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ABSTRACT

Diabetic complications are the major causes of morbidity and mortality in patients with diabetes. Microvascular complications include
retinopathy, nephropathy and neuropathy, which are leading causes of blindness, end-stage renal disease and various painful
neuropathies; whereas macrovascular complications involve atherosclerosis related diseases, such as coronary artery disease, periph-
eral vascular disease and stroke. Diabetic complications are the result of interactions among systemic metabolic changes, such as
hyperglycemia, local tissue responses to toxic metabolites from glucose metabolism, and genetic and epigenetic modulators. Chronic
hyperglycemia is recognized as a major initiator of diabetic complications. Multiple molecular mechanisms have been proposed to
mediate hyperglycemia’s adverse effects on vascular tissues. These include increased polyol pathway, activation of the diacylglycerol/
protein kinase C pathway, increased oxidative stress, overproduction and action of advanced glycation end products, and increased
hexosamine pathway. In addition, the alterations of signal transduction pathways induced by hyperglycemia or toxic metabolites can
also lead to cellular dysfunctions and damage vascular tissues by altering gene expression and protein function. Less studied than
the toxic mechanisms, hyperglycemia might also inhibit the endogenous vascular protective factors such as insulin, vascular endothe-
lial growth factor, platelet-derived growth factor and activated protein C, which play important roles in maintaining vascular homeo-
stasis. Thus, effective therapies for diabetic complications need to inhibit mechanisms induced by hyperglycemia’s toxic effects and
also enhance the endogenous protective factors. The present review summarizes these multiple biochemical pathways activated by
hyperglycemia and the potential therapeutic interventions that might prevent diabetic complications. (J Diabetes Invest, doi:
10.1111/j.2040-1124.2010.00018.x, 2010)
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INTRODUCTION
According to the recent edition of International Diabetes Federa-
tion Atlas in 2009, the estimated diabetes prevalence for 2010
had risen to 285 million, representing 6.6% of the world’s adult
population, with a prediction that by 2030 the number of people
with diabetes in the world will have risen to 438 million1, with
the majority of the new diabetic population coming from Asia.
Diabetes-induced vascular dysfunction and pathologies are the
major causes of morbidity and mortality in diabetic patients.
Microvascular complications include retinopathy, nephropathy
and neuropathy, which are the leading causes of blindness, renal
failure, and nerve injuries that are associated with non-healing
ulcers and non-traumatic amputation. Macrovascular complica-
tions involve atherosclerosis-related diseases, such as coronary
artery disease, peripheral vascular disease, stroke and possibly
cognitive dysfunction.

Two large studies, the Diabetic Control and Complications
Trial (DCCT) and the United Kingdom Prospective Diabetes

Study (UKPDS) clearly showed that intensive treatment for
hyperglycemia could reduce the progression of diabetic micro-
vascular complications2,3. Furthermore, the long-term follow-up
studies of DCCT showed that patients who received intensive
blood glucose control decreased the incidence of cardiovascular
diseases involving atherosclerosis4,5. These clinical observations
indicate that hyperglycemia is a major responsible factor for the
pathogenesis of diabetic complications. In contrast, it is known
that multiple factors, such as fatty acid, lipid, insulin resistance,
inflammatory cytokines and others also can increase the risk for
atherosclerosis in diabetes.

Multiple potential molecular mechanisms have been proposed
to explain hyperglycemia-induced diabetic complications. Some
of the most studied mechanisms include increased polyol path-
way, activation of the diacylglycerol (DAG)/protein kinase C
(PKC) pathway, increased oxidative stress, increased advanced
glycation end products (AGE) formation and action, and
increased hexosamine pathway. In addition, alterations of signal
transduction pathways induced by hyperglycemia or toxic
metabolites have been reported to cause multiple vascular and
neurological dysfunctions, such as abnormal blood flow,
increased rate of apoptosis, hyperpermeability and accumulation
of extracellular matrix (ECM) in vasculature by alteration of
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gene expression or protein function. Recently, we have proposed
that hyperglycemia can also inhibit endogenous protective fac-
tors in the vascular tissues, such as insulin, vascular endothelial
growth factor (VEGF), platelet-derived growth factor (PDGF),
and activated protein C (APC), which play important roles in
maintaining vascular homeostasis and neutralizing hyperglyce-
mia-induced toxic factors including oxidative stress, AGE or
activation of nuclear factor-jB (NF-jB), resulting in the preven-
tion and delaying of the progression of diabetic complications
(Figure 1)6.

