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Abstract. Postmenopausal osteoporosis (PMOP) is a major 
public health concern worldwide. The present study aimed to 
provide evidence to assist in the development of specific novel 
biomarkers for PMOP. Differentially expressed genes (DEGs) 
were identified between PMOP and normal controls by inte-
grated microarray analyses of the Gene Expression Omnibus 
(GEO) database, and the optimal diagnostic gene biomarkers 
for PMOP were identified with LASSO and Boruta algorithms. 
Classification models, including support vector machine (SVM), 
decision tree and random forests models, were established to 
test the diagnostic value of identified gene biomarkers for 
PMOP. Functional annotations and protein‑protein interaction 
(PPI) network constructions were also conducted. Integrated 
microarray analyses (GSE56815, GSE13850 and GSE7429) 
of the GEO database were employed, and 1,320 DEGs were 
identified between PMOP and normal controls. An 11‑gene 
combination was also identified as an optimal biomarker for 
PMOP by feature selection and classification methods using 
SVM, decision tree and random forest models. This combina-
tion was comprised of the following genes: Dehydrogenase E1 
and transketolase domain containing 1 (DHTKD1), osteoclast 
stimulating factor 1 (OSTF1), G protein‑coupled receptor 116 
(GPR116), BCL2 interacting killer, adrenoceptor β1 (ADRB1), 
neogenin 1 (NEO1), RB binding protein 4 (RBBP4), GPR87, 
cylicin 2, EF‑hand calcium binding domain 1 and DEAH‑box 

helicase  35. RBBP4 (degree=12) was revealed to be the 
hub gene of this PMOP‑specific PPI network. Among these 
11  genes, three genes (OSTF1, ADRB1 and NEO1) were 
speculated to serve roles in PMOP by regulating the balance 
between bone formation and bone resorption, while two genes 
(GPR87 and GPR116) may be involved in PMOP by regu-
lating the nuclear factor‑κB signaling pathway. Furthermore, 
DHTKD1 and RBBP4 may be involved in PMOP by regu-
lating mitochondrial dysfunction and interacting with ESR1, 
respectively. In conclusion, the findings of the current study 
provided an insight for exploring the mechanism and devel-
oping novel biomarkers for PMOP. Further studies are required 
to test the diagnostic value for PMOP prior to use in a clinical 
setting.

Introduction

Osteoporosis is a bone metabolic disorder, characterized by 
low bone mineral density (BMD) and microarchitectural 
deterioration with increased bone fragility and subsequent 
susceptibility to fractures  (1). It has been reported that 
osteoporosis is induced by an imbalance between bone resorp-
tion by osteoclasts and bone deposition by osteoblasts  (2). 
Postmenopausal osteoporosis (PMOP) is a major public health 
concern worldwide that frequently presents in postmenopausal 
women due to the estrogen deficiency and continuous calcium 
loss that occurs with aging  (3). A proactive approach that 
identifies patients at high risk of developing PMOP is recom-
mended to prevent bone loss (4).

With the advancement of high‑throughput technologies, 
gene microarray analysis has become an effective method 
for identifying differentially expressed genes (DEGs) and, 
therefore, potential biomarkers in various diseases. Multiple 
studies (5‑7) have utilized gene microarray analysis to identify 
key genes in the pathogenesis of PMOP. Integrated multiple 
gene microarray analysis may contribute to the identification 
of more accurate gene biomarkers.

The present study aimed to develop accurate biomarkers 
and provide clues for exploring the underlying mechanism 
of PMOP. By integrating multiple microarray analysis in this 
present study, DEGs between PMOP patients and normal 
controls were identified. Based on these DEGs, the optimal 
gene combination with the greatest diagnostic value for PMOP 
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was determined. Functional annotation and protein‑protein 
interaction (PPI) network constructions were also performed to 
explore the biological functions of DEGs. These findings will 
help elucidate the mechanism underlying PMOP development 
and uncover novel diagnostic biomarkers.

