
Mss4 protein is a regulator of stress response and
apoptosis
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Mss4 (mammalian suppressor of Sec4) is an evolutionarily highly conserved protein and shows high sequence and structural
similarity to nucleotide exchange factors. Although Mss4 tightly binds a series of exocytic Rab GTPases, it exercises only a low
catalytic activity. Therefore Mss4 was proposed to work rather as a chaperone, protecting nucleotide free Rabs from degradation
than as a nucleotide exchange factor. Here we provide further evidence for chaperone-like properties of Mss4. We show that
expression levels of cellular Mss4 mRNA and protein are rapidly changed in response to a broad range of extracellular stress
stimuli. The alterations are regulated mostly via the (c-jun NH2-terminal kinase) JNK stress MAPK signaling pathway and the
mode of regulation resembles that of heat shock proteins. Similar to heat shock proteins, upregulation of Mss4 after stress
stimulation functions protectively against the programmed cell death. Molecular analysis of the Mss4-mediated inhibition
of apoptosis showed that interaction of Mss4 with eIF3f (eukaryotic translation initiation factor 3 subunit f), a member of the
translation initiation complex and a protein with distinct pro-apoptotic properties, is the critical event in the anti-apoptotic action
of Mss4.
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Apoptosis is an extraordinarily regulated, energy-dependent
cellular process that leads to programmed cell death. It can be
triggered by internal or external stimuli like oxidative stress,
heat shock, inflammation or osmotic stress. Many cellular
proteins are involved in advanced or retreated regulation
of apoptosis. On response to cellular stress, a series of
coordinated signaling as well as transcriptional and transla-
tional events are activated, leading to temporary rise of the
cellular tolerance to stress by gathering of protective proteins.
These chaperones preclude protein misfolding and aggrega-
tion1 and function this way until stress reached a certain
threshold.2 The best studied proteins with these properties
are proteins of the heat shock protein family.3

Mss4 (mammalian suppressor of Sec4) is an evolutionarily
highly conserved protein, which is expressed in all mamma-
lian tissues.4 It has been shown that Mss4 interacts with
exocytic Rab GTPases and with the conserved KXGFFKR
intracellular domain of integrin a-subunits.4–6 Although it was
first proposed to function as a guanine nucleotide exchange
factor (GEF) for Rab GTPases,7 it was soon described as a
quite inefficient GEF and was thus suggested to function
rather as a chaperone for exocytic Rab GTPases than as a
GEF.6,8,9 On the other hand its interaction with integrins was
shown to be important for coordinated activation of MMP-2
and -9 and remodeling of extracellular matrix proteins.10

In contrast to the scant functional data about Mss4, its
structure has been solved by both NMR and crystallographic

methods.8,11,12 The fold of Mss4 is a central b-sheet, flanked
by a b-hairpin and a small variable sheet. The four conserved
regions, CR1–CR4, build a primary hydrophobic core with a
Zn2þ -binding site and encode a structural subdomain
responsible for interaction with Rab GTPases. Structurally,
Mss4 shows a striking similarity with the translationally
controlled tumor-associated proteins.13 which are assumed
to function as cellular chaperones protecting cells from heat
shock14 and regulating cell growth and acute allergic
response.15

The 47-kDa eIF3f (eukaryotic translation initiation factor
3 subunit f) protein has been found to have distinct pro-
apoptotic features. Originally it was described as part of the
multi-subunit eIF3 translation initiation factor that promotes
the binding of eIF2, GTP and Met-tRNA to the 40S ribosome
subunit to form the 43S translation preinitiation complex.16

eIF3 is built from 13 non-identical subunits. The active core
consists of five subunits (eIF3a, -b, -c, -g, -i) leaving the other
eight to be modulators of the eIF3 activity.17 Recent studies
have shown that eIF3f might not be necessary for global
translation initiation, but rather inhibits translation.18,19