Genetic factors also have been suggested as important risk
markers for developing diabetic complications. It has been well
established that merely 30–40% of type 1 diabetic patients
develop chronic renal failure7,8. The risk of developing renal fail-
ure in diabetic patients decreases after 25–30 years of disease
duration. Recently, we have reported that the results of the
50-Year Medalist Study of the Joslin Diabetes Center (JDC),
which was initiated to recognize JDC or non-JDC patients who
survived at least 50 years with insulin-dependent diabetes or
type 1 diabetes. The patients were questioned about the presence
or absence of eye, kidney and peripheral neuropathies. The
Medalist Study showed that significant numbers (40%) of dia-
betic patients could live with no or mild levels of microvascular
complications, regardless of their HbA1c levels and other classi-
cal markers thought to be important and predictive markers for
diabetic complications. These data suggest that they might pos-
sess endogenous protective factors that can neutralize the
adverse effects of hyperglycemia9. Epigenetic factors are also
important. The DCCT and Epidemiology of Diabetes Interven-
tions and Complications (EDIC) studies reported that patients

from the original DCCT study continue to have discordance in
the development of microvascular complications, even 10 years
after maintaining the same levels of glycemic control as shown
by HbA1c. These findings showed that hyperglycemia might
induce epigenetic changes that are not reversed easily10–12. Thus,
diabetic complications are a result of interactions among sys-
temic metabolic changes, such as hyperglycemia, differential
local tissue responses to toxic metabolites of glucose metabolism,
and genetic and epigenetic modulators.

MOLECULAR MECHANISMS OF DIABETIC VASCULAR
COMPLICATIONS
Hyperglycemia is recognized as a major responsible factor for
the development of diabetic complications, especially for micro-
vascular diseases. For example, pathologies in the retina and
renal glomeruli are specific to diabetes and not usually observed
in elderly or insulin resistant people without diabetes. The most
studied mechanisms include: (i) increased polyol pathway;
(ii) increased DAG/activation of PKC pathway; (iii) increased
oxidative stress; (iv) increased AGE formation and action; and
(v) increased hexosamine pathway (Figure 1).

Increased Flux Through the Polyol Pathway
In the polyol pathway, intracellular glucose is converted to sor-
bitol by aldose reductase (AR), which is the rate-limiting
enzyme, in a nicotinamide adenine dinucleotide phosphate
(NADPH) dependent reaction. Sorbitol is then oxidized to fruc-
tose by sorbitol dehydrogenase (SDH). In a normal glucose
condition, only a small fraction of glucose is metabolized
through this pathway, because Michaelis–Menten kinetics of
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Figure 1 | Mechanisms by which hyperglycemia induced diabetic vascular complications. ET-1, endothelin-1; NADPH, nicotinamide adenine
dinucleotide phosphate; PDGF, platelet-derived growth factor; TGF-b, transforming growth factor-b; VEGF, vascular endothelial growth factor.
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AR for glucose is above normoglycemic levels. In diabetic states,
elevation of intracellular glucose levels can cause an increased
flux through AR13,14. The activation of the polyol pathway has
been suggested to cause vascular pathologies by osmotic damage
and reduced Na+-K+-ATPase activity15. AR and SDH use
NADPH and NAD+ as a cofactor, respectively. Therefore, the
decline in cellular NADPH and the increased NADH/NAD+

ratio changes the intracellular redox balance resulting in the
reduced production of nitric oxide and increased oxidative
stress16. Lenses specific AR overexpressed transgenic mice with
diabetes showed a significant decrease in glutathione (GSH)
level, leading to enhanced oxidative stress. In the AR null
mutant mice, diabetes did not lead to any decrease in the nerve
GSH level17.