Materials and methods

Microarray expression profiling. Microarray datasets of 
PMOP and normal controls were downloaded from the Gene 
Expression Omnibus (GEO) database (http://www.ncbi.nlm.
nih.gov/geo). All datasets that contained whole‑genome 
mRNA expression profiles between PMOP patient and control 
blood samples were enrolled in the current study. The datasets 
were scale normalized.

Identification of DEGs between PMOP patients and normal 
controls. MetaMA is an R package‑implementing meta‑
analysis approach for microarray data (8). Data from multiple 
microarray analyses were combined by metaMA (inverse 
normal method), and individual P‑values were obtained. In 
the integrated analysis performed in the present study, DEGs 
between PMOP patients and normal controls were identified at 
a P‑value of <0.05. Hierarchical clustering analyses of mRNAs 
were conducted with ‘pheatmap’ package in R (version 3.3.3; 
www.r‑project.org).

Identification of optimal diagnostic gene biomarkers for 
PMOP. The LASSO algorithm was applied with the glmnet 
package (https://cran.r‑project.org/web/packages/glmnet/) in 
order to reduce the dimensions of the data (9). The Boruta 
algorithm (https://cran.r‑project.org/web/packages/Boruta/) 
employs a wrapper approach, built around a random forest 
classifier (10). This algorithm is used to compare the relevance 
of the features to those of the random probes  (11). The 
scale‑standardized datasets were merged, the DEGs between 
PMOP patients and normal controls were retained for feature 
selection, and gene biomarkers for PMOP were identified with 
the LASSO and Boruta algorithms. Furthermore, the optimal 
gene biomarkers for PMOP were identified by overlapping 
biomarkers derived from these two algorithms. Hierarchical 
clustering analysis of these shared gene biomarkers, obtained 
by LASSO and Boruta algorithms, was conducted with the 
R package ‘pheatmap’ (R version 3.3.3).

Based on these optimal gene biomarkers, several 
classification models, including support vector machine (SVM), 
decision tree and random forest models, were established 
to further identify the diagnostic value of these biomarkers 
in PMOP. An SVM model was established with an ‘e1071’ 
package (https://cran.r‑project.org/web/packages/e1071/index.
html). A decision tree model was established with the ‘rpart’ 
package (https://cran.r‑project.org/web/packages/rpart/). A 
random forest model was established with the ‘randomForests’ 
package (https://cran.r‑project.org/web/packages/random-
Forest/). These three classification models were compared by 
the average misjudgment rates of their 10‑fold cross valida-
tions. The diagnostic ability of the three classification models 
was assessed by calculating the receiver operating character-
istic curve, and measuring the area under the curve (AUC), 
accuracy, sensitivity and specificity. 

PMOP‑specific PPI network. To further investigate the 
biological functions of these optimal gene biomarkers, a PPI 
network was constructed with the BioGRID (also known 
as Biological General Repository for Interaction Datasets; 
http://thebiogrid.org/) and Cytoscape (http://www.cytoscape.
org). Nodes and edges in the PPI network represented the 
proteins and the interactions between two proteins, respec-
tively.

Functional annotation. Based on the PMOP‑specific PPI 
network, the proteins that integrated with proteins encoded 
by the optimal gene biomarkers were identified. Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analyses of all gene 
biomarkers and other DEGs that encode proteins within the 
PMOP‑specific PPI network were conducted with the online 
software GeneCodis (http://genecodis.cnb.csic.es/analysis). 
Differences (using the Benjamini and Hochberg method) 
were defined as statistically significant when the false 
discovery rate (FDR) was <0.05.