It harbors a MPN (Mpr1, Pad1 N-terminal) domain, which is
characteristic for proteins of the Mov34 family. These proteins
are involved in the modulation of the proteasome, translation
initiation, pre-mRNA splicing and transcription.20 Other
studies discovered that eIF3f is downregulated in many
tumors, and it has been shown that its overexpression leads
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to decreased proliferation and increased apoptosis of tumor
cells.21–23 This pro-apoptotic property was associated with the
interaction of eIF3f with CDK11p46 (cyclin-dependent kinase
11). This protein is a cleavage product of CDK11p110, which
in turn is a target protein for caspase-3 and therefore seems to
be an important downstream effector of the apoptotic
signaling.24

Here we provide new data suggesting that Mss4 behaves
similar to a heat shock protein in response to extracellular
stress and that Mss4 inhibits stress-mediated apoptosis via
direct interaction with eIF3f.

Results

Regulation of Mss4 promoter activity. To understand
how the expression of the Mss4 gene (accession no.
NP_002862.2) is regulated, we performed a general exam-
ination of the complete 3.6-kb-long potential promoter region
located between the Klh12 gene sequence and the transla-
tional atg start codon of Mss4 using the transcription element
search software (TESS, Baxevanis, Wiley, Weinheim, Germany).
The search revealed 47 potential TGAG/CTCA binding sites for

AP-1 (activator protein-1) and 34 NGAAN sites for HSF1 (heat
shock factor 1) transcription factors (Figure 1a). To explore
whether these sites also have a functional role in the
transcriptional regulation of Mss4, the promoter sequence
of Mss4 was cloned in front of a luciferase gene and
transfected into human melanoma A7 cells. In agreement
with the promoter screening data, cotransfection of the
reporter gene with plasmids coding for c-jun, c-fos, the well-
known components of AP-1 transcription factor25 or HSF1
but not Elk1, a transcription factor of the ETS family26 greatly
changed the transcription of the reporter gene (Figure 1b).
Of note, expression of both AP-1 and HSF1 transcription
factors significantly repressed Mss4 promoter activity. An
effective inhibition of the reporter gene was also observed
when a 1-kb-long promoter region containing only 8 and
10 sites for AP-1 and HSF1 transcription factors, respec-
tively, was used (data not shown).

Both HSF1 and AP-1 are transcription factors that are
activated by stress factors. To study whether Mss4 promoter
activity is generally downregulated by stress stimuli,
HeLa cells were transfected with the luciferase reporter gene
construct for 40 h and stimulated afterward for additional 5 h

Figure 1 Regulation of the Mss4 promoter activity by HSF1 and AP-1. (a) Luciferase reporter gene construct with Mss4 promoter. The 47 and 34 potential binding sites for
AP-1 and HSF1 transcription factors, respectively, present in the 3.6-kB long promoter sequence are shown schematically. The 1.0 kb fragment contains only 10 binding sites
for AP-1 and 8 for HSF1. (b) A7 melanoma cells were transiently transfected with reporter construct driven by the 3.6-kb Mss4 promoter fragment along with indicated
transcription factors and 48 h later the reporter gene activity was determined. (c) HeLa cells were transfected with reporter construct shown in A for 24 h, starved overnight and
stimulated for 5h with indicated growth factors, chemical compounds or cytokines. (d) HeLa cells were treated with 10 mM celastrol and additionally incubated at 42 1C for up to
4h. Western blot analysis shows expression and phosphorylation of HSF1. b-actin immunoblot served as loading control. (e) HeLa cells transfected for 40 h with reporter
construct shown in A were stimulated with 6 or 10 mM celastrol or DMSO as control for additional 5 h before the reporter gene activity was determined. Relative luciferase
activity measured in unstimulated or vector transfected cells was taken as unity. Mean values±S.D. from at least three repeated experiments are shown. *Po0.05 and
***Po0.001 relative to vector-transfected or unstimulated control cells, t-test
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with different stress-inducing components or cytokines and
growth factors. Indeed, the Mss4 promoter activity was
significantly reduced after application of all stress stimuli
used but not by growth stimulating factors (Figure 1c). The
effect was independent of cell type used, as human HEK293
and A7, epithelial or melanoma cells, respectively, as well as
mouse adenocarcinoma TS/A cells showed similar results
(Supplementary Figure 1).