Studies inhibiting the polyol pathway using aldose reductase
inhibitors (ARI) in vivo have yielded inconsistent results. In ani-
mal studies, ARI have been shown to prevent some abnormali-
ties in cataracts, retinopathy18,19, nephropathy20, neuropathy21,22

and cardiomyopathy. However, in a 5 year study in dogs, AR
inhibition could prevent only neuropathy, but failed to prevent
retinopathy and nephropathy23. In clinical studies, ARI have not
been shown to be clearly effective in patients with diabetic
retinopathy (DR) and nephropathy24. For diabetic neuropathy,
some studies have suggested positive effects. In a double-blind
placebo controlled study, fidarestat showed improved nerve con-
duction velocity and a variety of subjective symptoms, such as
numbness and spontaneous pain25. In addition, it has been
reported that long-term treatment with epalrestat also can effec-
tively delay the progression of diabetic neuropathy and amelio-
rate the associated symptoms of the disease25,26. More large full
studies in phase three trials are needed to show that ARI can
clearly be effective for neuropathy.

Increased DAG/Activation of PKC Pathway
DAG and PKC are important intracellular signaling molecules
that can regulate many vascular functions. Receptor-mediated
physiological PKC activation is mediated mostly by the activa-
tion of phospholipase C, which leads to an increase in Ca2+ and
DAG levels27.

Intracellular hyperglycemia increases glycolytic pathway flux
and leads to an elevation of glycolytic intermediate dihydroxyac-
etone phosphate. Increased levels of this intermediate can stimu-
late increases in the de novo synthesis of DAG through the
reduction of the latter to glyceraldehydes-3-phospate and step-
wise acylation28. In diabetes, many studies have showed that
DAG levels in various tissues, such as retina29, glomeruli30,31,
aorta and heart32 are increased. Furthermore, various cell culture
studies also show that DAG levels are increased by the elevation
of glucose levels from low to high concentration in retinal and
aortic endothelial cells29,32, smooth muscle cells32, mesangial
cells33,34 and other vascular cells. These chronically elevated lev-
els of DAG can activate PKC. In addition, several PKC isoforms
are also activated through other mechanisms, such as reactive
oxygen species35,36 and free fatty acids (FFA)37,38.

Increased PKC activation has been associated with alterations
in blood flow, basement membrane thickening, ECM expansion,
increases in vascular permeability, abnormal angiogenesis, exces-
sive apoptosis, increased leukocyte adhesion, and changes in
enzymatic activity alterations, such as Na+-K+-ATPase, cPLA2,
PI3K and mitogen activated protein kinase (MAPK)39. These
effects are probably mediated through the altered gene expres-
sion for vasoactive and growth factors, such as VEGF40–42,
endothelin-1 (ET-1)43,44, transforming growth factor (TGF)-
b45,46 and connective tissue growth factor (CTGF)41,46,47. Fur-
thermore, PKC activation contributes to the overexpression of
plasminogen activator-1 (PAI-1)48,49, the activation of NF-jB
and the activation of NADPH oxidase50,51 in many vascular cells
including endothelial cells, smooth muscle cells, pericytes,
mesangial cells, and others52,53.

PKC is a family of enzymes composed of at least 12 mem-
bers54. Of the various PKC isoforms in vascular cells, PKC-a,
-b and -d isoforms appear to be preferentially activated by
immunoblotting studies in the aorta and heart of diabetic
rodents, cultured aortic smooth muscle cells, and endothelial
cells exposed to high levels of glucose32,55. However, increases
in other isoforms, such as PKC-a, -b2, -d, and -e in the reti-
nal cells29,43 and PKC-a, -b1/2, -d, -e, and -f in the glomeru-
lar cells45,56–59 exposed to high glucose or diabetes have also
been shown to be activated. In animals with diabetes, ruboxis-
taurin mesylate (RBX), a PKC-b isoform selective inhibitor,
has been shown to prevent many vascular abnormalities asso-
ciated with retinopathy, nephropathy and neuropathy31,45,57–59.
Furthermore, we showed that PKC-b null mice with strepto-
zotocin (STZ)-induced diabetes showed improvement in renal
abnormalities including albuminuria, renal hypertrophy and
mesangial expansion46. Recent studies by Harja et al. have
also suggested that PKC-b activation might also play a role
in accelerating atherosclerosis60. Clinical studies showed that
RBX improved endothelial dysfunction61, renal glomerular fil-
tration rate62 and prevented loss of visual acuity63 in diabetic
patients. However, RBX was not effective in patients with
painful diabetic neuropathy. Thus, PKC activation involving
several isoforms is likely to be responsible for some of the
pathologies in DR (Figure 2), nephropathy and cardiovascular
disease.