Results

DEGs between PMOP patients and normal controls. Three 
datasets, including GSE56815, GSE13850 and GSE7429, were 
downloaded from the GEO database [(Table I) (12)]. Based 
on these three datasets, 1,320 DEGs (710 upregulated DEGs 
and 613 downregulated DEGs) with FDR<0.05 were identified 
between PMOP patients and normal controls. Hierarchical 
clustering analysis of the top 100 DEGs between PMOP 
patients and normal controls is presented in Fig. 1. 

Identification of optimal diagnostic gene biomarkers for 
PMOP. A total of 31 and 32 gene biomarkers were identified with 
the LASSO and Boruta algorithms, respectively. Furthermore, 
11 shared mRNA biomarkers for PMOP were identified by 
overlapping the biomarkers derived from these two algorithms 
(Table II and Fig. 2). These 11 mRNA biomarkers included 
dehydrogenase E1 and transketolase domain containing 1 
(DHTKD1), osteoclast stimulating factor  1 (OSTF1), 
G protein‑coupled receptor 87 (GPR87), GPR116 (also known 
as adhesion G protein‑coupled receptor F5), BCL2 interacting 
killer (BIK), adrenoceptor β1 (ADRB1), neogenin 1 (NEO1), 
RB binding protein 4 (RBBP4), cylicin 2 (CYLC2), EF‑hand 
calcium binding domain 1 (EFCAB1) and DEAH‑box heli-
case 35 (DHX35). Hierarchical clustering analysis of these 
11 mRNA biomarkers was performed.

The SVM, decision tree and random forest models were 
established with these 11 mRNA biomarkers, and the accuracy 
of these three models was 93, 78 and 94%, respectively. The 
AUC of SVM, decision tree and random forest models was 
0.975, 0.799 and 0.975, respectively. In addition, the sensitivity 
and specificity of the SVM model were 92 and 100%, respec-
tively (Fig. 3A). The sensitivity and specificity of the decision 
tree model were 70 and 88%, respectively (Fig. 3B). Finally, 
the sensitivity and specificity of the random forest model were 
90 and 100%, respectively (Fig. 3C). 

PMOP‑specific PPI network. The PMOP‑specific PPI network 
consisted of 24  nodes and 20 edges  (Fig.  4). Out of the 
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11 genes not all interacted with other differentially expressed 
genes. Only the gene that interacted with other differentially 
expressed genes (even though one gene) in the PPI network 

were presented. Nodes and edges represented the proteins and 
the interactions between two proteins, respectively. The red 
and blue ellipses represented the proteins encoded by up‑ and 

Figure 1. Hierarchical clustering analysis of DEGs between PMOP patients and normal controls. (A) Analysis of top 100 DEGs between PMOP patients and 
normal controls. (B) Analysis of 11 shared gene biomarkers for PMOP obtained by both the LASSO and Boruta algorithms. Rows and columns represent 
DEGs and samples, respectively. The color scale represents the expression levels. DEGs, differentially expressed genes; PMOP, postmenopausal osteoporosis. 
BMD, bone mineral density; DEGs, ESR1, estrogen receptor 1; GEO, Gene Expression Omnibus; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes 
and Genomes; NE, norepinephrine; PPI, protein‑protein interaction; RANKL, receptor activator of NF‑κB ligand; SVM, support vector machine.

Table I. Datasets used in the present study.

GEO ID	 Sample	 Country	 Year	 First author	 PMOP to control ratio

GSE56815	 Blood	 USA	 2016	 Liu	 20:20
GSE13850	 Blood	 USA	 2009	 Xiao	 20:20
GSE7429	 Blood	 USA	 2008	 Xiao	 10:10