As a heat shock factor, HSF1 is rapidly phosphorylated
and activated by temperature stress27,28 and temperature
increase is probably the easiest way to study the role
of endogenous HSF1. This, however, results in inactivation
of the luciferase reporter enzyme. Therefore we incubated
HeLa cells with celastrol, a known activator of HSF1 and a
potent antioxidant.29 Indeed, celastrol stimulation was even
more efficient in phosphorylation of endogenous HSF1 protein
than incubation of cells at 42 1C alone (Figure 1d). Accord-
ingly, incubation of HeLa cells with either 6 or 10 mM of
celastrol significantly affected the activity of the luciferase
reporter gene (Figure 1e). Interestingly, similar to AP-1 and in
agreement with overexpression of HSF1, activation of the
endogenous transcription factor also repressed the Mss4
promoter activity. Thus, the gained information of the
promoter studies indicates a context between stress and heat
stimulation and the regulation of Mss4.

Expression of endogenous Mss4 mRNA and protein
changes in response to stress stimuli. To analyze the
impact of heat on the mRNA and protein expression of Mss4,
HeLa cells were incubated at 42 1C for increasing time
periods. The mRNA levels were analyzed by qRT-PCR and
protein expression by western blotting. As expected, the
increased temperature decreased the cell viability signifi-
cantly, with almost a linear decline of cell number with the
time (Figure 2a). The amounts of Mss4 mRNA (Figure 2b)
and protein (Figure 2c) in still alive cells, however, raised up
at early stages of heat stress but declined with prolonged
heat stimulation, a kinetic that is very typical for heat shock
proteins.30,31 Although the maximum of mRNA expression
was achieved at 4 h of heat shock application, the highest
protein expression was measured 4 h later or 8 h after heat
shock initiation.

In addition to the increase of protein expression after
temperature rise, heat shock proteins also stabilize their
mRNA.31 The half-life time of heat shock protein mRNA
is usually significantly increased in stressed cells, which
ensures an amplified protein amount in cells in order to protect
cellular proteins from misfolding and aggregation. Thus, we
were wondering whether Mss4 did show similar properties
after heat shock application. To analyze the mRNA half-life of
Mss4, the cells were stressed for 2 h with 43 1C and the
transcription of cells was inhibited by actinomycin D for
additional time, up to 24 h, at 37 1C. The amount of Mss4
mRNA in actinomycin D treated cells after different recovery
times was compared with non-heat-stressed control cells
(Figure 2d). This analysis showed that similar to heat shock
proteins, the stability of Mss4 mRNA was also increased
by the short heat shock. Although the half-life of Mss4 mRNA
in untreated cells was about 6.5 h, it rose to B13 h in
temperature challenged cells.

To judge the acquired results against other stress stimula-
tion and to further analyze the role of the AP-1-induced
repression of Mss4, we applied HeLa cells to hydrogen
peroxide instead of heat shock. Hydrogen peroxide is a strong
inducer of the cellular stress response and was one of the
most prominent inhibitors of Mss4 promoter activity in our
screen (Figure 1c). Similar to heat stimulation, application of
hydrogen peroxide resulted in a strong decrease in HeLa cell
number (Figure 2e). Also expression kinetics of Mss4 mRNA
and protein were much alike the temperature challenge
curves. The mRNA levels of Mss4 increased right after the
beginning of the hydrogen peroxide stimulation, peaked after
8h and decreased back to the basal level afterwards
(Figure 2f). The increase in Mss4 protein expression was,
similar to heat shock treatment, also delayed compared with
mRNA and peaked later (Figure 2g). Similarly, the Mss4
mRNA half-time increased after hydrogen peroxide applica-
tion from B6.5 h to 15 h (Figure 2h).