Increased Oxidative Stress
Recent studies have suggested increases in oxidative stress as
being a main metabolic abnormality involved in the develop-
ment of diabetic complications14,64–66. Oxidative stress occurs
when the production of reactive oxygen species (ROS) exceeds
the capability of antioxidant systems. There is substantial evi-
dence showing that ROS production is increased in endothelial
cells, kidney, retina either exposed to hyperglycemia or from
diabetic animals51,67–69. Likewise, diabetic patients have elevated
levels of isoprostanes, 8-hydroxy-deoxyguanosine and lipid
peroxides in the plasma or urine70,71. The increased oxidative
stress markers reflect increased production of ROS, decreased
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antioxidants, or both. Increased ROS production is a result of
abnormal metabolism of glucose, FFA and other reactive metab-
olites in diabetes64. Several processes are sources for increased
ROS, including gluco-oxidants and AGE, which are created by
non-enzymatic glycolysis and mitochondrial oxidative phos-
phorylation14,36. Furthermore, byproducts of these processes can
cause activation of certain signaling cascades, such as PKC,
which can activate NADPH oxidase to increase ROS72. Elevated
FFA levels can also increase ROS production by b-oxidative
phosphorylation through mitochondrial metabolism73. There-
fore, increased ROS production in diabetes can originate from
the metabolism of both glucose and FFA through multiple path-
ways. This provides an explanation for the findings of increased
oxidative stress in insulin resistant non-diabetic patients74. In
contrast, decreased antioxidants have been shown in diabetic
animals and patients. For example, GSH level was decreased in
kidneys and red blood cells from STZ-induced diabetic rats68,75.
Some studies showed that plasma vitamin C and E levels were
decreased, whereas others showed no changes76,77. However, it
is possible that the plasma levels of antioxidants might not
reflect those at the tissue levels.

Antioxidant therapies have been applied in animal experi-
ments, such as vitamin C, vitamin E and a-lipoic acids. All of
them have showed improved biological and pathological
changes, and prevented or slowed the progression of diabetic
complications64,65. Overexpression of catalase or superoxide
dismutase (SOD) protected the kidneys against hyperglycemia-
induced damage in mice78,79. However, large studies such as
the Heart Outcomes Prevention Study using vitamin E and
d-a-tocopherol, did not show the improvement of microvascular

or cardiovascular damage80,81. Therefore, the efficacy of antioxi-
dants in humans is still inconclusive.

Increased AGE Formation and Action
Non-enzymatic reactions between glucose and proteins, known
as the Maillard reaction, result in the formation of Schiff base.
Over time, a series of chemical rearrangements lead to AGE82,83.
In the diabetic condition, elevated levels of AGE can be found
in serum84, glomerular tissue85 and retinal tissues86,87. Some
AGE are stable, irreversible products that can be formed intra-
cellularly and extracellularly. AGE can cause vascular damage
through several mechanisms. Intracellular proteins, such as basic
fibroblast growth factor88 and mitochondrial electron related
proteins89, can be modified by AGE, which then alters their
function. Glycation of ECM proteins, such as collagen I, IV and
laminin90–92, can change their function and alter cell/ECM inter-
actions. Lipoproteins can also be glycated and altered in their
metabolism93,94.