The platform used for all datasets was GPL96 [HG‑U133A] Affymetrix Human Genome U133A Array. GEO, Gene Expression Omnibus. 
PMOP, postmenopausal osteoporosis. 
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Figure 2. Expression levels of 11 gene biomarkers in the blood samples of postmenopausal osteoporosis patients and normal controls. Gene expression levels 
of (A) EFCAB1, (B) DHTKD1, (C) OSTF1, (D) GPR116, (E) BIK, (F) ADRB1, (G) NEO1, (H) RBBP4, (I) GPR87, (J) CYLC2 and (K) DHX35 are shown. 
***P<0.001 vs. the normal control group. EFCAB1, EF‑hand calcium binding domain 1; DHTKD1, dehydrogenase E1 and transketolase domain containing 1; 
OSTF1, osteoclast stimulating factor 1; GPR, G protein‑coupled receptor; BIK, BCL2 interacting killer; ADRB1, adrenoceptor β1; NEO1, neogenin 1; 
RBBP4, RB binding protein 4; CYLC2, cylicin 2; DHX35, DEAH‑box helicase 35.

Figure 3. Receiver operating characteristic curves of the combination of 11 gene biomarkers between patients with postmenopausal osteoporosis and normal 
controls, based on three classification models. The results of the (A) Support vector machine, (B) decision tree and (C) random forest models are displayed. 
The X‑axis represents the 1‑specificity and Y‑axis represents the sensitivity. AUC, area under the curve. 
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downregulated DEGs between PMOP patients and normal 
controls, respectively. RBBP4 (degree=12) was the hub gene of 
this PMOP‑specific PPI network.

Functional annotation. Based on the functional annotations 
of these 11 biomarkers and DEGs that encode proteins of 
the PMOP‑specific PPI network, prostate epithelial cord 
elongation (FDR<0.05), estrogen response element binding 
(FDR<0.05) and nucleosome remodeling deacetylase complex 
(FDR<0.05) were the most significant GO terms. Furthermore, 
endocrine and other factor‑regulated calcium reabsorption 
(FDR=2.23x10‑5), was a significantly enriched pathway in 

PMOP; Estrogen receptor 1 (ESR1) was revealed to be upregu-
lated within this pathway (Table III).

Discussion

PMOP increases the risk of fragility fractures in postmeno-
pausal women, and imposes a significant burden on patients' 
families and society. Previous studies have indicated that 
identification of patients at high risk of developing PMOP can 
contribute to the prevention of bone loss (4,13).

In the present study, 1,320 DEGs between PMOP 
patients and normal controls were identified with integrated 

Table II. A total of 11 shared gene biomarkers for postmenopausal osteoporosis, obtained using the LASSO and Boruta algorithms.

Gene ID	 Gene symbol	 Combined ES	 P‑value	 FDR	 Regulation

79645	 EFCAB1	 ‑1.16	 4.51x10‑8	 2.80x10‑4	 Down
55526	 DHTKD1	 1.07	 4.61x10‑7	 1.45x10‑3	 Up
26578	 OSTF1	 1.05	 1.99x10‑6	 3.38x10‑3	 Up
221395	 GPR116	 0.98	 2.58x10‑6	 3.38x10‑3	 Up
638	 BIK	 0.92	 9.30x10‑6	 8.69x10‑3	 Up
153	 ADRB1	 0.89	 1.97x10‑5	 1.27x10‑2	 Up
4756	 NEO1	‑ 0.85	 5.61x10‑5	 2.09x10‑2	 Down
5928	 RBBP4	 0.81	 7.70x10‑5	 2.32x10‑2	 Up
53836	 GPR87	‑ 0.80	 1.20x10‑4	 2.61x10‑2	 Down
1539	 CYLC2	‑ 0.74	 3.42x10‑4	 4.12x10‑2	 Down
60625	 DHX35	 0.73	 5.64x10‑4	 5.08x10‑2	 Up

ES, effective size; FDR, false discovery rate; EFCAB1, EF‑hand calcium binding domain 1; DHTKD1, dehydrogenase E1 and transketolase 
domain containing 1; OSTF1, osteoclast stimulating factor 1; GPR, G protein‑coupled receptor; BIK, BCL2 interacting killer; ADRB1, adre-
noceptor β1; NEO1, neogenin 1; RBBP4, RB binding protein 4; CYLC2, cylicin 2; DHX35, DEAH‑box helicase 35.