JNK and p38 stress MAPK pathways regulate Mss4
expression. Both HSF1 and AP-1 transcription factors are
downstream targets of JNK and p38 MAPK stress signaling
cascades and both heat shock and stress stimuli, like
hydrogen peroxide are strong activators of the JNK- and
p38- cascades.32,33 Therefore, we next studied whether
changes in activation of the two stress MAPK pathways
would influence transcriptional activity of the Mss4 gene. The
luciferase reporter gene containing the Mss4 promoter was
transfected into A7 melanoma cells along with constructs
representing either dominant negative (d.n.) or constitutively
active (c.a.) forms of different members of MAPK signaling
cascades and the luciferase activity measured 48 h later
distinguished the Mss4 promoter activity. Data presented in
Figure 3 clearly show that activation of both p38 and JNK
pathway achieved by expression of c.a. mutants of the
pathway members led to a significant reduction in Mss4
promoter activity. Further, inhibition of the JNK (Figure 3b)
but not of the p38 (Figure 3a) pathway by d.n. mutants was
additionally able to provoke the opposite effect, to enhance
the Mss4 promoter activity. In good agreement with these
data, inhibition of p38 or JNK kinases with SB203580 or
SP600125 chemical compounds (Supplementary Figure 2)
abrogated the inhibitory effect of constitutive active MKK6 or
MKK7 (Figures 3c and d). Therefore it can be concluded, that
the transcriptional expression of Mss4 is primarily regulated
by MAPK stress signaling cascades.

Taken together, our results show that expression of Mss4 is
regulated by stress stimuli and that changes in its expression
resemble that of heat shock proteins. Shortly after stress
application its mRNA is stabilized resulting in increased
protein expression, but ongoing stress stimulation leads to
downregulation of both mRNA and protein levels. Together,
these data imply a possible role of Mss4 protein in protection
of cells from stress stimuli.

Mss4 downregulation induces cell apoptosis. Ongoing
presence of stress often ends in programmed cell death.
To investigate whether Mss4 is involved in regulation of this
process, we either upregulated or downregulated its expres-
sion in cells and subjected them to different stress stimuli. A7
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melanoma cells instead of HeLa cells were used for these
experiments because we couldn’t succeed in stable over-
expression or downregulation of Mss4 in HeLa cells.
Transduction of a myc-tagged human Mss4 by retroviral
approach ensured a constitutive overexpression of Mss4
protein. To downregulate the Mss4 expression, these cells
were then transiently transfected with Mss4 specific siRNA.
Preliminary experiments showed that this procedure was
very efficient, as only about 10% of the endogenous Mss4
protein was usually available 48 h after transfection and the
amount did not change significantly during at least the next

48 h. Of note, the siRNA also efficiently suppressed the
synthesis of the recombinant myc-tagged Mss4 protein
(Figure 4a). Monitoring cell morphology as well as measuring
the number of apoptotic cells by a modified Nicoletti assay34

48h after siRNA transfection showed an increase in the
number of round and dead cells that was already twofold
higher than in control cells, which were transfected with
control RNA. The control cell population itself was hardly
affected. Additional stimulation of cells with either 42 1C or
5 mM hydrogen peroxide induced, as expected, apoptosis in
both cell types but noteworthy, the increase of apoptotic

Figure 2 Endogenous Mss4 mRNA and protein response to stress stimuli. (a–c) HeLa cells were stimulated with 42 1C for up to 24h and changes in cell numbers
(by counting, (a)), in Mss4 mRNA levels (by qRT-PCR, (b)) or protein levels (by western blotting, (c)) were determined. The upper image of (c) represents changes in Mss4
protein expression estimated densitometrically as the relative intensity of the Mss4 bands of the lower image to the loading b-actin controls. Values at time point 0 were taken
as unity. (d) Mss4 mRNA decay in control or heat shocked (for 2 h) A7 melanoma cells after 5 mg/ml actinomycin D treatment. (e–h) Changes in cell number, Mss4 mRNA and
protein levels as well as Mss4 mRNA decay were determined as in (a–d) but after stimulation of HeLa cells with 2mM H2O2. H, Mss4 mRNA decay in control or H2O2 stimulated
A7 melanoma cells (2 mM). All experiments were carried out 2–4 times. Mean±S.D. values from a representative experiment are shown. *Po0.05; **Po0.01 and
***Po0.001 relative to unstimulated cells, t-test
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cells was much higher in siRNA transfected cells, in which the
Mss4 protein was efficiently downregulated (Figures 4b and c).