AGE might also interact with cellular receptors, one of which
is called receptor for AGE (RAGE), a transmembrane receptor
that is a member of the immunogloblin superfamily of pro-
teins95. The AGE/RAGE interactions have been reported in the
development of diabetic complications. It is reported that the
expression of RAGE is increased in glomeruli in diabetic
patients compared with healthy control subjects96. Furthermore,
detailed studies by Yamamoto et al. clearly showed AGE/RAGE
interactions, leading to diabetic nephropathy97 in animal studies.
They overexpressed RAGE in vascular endothelial cells in mice
and induced diabetes by crossbreeding them with mice over-
expressing inducible nitric oxide synthase (iNOS) under the
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control of the insulin promotor. These mice consistently
developed hypoinsulinemic diabetes as a result of NO-mediated
selective destruction of insulin producing pancreatic b cells. The
double transgenic mice showed the characteristics of diabetic
nephropathy and progressive renal insufficiency, such as
exacerbation of nephromegaly, mesangial expansion, albumin-
uria, glomerular hypertropthy and sclerosis.

Binding of AGE-modified proteins to RAGE induces activa-
tion of cellular signaling cascades including NF-jB98–100. ET-1,
vascular cell adhesion molecule-1, intercellular adhesion mole-
cule-1, E-selectin, VEGF, and proinflammatory cytokines includ-
ing IL-1a, IL-6 and TNF-a are induced by NF-jB101,102. AGE/
RAGE interactions have been also shown to induce vascular
oxidative stress through the activation of NADPH oxidase103. In
addition, other receptors, such as the macrophage scavenger
receptor, p60, p90 and galectin-3, have also been reported to
bind AGE104,105.

An inhibitor of AGE formation, aminoguanidine, can prevent
the development of diabetic complications, such as retinopathy
and nephropathy in animal models106,107. However clinical trials
using aminoguanidine have been inconclusive as a result of the
presence of limiting toxicity. The cross-link breakers, including
ALT-711 and N-phenyl-thiazolium bromide, improved arterial
compliance and cardiac function108,109, atherosclerosis110 and
diabetic nephropathy111,112. Blockade of the AGE/RAGE interac-
tion by soluble RAGE has been shown to suppress atherosclero-
sis and neointimal formation113–115 and nephropathy in diabetic
animals116.

Increased Flux Through the Hexosamine Pathway
In a normal glucose condition, only a small fraction (approxi-
mately 1–3%) of glucose is metabolized through the hexosamine
pathway. Elevation of intracellular glucose levels can cause an
increased flux through the hexosamine pathway. Fructose-6-
phosphate, a glycolysis intermediate, is converted to glucosa-
mine-6-phosphate by the rate-limiting enzyme, glutamine:
fructose-6-phosphate aminotransferase (GFAT)117. The major
end-product is uridine diphosphate N-acetylglucosamine
(UDP-GlcNAc), which is a substrate for the subsequent
O-linked GlcNAc modification of target proteins at serine and
threonine residues. Functional importance of O-GlcNAc modifi-
cation has been reported for several transcription factors, such
as Sp-1118–120. Some reports have showed that glucosamine or
overexpression of GFAT increased the promoter activity and
expression of PAI-1 through the increased O-GlcNAc modifica-
tion of Sp-1 in vascular endothelial cells121, smooth muscle
cells122 and mesangial cells123. Furthermore, it is reported that
glucosamine or GFAT overexpression stimulates the overexpres-
sion of TGF-b1 through increased expression upstream stimula-
tory factors 1 and 2 (USF1 and 2), but not increased O-GlcNAc
modification of those transcription factors in mesangial cells124.
In addition, hyperglycemia might inhibit endothelial nitric oxide
synthase (eNOS) activity by the O-GlcNAc modification at ser-
ine 1177 in endothelial cells125.

ALTERED EXPRESSION AND ACTIONS OF
ENDOGENOUS PROTECTIVE FACTORS
The discussion of the present review has focused on the mecha-
nisms by which hyperglycemia could be mediating its toxic
effects. However, very few studies have focused on the endo-
genous protective factors that might exist to neutralize hyper-
glycemia’s toxic actions. One clear example of endogenous
protective factors is the antioxidative enzymes, which are gener-
ally activated by an elevated state of increased oxidant produc-
tion126. Clinically, the pulmonary system appears to be
protected from the toxic actions of hyperglycemia because
patients with type 1 diabetes are relatively free from vascular
pathologies of the pulmonary system. Furthermore, the 50-Year
Medalist Study shows that some protective factors might exist
and can neutralize high glucose-induced adverse effects in many
diabetic patients9. In the following, we will propose that many
of the changes in the elevation of cytokines are as a result of the
body’s responses to protect itself from injury. Hyperglycemia,
through several mechanisms, might be deactivating these cyto-
kines and causing resistance to them.