Figure 4. PMOP‑specific protein‑protein interaction network, comprised of 24 nodes and 20 edges. Nodes and edges represented proteins and interactions 
between two proteins, respectively. Red and blue ellipses represented the proteins encoded by up‑ and downregulated DEGs, respectively. Ellipses with black 
borders were DEGs derived from the combination of 11 gene biomarkers. DEGs, differentially expressed genes; PMOP, postmenopausal osteoporosis.
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Table III. Top 10 significantly GO terms and KEGG pathways in postmenopausal osteoporosis.

A, GO terms

ID	 Term	 FDR	 Genes

Biological process
  GO:0060523	 Prostate epithelial cord elongation 	 <0.05	 ESR1
  GO:0031649	 Heat generation 	 <0.05	 ADRB1
  GO:0045986	 Negative regulation of smooth muscle contraction 	 <0.05	 ADRB1
  GO:0002025	 Vasodilation by norepinephrine‑epinephrine involved in	 <0.05	 ADRB1
	 regulation of systemic arterial blood pressure
  GO:0031077	 Post‑embryonic camera‑type eye development 	 <0.05	 BCL11B
  GO:0048386	 Positive regulation of retinoic acid receptor signaling pathway	 <0.05	 ESR1
  GO:0003382	 Epithelial cell morphogenesis 	 <0.05	 BCL11B
  GO:0051124	 Synaptic growth at neuromuscular junction 	 <0.05	 APP
  GO:0060750	 Epithelial cell proliferation involved in mammary gland duct 	 <0.05	 ESR1
	 elongation
  GO:0046878	 Positive regulation of saliva secretion 	 <0.05	 ADRB1
Molecular function			 
  GO:0034056	 Estrogen response element binding 	 <0.05	 ESR1
  GO:0051400	 BH domain binding 	 <0.05	 BIK
  GO:0051380	 Norepinephrine binding 	 <0.05	 ADRB1
  GO:0004535	 Poly(A)‑specific ribonuclease activity 	 <0.05	 PAN2
  GO:0051434	 BH3 domain binding 	 <0.05	 BCL2L1
  GO:0051425	 PTB domain binding 	 <0.05	 APP
  GO:0004939	 β‑adrenergic receptor activity 	 <0.05	 ADRB1
  GO:0004591	 Oxoglutarate dehydrogenase (succinyl‑transferring) activity 	 <0.05	 DHTKD1
  GO:0004940	 β1‑adrenergic receptor activity 	 <0.05	 ADRB1
  GO:0031798	 Type 1 metabotropic glutamate receptor binding 	 <0.05	 ESR1
Cellular component			 
  GO:0016581	 NuRD complex 	 <0.05	 APPL1, RBBP4
  GO:0097136	 Bcl‑2 family protein complex 	 <0.05	 BCL2L1
  GO:0033150	 Cytoskeletal calyx 	 <0.05	 CYLC2
  GO:0033553	 rDNA heterochromatin 	 <0.05	 SUV39H1
  GO:0033186	 CAF‑1 complex 	 <0.05	 RBBP4
  GO:0044429	 Mitochondrial part 	 <0.05	 BCL2L1, ESR1
  GO:0030870	 Mre11 complex 	 <0.05	 TERF2
  GO:0030891	 VCB complex 	 <0.05	 VHL
  GO:0001740	 Barr body 	 <0.05	 H3F3A
  GO:0016589	 NURF complex 	 <0.05	 RBBP4