The anti-apoptotic properties of Mss4 were further
confirmed by measuring the so-called Poly (ADP-ribose)
Polymerase- or PARP-cleavage. PARP is a target of
Caspase-3 and its cleavage, thus, resembles the ongoing
apoptotic process. As data of Figure 4d indicate, A7
melanoma cells show an up to twofold lower PARP-cleavage
after hydrogen peroxide stimulation when they have been
transiently transfected with a myc-tagged Mss4 plasmid
compared with empty vector transfected cells. Together,
these data apply that the amount of Mss4 protein in cells is
critical for triggering cells into programmed cell death.

Interaction of Mss4 with eIF3F prevents the
eIF3F-mediated apoptosis. To gain insight into possible
molecular mechanism by which Mss4 exercise the anti-
apoptotic function, we screened a human placenta cDNA
library for potential Mss4 binding proteins employing the
yeast two-hybrid approach. The most abundant and prospect
interaction partner was eIF3f, the eukaryotic translation
initiation factor 3 subunit f. The 47-kDa eIF3f protein is not
only a potential part of the functional core of eIF3, but also
possesses pro-apoptotic properties as recent studies have
shown.23,35 Interaction analysis of the two proteins showed
that only mutation of the F75 amino acid located on
the interface of the conserved core domain of Mss4 but not
deletion of the flexible non-conserved N-terminal part or the
EF-loop abrogated the association with eIF3f. This holds for
direct yeast two-hybrid interaction tests and for co-immuno-
precipitation assays after overexpression of both proteins
in mammalian cells as well (Figures 5a and b, lanes 1–3).
Further, removing of the first N-terminal 20 amino acids,

including the first b-strand of Mss4 abrogated the observed
Mss4/ eIF3f interaction, suggesting that maintaining of the
intact protein structure is critical for this binding.

To study whether stress application influences the binding
of Mss4 to eIF3f, HEK293 cells were transfected with myc-
tagged eIF3f along with GST-tagged Mss4 and stimulated for
8h with 5 mM H2O2 or left untreated. The GST pull-down
analysis showed that stress application strengthened the
interaction between Mss4 and eIF3f (Figure 5b, compare
lanes 2 and 5). Of note, similar to non-stressed cells, only wt
Mss4 but not the F75A mutated version was able to bind eIF3f
in hydrogen peroxide stimulated cells. In agreement with
these data, only cells stably overexpressing wt Mss4 but not
the Mss4 F75A protein were able to withstand a long-lasting
(16 h) hydrogen peroxide stress (Figure 5c), suggesting that
binding of Mss4 to eIF3f is rather critical for escaping from
apoptosis. Transfection of these cells with Mss4 specific
siRNA confirmed this thesis and showed that expression of an
intact Mss4 protein is indeed needed for efficient protection
against apoptosis (Figure 5d).

To further investigate the significance of the Mss4/eIF3f
interaction in context of apoptosis, we transiently transfected
A7 cells with plasmids coding for Mss4, eIF3f or for both and
stimulated the cells 40 h later for additional 8 h with 5 mM
hydrogen peroxide and studied the cell morphology. Although
overexpression of Mss4 did not have an impact on the cell
morphology in non-stimulated cells, overexpression of eIF3f
already led to an increased number of rounded up and lysed
cells. As expected, the H2O2 stress resulted in increased
damage of vector-transfected control cells and especially
of eIF3f transfected cells. Of note, in contrary to eIF3f,
overexpression of Mss4 was not only able to protect the
destructive effect of hydrogen peroxidase but also

Figure 3 JNK and p38 stress MAPK pathways dowregulate Mss4 expression. A7 melanoma cells were co-transfected with reporter construct driven by the 3.6-kb Mss4
promoter fragment and different c.a. or d.n. members of the p38 (a) or JNK (b) signaling pathways. The SB203580 (c) and SP600125 inhibitors (d) were added 24 h after
transfection with c.a. MKK6 (c) and MKK7 (d) constructs. Reporter gene activity was determined 48 h later. Values of control cells transfected with reporter gene construct plus
empty vector were taken as unity. Mean values±S.D. from three repeated experiments are shown. *Po0.05, **Po0.01 and ***Po0.001 relative to vector-transfected
control cells, t-test. The asterisks over the lines show the significance between inhibitor- and DMSO-treated cells
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significantly reduced the cell damage mediated by over-
expressed eIF3f protein in control and H2O2 stimulated cells
as well (Figure 5e).