Systemic metabolic changes in patients with diabetes lead to
altered expression or action of several factors, such as insulin,
PDGF, VEGF or APC, which are physiologically important fac-
tors for keeping the homeostasis of vasculatures. In this part, we
will focus on these endogenous protective factors against diabe-
tes-induced vascular injuries and potential mechanisms induced
by hyperglycemia, which are deactivating their actions.

Insulin
Insulin resistance is observed in patients with not only type 2 dia-
betes and obesity, but also type 1 diabetes. In addition to its
important role for maintaining glycemic control, insulin has
many vasotropic actions. Insulin resistance in vascular tissues is
associated with endothelial dysfunction, leading to cardiovascular
diseases including atherosclerosis127. Furthermore, microalbu-
minuria, which is known as not only the predictive marker for
nephropathy but also as the independent risk factor for cardio-
vascular diseases, is also associated with endothelial dysfunc-
tion128–130. Physiologically, insulin has an important role in the
maintenance of blood vessels through the activation of endothe-
lium-derived NO. Insulin increases endothelial NO production
by rapid post-translational mechanisms, which are mediated by
the PI3K/protein kinase B (Akt) signaling pathway129,130 or
slowly by increases in its transcription process. In insulin resis-
tance states, the PI3K/Akt pathway is selectively inhibited, but
another major pathway of insulin signaling, MAPK, is not inhib-
ited131. This selective insulin resistance has been shown in skeletal
muscle from obese people and patients with type 2 diabetes132,
and in the vasculature and myocardium of obese Zucker rats 133,
which are the animal models of insulin resistance. These are likely
multiple mechanisms for inducing selective insulin resistance on
the PI3K/Akt pathway. We have reported that PI3K activity is
inhibited by PKC activation in endothelial cells134 and vascular
tissues of obese Zucker rats130. Furthermore, we found that RBX
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can improve insulin signaling on NO production in the vascula-
ture and myocardium of Zucker rats134. Insulin stimulates not
only NO production from endothelial cells but also the expres-
sion of eNOS. The vascular endothelial cells specific insulin
receptor knockout (VENIRKO) mice showed that eNOS expres-
sion in the aorta was decreased by 62%135. Thus, insulin regula-
tion of NO might be an important factor for vascular
homeostasis, which is reduced in diabetes or insulin resistance.

Because intensive glycemic treatment in clinical trials using
insulin can delay the progression of retinopathy and other micro-
vascular pathologies in type 1 diabetic patients, the loss of direct
vasotropic actions of insulin might increase the risks of develop-
ing retinal disease in type 1 diabetic patients2. Recently, we found
that insulin can inhibit oxidative stress-induced retinal pericyte
apoptosis through the induction of hemeoxygenase-1 (HO-1),
which is a representative mediator of antioxidants and cyto-
protectants against various stress stimuli, including oxidants in
vascular tissues136. Furthermore, we showed that insulin induced
the expression of HO-1 through the PI3K/Akt pathway, but not
through the MAPK pathway. Thus, insulin might exert vascular
protective effects through the production of NO or the induction
of HO-1. Therefore, impairment of insulin action in vascular
tissue might contribute to diabetic vascular complications.