B, KEGG pathways

ID	 Pathway	 FDR	 Genes

KEGG:05200	 Pathways in cancer	 <0.05	 BCL2L1, VHL, APPL1
KEGG:04962	 Vasopressin‑regulated water reabsorption	 <0.05	 CREB3
KEGG:04961	 Endocrine and other factor‑regulated calcium reabsorption	 <0.05	 ESR1
KEGG:00310	 Lysine degradation	 <0.05	 SUV39H1
KEGG:05014	 Amyotrophic lateral sclerosis (ALS)	 <0.05	 BCL2L1
KEGG:05210	 Colorectal cancer	 <0.05	 APPL1
KEGG:03018	 RNA degradation	 <0.05	 PAN2
KEGG:03320	 PPAR signaling pathway	 <0.05	 FABP4
KEGG:05211	 Renal cell carcinoma	 <0.05	 VHL
KEGG:05212	 Pancreatic cancer	 <0.05	 BCL2L1

GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; FDR, false discovery rate.
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microarray analysis. The gene biomarkers for PMOP were 
further identified with the LASSO and Boruta algorithms. An 
11‑gene combination (EFCAB1, DHTKD1, OSTF1, GPR116, 
BIK, ADRB1, NEO1, RBBP4, GPR87, CYLC2 and DHX35) 
was revealed as an optimal biomarker for PMOP with feature 
selection and classification procedures using SVM, decision 
tree and random forest models. Based on the random forest 
model, the 11‑gene combination achieved a 94% prediction 
accuracy in distinguishing patients with PMOP from normal 
controls, with 90% sensitivity and 100% specificity. The results 
obtained using the other two models (SVM and decision tree) 
further supported this finding.

Among these 11 genes, CYLC2 has previously been shown 
to be upregulated in B cells from postmenopausal women 
with low BMD compared with that in postmenopausal women 
with high BMD (14). In addition, CYLC2 is involved in the 
structural component of the cytoskeleton. A previous study 
indicated that the structural component of the cytoskeleton is 
associated with PMOP, which may suggest a potential role of 
CYLC2 in PMOP (14).

Three DEGs identified in the present study, namely 
OSTF1, ADRB1 and NEO1, have previously been reported to 
be associated with the balance between bone formation and 
bone resorption  (15‑19). OSTF1 is an intracellular protein 
that is highly expressed in osteoclasts, which indirectly 
enhances osteoclast formation and bone resorption  (15). 
ADRB1 belongs to the family of guanine nucleotide‑binding 
regulatory protein‑coupled receptors, which regulate the 
physiological effects of the hormone epinephrine and the 
neurotransmitter norepinephrine (NE) (16). The β‑adrenergic 
system is also involved in leptin‑dependent central regulation 
of bone turnover (17,18). Intraosseous sympathetic nerve fibers 
can be activated and release NE via leptin stimulation (17). 
Adrenergic receptors expressed on osteoblasts bind to the 
released NE and result in suppression of bone formation. In 
addition, β‑adrenergic‑stimulated production of the receptor 
activator of nuclear factor (NF)‑κB ligand by osteoblasts may 
contribute to a negative bone mineral balance (19). In the present 
study, OSTF1 and ADRB1 were upregulated in the blood of 
patients with PMOP compared with that of normal controls. 
Furthermore, NEO1 encodes a cell surface protein that belongs 
to the immunoglobulin superfamily, and has been speculated 
to serve roles in cell growth and differentiation and in cell‑cell 
adhesion. A previous study reported abnormal chondrocyte 
maturation and endochondral bone growth in NEO1 knockout 
mice (20). Additionally, the association between NEO1 and 
bone mass was identified by high‑throughput screening of 
mouse gene knockouts (21). To the best of our knowledge, the 
present study is the first to reveal a downregulation of NEO1 
in the blood of patients with PMOP.