Finally, to substantiate the role of Mss4/eIF3f interaction in
protection of stress-induced apoptosis, we transiently trans-
fected divergent A7 melanoma cell lines that constitutively
expressed different levels of either endogenous, recombinant
wt or F75A mutated Mss4 proteins (Figure 5f) with a plasmid
coding for human eIF3f and subsequently subjected them to
hydrogen peroxide stress for 8 h. Cells transduced with empty
vector alone served as controls. The constitutive overexpres-
sion of recombinant Mss4 variants was achieved by retroviral
infection and the constitutive knockdown of endogenous Mss4
protein by lentiviral transduction of Mss4 specific shRNA
(Figure 5f). The degree of apoptosis was measured by the
modified Nicoletti assay after staining of cells with propidium
iodide (PI) (Figure 5g). As expected, only overexpression of wt
Mss4 was able to lessen the impact of the H2O2, the eIF3f and
their combined apoptosis as well. Mss4-knockdown had,
similar to overexpression of Mss4 F75A no protective effect,
but yet promoted the apoptotic cell death.

The pro-apoptotic action of eF3F was reported to be based
on its ability to suppress protein translation being phosphory-
lated by CDK11p46.23,35,36 To study whether Mss4 is capable

to abolish this specific property of eIF3f protein, A7 melanoma
cells were transfected with pCS2þMT empty vector, pCS2þ
MT-Mss4 and pCS2þMT-eIF3f or both plasmids together in
addition to pRL-CMV vector in which the luciferase reporter
gene is controlled by the CMV promoter. Luciferase
activity measured 24 h later showed that eIF3f efficiently
downregulated luciferase synthesis, whereas Mss4 alone had
no effect. However, when Mss4 was co-expressed with eIF3f,
it abrogated the suppressive function of eIF3f (Figure 6a).
Quantification of luciferase mRNA by qRT-PCR demon-
strated that translation of luciferase gene was not influenced
by overexpression of Mss4 (Figures 6b–d), indicating that
Mss4 is indeed able to abolish the eIF3f-mediated inhibition of
translation.

Discussion

We show here that expression of Mss4 is strongly regulated
by stress stimuli at both transcription and posttranscriptional
levels. Although Mss4 is upregulated at early stages of stress
stimulation, it drops down at later stages. We further show that
high expression levels of Mss4 protein are beneficial for cells,
as they protect cells from stress-induced apoptosis. Finally,
we illustrate that anti-apoptotic properties of Mss4 are based

Figure 4 Mss4 downregulation induces cell apoptosis. (a) A7 melanoma cells stably overexpressing human myc-tagged Mss4 were transfected with control or Mss4
specific siRNA for 48 h and the knockdown efficiency of endogenous and recombinant Mss4 protein was evaluated by Western blotting. Immunoblot for b-actin served as
loading control. (b and c) A7 melanoma cells stably overexpressing human myc-tagged Mss4 were transfected with control or Mss4 specific siRNA. Forty-eight hours later the
cells were either stimulated with 42 1C (b) or 5 mM H2O2 (c) for times indicated, stained with PI and the number of apoptotic cells was determined by flow cytometry. Mean
values±S.D. from 2–3 repeated experiments are shown. (d) A7 melanoma cells were transiently transfected with myc-tagged Mss4 or empty vector for 40h. Then the
cells were stressed with 2.5 or 5 mM H2O2 for 8h, lysed with RIPA buffer and the expression of Mss4 protein, as well as cleaved PARP was evaluated by western blotting.
The b-actin immunoblot served as loading control. The n-fold PARP cleavage was estimated densitometrically as the relative intensity of cleaved PARP bands to the
loading controls. Values of vector transfected and non-stressed cells were taken as unity. All experiments were carried out at least three times. *Po0.05, **Po0.01 and
***Po0.001 relative to ctrRNA transfected unstressed cells, t-test
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on its tight binding to eIF3f protein, which results in inhibition of
pro-apoptotic activity of the latter.