PDGF-B
PDGF-B is essential for the recruitment of mural cells, such as
pericytes, to the blood vessels137. PDGF-B or PDGFR-b deficient
mice show a loss of retinal pericytes that resemble the early
changes of DR138,139. Pericyte loss is known as a hallmark
of human DR and might be causally involved in its pathogene-
sis140–142.These animal studies suggest that PDGF-B deficiency
might trigger the development for DR. However, paradoxically, it
has been shown that the expression of PDGF-B is increased in
retinal tissues of diabetic rats44. Recently we found that hypergly-
cemia persistently activates PKC-d and p38 MAPK to increase
Src homology-2 domain containing phosphatase-1 (SHP-1), and
leads to PDGFR-b dephosphorylation and reduction down-
stream, resulting in pericytes apoptosis and acellular capillaries in
diabetic retina. Interestingly, we observed that increased PKC-d
and acellular capillaries were not reversible with insulin treatment
that achieved normoglycemia143. These data showed that hyper-
glycemia can cause pericytes apoptosis through two pathways.
One is the activation of NF-jB by oxidative stress. The second is
by activating SHP-1 to inhibit PDGF’s important survival actions
in the pericytes (Figure 2). These data show that PDGF-B plays
an important role for pericytes survival as a retinal vascular pro-
tecting factor. PDGF-B resistance exists in retina in diabetes and
could be an important contributor to DR.

Vascular Endothelial Growth Factor A
VEGF includes a family of growth factors that act on endothelial
cells regulated by hypoxia and promote angiogenesis, increase
permeability in vasculature, and is also known as a major regu-
lator of endothelial proliferation, migration, and survival144.

Increased concentration of VEGF-A has been reported in
the ocular fluids145 and retinal tissues146,147 of diabetic patients
and is associated with the severity of proliferative DR (PDR).
Anti-VEGF treatment, including intravitreal injection, can inhi-
bit the progression of PDR148. However, it is likely that retinal
VEGF levels are initially elevated as a result of a reaction
against retinal hypoxia or ischemia in diabetes to maintain
endothelial function and circulation, as a result of pericytes loss
and acellular capillaries. This increase in VEGF is probably a
tissue response to increase survival. Thus, the use of chronic
anti-VEGF therapies might have beneficial effects on the vascu-
lature in the short-term. Clinically, the loss of VEGF without
good glycemic control or a decrease of metabolic demands, as
by photocoagulation, might cause complications in the neural
retina.

In early stage diabetic nephropathy, many reports have shown
that the expression of VEGF-A is increased in glomeruli of dia-
betic animals46,149,150 and proposed that inhibition of VEGF-A
might have beneficial effects against diabetic renal injuries.
Treatment with VEGF-A antibodies in STZ-induced diabetic
rats ameliorated renal changes, such as albuminuria, hyperfiltra-
tion, and glomerular hypertrophy151. Furthermore, in db/db
mice also, administration of antibodies to VEGF improved renal
abnormalities including kidney weight, glomerular volume, base-
ment membrane thickness and albuminuria152. However,
another study showed that treatment with VEGF-A antibodies
did not improve diabetic renal abnormalities in G-K rats 153. At
the early stage of human diabetic nephropathy, increased
expression of VEGF accompanied glomerular endothelial cell
proliferation and extra small vessel formations in the vascular
pole154,155. At the late stage of nephropathy, the expression of
VEGF-A is decreased. Baelde et al. showed that the glomerular
VEGF-A expression was decreased by 2.5-fold and coincided
with endothelial cells and the reduction of podocyte makers in
the moderate-severe stage of type 2 diabetic nephropathy156.
Other studies have shown also that the expression of VEGF-A
was decreased in sclerotic lesions of nephropathy157–159.

What is the physiological role of VEGF-A in the kidney, espe-
cially glomeruli? It is reported that treatment with anti-VEGF
antibodies to patients with cancers160 or within patients with
preeclampasia161 causes proteinuria and endothelial damage,
suggesting that VEGF-A plays an important role in maintaining
endothelial cell function and the glomerular filtration barrier.
Supporting this, detailed reports by Quaggin et al. clearly show
that VEGF-A is necessary for forming and maintaining the glo-
merular filtration barrier162,163. In their reports, using a condi-
tional Cre-loxP targeting system, podocyte-specific VEGF null
mice failed to form a glomerular filtration barrier as a result of
defects in endothelial cell migration, survival and differentiation;
resulting in perinatal lethality. Loss of a single VEGF-A allele in
podocytes leads to endotheliosis, a nephrotic syndrome accom-
panied by glomerulosclerosis, renal failure and death at
9–12 weeks-of-age162,163. Furthermore, they reported that adult
mice with inducible podocyte-specific knockout of VEGF
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developed proteinuria, hypertension with swollen endothelial
cells and intracapillary thrombus in glomeruli after 4–5 weeks
after induction of conditional knockout. The results from these
mice were similar to renal abnormalities of patients with throm-
botic microangiopathy as a result of treatment with anti-VEGF,
bevacizumab164. Furthermore, in several other glomerular dis-
eases, a beneficial role of VEGF has been shown through the
prevention of progressive capillary rarefaction, promotion of
capillary repair/regeneration, improvement of glomerulosclerosis,
and renal scarring165–168. Quaggin et al. have also reported that
overexpression of VEGF-A to mRNA levels 15–20-fold higher
than in wild-type mice, leads to collapse of the glomerular tuft,
proteinuria and death from renal failure within the first week of
life162,163. Therefore, it is thought that tight regulation of VEGF-
A signaling is required for development and maintenance of the
glomerular filtration barrier.