Estrogen deficiency is a pivotal cause of postmenopausal 
bone loss (22). RBBP4 is an estrogen‑associated gene, which 
was included in the 11‑gene combination described in the 
present study. It is also a chromatin remodeling factor that 
encodes a ubiquitously expressed nuclear protein that belongs 
to a highly conserved subfamily of WD‑repeat proteins (23). 
RBBP4 has been reported to be involved in the chromatin 
remodeling and transcriptional repression associated with 
histone deacetylation (24). An upregulation in the expression 
of RBBP4 was detected in the tibia callus of estrogen‑deficient 

rats (25). To the best of our knowledge, the present study is 
the first to reveal an upregulation of RBBP4 in the blood of 
patients with PMOP. Furthermore, as the hub protein of the 
PMOP‑specific PPI network, RBBP4 was integrated with 
ESR1, a well‑known PMOP‑associated gene, which was 
revealed to be enriched in the endocrine and other factor‑regu-
lated calcium reabsorption pathway (KEGG ID: 04961). ESR1 
is expressed on cells that contribute to bone formation, such 
as osteoblasts, osteocytes and osteoclasts. It also increases 
the formation and function of osteoblasts and reduces bone 
resorption activities (26). Therefore, the RBBP4‑ESR1 inter-
action may serve a key role in PMOP.

To the best of our knowledge, no previous study has 
reported the association between PMOP and the six other 
genes described in the current study, including DHTKD1, 
GPR87, GPR116, BIK, EFCAB1 and DHX35. DHTKD1 is a 
nuclear gene that is involved in mitochondrial lysine metabo-
lism and adenosine triphosphate production (27,28). DHTKD1 
has also been demonstrated to link mitochondrial dysfunction 
and eosinophilic esophagitis (29). Kim and Lee (30) indicated 
that mitochondrial dysfunction may be a potential pathophysi-
ological mechanism of PMOP, which suggested that DHTKD1 
may regulate mitochondrial dysfunction in PMOP. In addi-
tion, GPR87 is a cell surface G protein‑coupled receptor that 
has been reported to be overexpressed in various types of 
cancer (31,32), and it serves a critical oncogenic role in pancre-
atic cancer progression by activating the NF‑κB signaling 
pathway (33). GPR116 is a member of the G protein‑coupled 
receptor family predominantly expressed in the alveolar 
type II epithelial cells of the lung. Since NF‑κB signaling 
pathway is an important mediator in osteoblast differentiation, 
it can be speculated that both GPR87 and GPR116 may serve 
a role in PMOP by regulating the NF‑κB signaling pathway. 
Another identified gene, BIK, is a member of the BH3‑only 
Bcl‑2 family of pro‑apoptotic proteins, which is suppressed in 
various types of cancer (34). Methylated BIK was identified 
in the bone marrow of patients with multiple myeloma, and 
dysregulated BIK expression was observed in hematopoietic 
cell fractions of patients with myelodysplastic syndrome, 
highlighting the importance of BIK in bone disease (34,35). 
Furthermore, the gene DHX35 is a putative RNA helicase, 
and its variants have been reported to be involved with facial 
morphology, thyroid cancer and colorectal cancer  (36‑38) 
Finally, DNA methylation of EFCAB1 was demonstrated 
to be involved in multi‑organ carcinogenesis (39). However, 
further research is required to explore the roles of DHX35 and 
EFCAB1 in PMOP.

In conclusion, the present study identified 11 genes that 
were significantly associated with PMOP and provided clues 
for exploring the molecular mechanism of PMOP. Three of the 
identified genes (OSTF1, ADRB1 and NEO1) were speculated 
to be involved in PMOP by regulating the balance between 
bone formation and bone resorption, while two genes (GPR87 
and GPR116) may regulate the NF‑κB signaling pathway. 
RBBP4 and DHTKD1 may also be potential regulators of 
PMOP via interacting with ESR1 and regulating mitochon-
drial dysfunction, respectively. Furthermore, the constituents 
of this 11‑gene combination may serve as potential biomarkers 
for PMOP. However, biological investigations and validation 
with a larger sample size are lacking, and are considered to 
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be limitations of the present study. Further investigations are 
required to validate the diagnostic abilities of this gene combi-
nation for PMOP prior to its clinical application.
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