasticity [40], which provides a way to measure subtle changes in phenotypic plasticity [41].

Recent methodological advances in dual-RNA sequencing (dual-RNAseq) analysis [42–44]

allow changes in gene expression during host shifts to be monitored in many pathogen–host

systems. Although transcriptome-wide datasets of gene expression are notoriously difficult to

interpret, measuring changes in pathogen gene expression following host shifts provides a

method to experimentally explore the role of nonadaptive plasticity for pathogen host shifts.

This could, for example, be achieved by designing experiments that serially passage pathogens

on novel hosts for multiple generations. Identifying genes that initially are differentially

expressed on the new host but that, after passaging, change expression in the opposite direc-

tion would indicate nonadaptive expression. There is ample evidence that pathogens, such as

the fungal human pathogens Aspergillus fumigatus and Candida albicans [45–49], adapt and

change their gene repertoire in response to novel hosts or treatments. Similarly, the opportu-

nistic human bacterial pathogen Pseudomonas aeruginosa employs plastic gene expression in

response to variable infection conditions [50,51]. Even slight alterations of pathogen genes or

transcription factors connected in gene regulatory networks (GRNs) may have a large evolu-

tionary impact [15,52–54]. Such alteration of existing GRNs could be mediated by heritable

epigenetic changes [55], and only need to involve partial or modular co-option of GRNs into

new GRNs [56,57]. This would create an evolutionarily novel GRN combination that is

exposed to strong directional selection in the new host and may eventually lead to a host shift

(Fig 3).

Genome evolution differs fundamentally between eukaryotes on one hand and bacteria and

viruses on the other, in which small gene-dense genomes, short generation times, and frequent

horizontal gene exchange provide ample opportunity for new mutations to arise [10]. Popula-

tions of RNA viruses often contain extensive genetic diversity because of high mutation rates

during RNA viral replication coupled with limited proofreading capacity [19]. The presence

and generation of cryptic genetic diversity has been shown to be important in many RNA viral

host shifts [13,58–60], for example, in avian influenza viruses by providing adaptive mutations

in specific polymerase subunits that increase RNA polymerase activity in mammalian cells

[61], or mutations that alter receptor binding to sialic acids or glycan linkages in mammalian

cells [14]. Nonadaptive plasticity is considered to be of limited importance for RNA virus host

shifts that are constrained and principally governed by genetic mutations [9,62] but is likely

more important for host shifts influenced by variation in the conformation of RNA virus
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secondary structures that modulate interaction with the host immune system and increase per-

sistence [63,64]. Eukaryotes contain larger and more plastic genomes, longer generation times,

and sexual reproduction with recombination, which implies that rapid evolutionary adaptation

is often governed by changes in gene expression and epigenetic markers instead of mutations

that tend to emerge later [65] (Fig 1). Therefore, the importance of nonadaptive plasticity for

mediating host shifts is likely higher in eukaryote pathogens such as pathogenic fungi, infec-

tious worms, and trypanosome and malaria parasites than for bacterial and viral pathogens.

Nonadaptive pathogen plasticity could help explain instances of extreme interkingdom host

shifting [66] and the wide host range of some eukaryotic pathogens [67], which are not always

easily explained by current host-shift models. However, more empirical work on how tran-

scriptional, protein, and developmental networks in pathogens change in response to different

host environments is required to understand the relative importance of adaptive versus non-

adaptive plasticity for facilitating pathogen host shifts.
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