Is VEGF-A a bad or good player for the progression of diabetic
nephropathy? Hohenstein et al. determined VEGF expression
and its bioactivity in glomeruli of type 2 diabetic patients using
specific antibodies for VEGF-A and VEGF-VEGFR complex154.
Although VEGF expression of glomeruli is upregulated during all
stages (mild, moderate and severe) of nephropathy, VEGF
bioactivity in endothelial cells is only increased in mildly injured
glomeruli and decreased in moderate or severe lesions. Further-
more, they showed that glomerular capillary rarefaction was
linked to the degree of glomerulosclerosis and endothelial cell pro-
liferation, showing capillary repair was markedly increased only in
mildly/moderately injured glomeruli, even if apoptosis was
detected in all stages. They suggest that diabetic nephropathy is
associated with glomerular capillary rarefaction by an imbalance
of endothelial cell proliferation, repair and apoptosis, and injury;
and reduced VEGF activity might be an indicator of an insuffi-
cient capillary repair reaction154. Therefore, if increased VEGF
expression occurs as a reaction of compensation for the damage
of glomerular endothelial cells, inhibition of VEGF should not be
given as a treatment for diabetic nephropathy. However, further
studies are needed to conclude whether VEGF-A is or is not an
endogenous protective factor for diabetic nephropathy.

Activated Protein C
APC is also an endogenous protective factor for endothelial
cells. The production of APC is dependent on binding between
thrombomodulin and thrombin, which occurs on the surface of
the endothelial cells. The thrombin/thrombomodulin complex
catalyses the conversion of protein C to its activation form,
APC. APC acts directly on cells to exert multiple cytoprotective
effects including anti-inflammation, anti-apoptotic activities and
protection of endothelial barrier function through the endothe-
lial protein C receptor, protease-activated receptor-1 or sphingo-
sine-1 receptor169.

It has been reported that plasma thrombomodulin levels,
which are thought to reflect loss of thrombomodulin from the
endothelium and reduced levels of APC, are elevated in patients
with diabetes, and the impairment of thrombomodulin/protein

C system is associated with diabetic complications, such as
nephropathy and neuropathy170,171. Recently, Isermann et al.
showed that impaired APC formation as a result of reduced
thrombomodulin expression is associated with diabetic nephrop-
athy; and the increased levels of APC can prevent diabetic
nephropathy through anti-apoptotic effects against diabetes-
induced endothelial cells and podocytes172.

Recent studies described in the present review identify various
mechanisms by which hyperglycemia can induce adverse effects
to cause diabetic complications. Inhibition of AR, PKC, AGE/
RAGE interaction or oxidative stress should provide useful targets
for treatment. Treatments for these targets have been successful in
animal models with diabetes; however, many clinical trials using
agents directly against these targets have not shown a robust effort
to prevent or stop the various diabetic complications. The lack of
efficacy of these agents suggests that other mechanisms are
involved in the development of diabetic complications.

We proposed that the function of endogenous protective fac-
tors, including insulin, VEGF, PDGF and APC, are important
for vascular homeostasis and might also be impaired by diabetes
(Figure 3). Therefore, further studies are needed to understand
the loss of protective factors in the development of diabetic
complications. New therapies need to inhibit hyperglycemia’s
toxic effect and enhance endogenous protective factors in order
to be effective.
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