Exposure of cells to high temperature or other stress stimuli
lead to increased expression of heat shock proteins that have

a clear role, to protect cellular proteins from aggregation and
misfolding. When stress is extended and reaches particular
thresholds the protection usually fails and cells start the
programmed cell death. The upregulation of heat shock

Figure 5 Interaction of Mss4 with eIF3F prevents the eIF3F-mediated apoptosis. (a) To measure the interaction between different Mss4 mutants and eIF3f in a direct
yeast-binding assay, yeast Y190 cells were transformed with GAL4 DNA-binding domain (BD) and GAL-4 activation domain (AD) chimeric constructs as indicated and a b-Gal
filter assay was performed as described in Materials and Methods. (b) HEK 293 cells were transiently transfected with DNA constructs as indicated, left untreated (lanes 1–3)
or stimulated with 5 mM H2O2 for 8h (lanes 4–6) and lysed with TLB. The presence of myc-tagged eIF3f protein in GST–Mss4 wt or GST-Mss4 F75A pull downs (PD) were
detected by immunoblotting (IB) with myc antibody (top blot). To ascertain equal amounts of precipitated Mss4 or GST proteins, the blot was redeveloped with antibodies
against GST. The blot on the bottom shows the expression in transfected cells of eIF3f protein. 10 mg of total cell lysates were loaded. (c) A7 melanoma cell stably
overexpressing Mss4 wt or Mss4 F75A were stressed with 2.5 or 5 mM H2O2 for 16h and phase-contrast pictures were taken to document morphological changes. (d) A7
melanoma cell stably overexpressing Mss4 wt or Mss4 F75A were transfected with ctr or Mss4 specific siRNA and stimulated 48h later with 5 mM H2O2 for additional 8h.
Numbers over the columns represent the amount of apoptotic cells that were determined by flow cytometry after staining of cells with PI. Mean values±S.D. from three
repeated experiments are shown. **Po0.01 and ***Po0.001 relative to vector-transfected control cells, t-test. (e) A7 melanoma cells were transiently transfected with
GST-tagged Mss4 and myc-tagged eIF3f, either separately or together and stressed with 5 mM H2O2 for 8h. Phase-contrast images were taken to document morphological
changes in stressed (lower panels) compared with control (upper panels) cells. (f) Western blot analysis of cells examined in (g) demonstrating different expression levels of
endogenous and recombinant Mss4 proteins. b-actin immunoblot served as loading control. (g) To stably overexpress the Mss4 protein, A7 melanoma cell were retrovirally
transduced with myc-tagged wt or F75A mutated Mss4 variants. Vector-transduced cells served as control. To stably downregulate the endogenous Mss4, A7 cells were
infected with lentiviruses containing either scrambled or Mss4 specific shRNA. The five A7 cell lines with different amounts of endogenous or recombinant Mss4 proteins were
transfected with myc-tagged eIF3f or empty vector and 40 h later stimulated with 5 mM H2O2 for further 8h. The amount of apoptotic cells was documented by flow cytometry
after PI staining. Mean values±S.D. from two repeated experiments are shown. *Po0.05, **Po0.01 and ***Po0.001 relative to control vector-transfected cells, t-test
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proteins on heat stimulation is usually temporary30 and is
achieved not only through enhanced HSF transcription rate
but also via stabilization of the mRNA.31 The half-life of their
mRNA is increased in order to ensure a boost of protein to do
their protective job. Mss4 protein is not described as a heat
shock protein so far, but in this study we were able to
demonstrate that Mss4 shows just these attributes. Its striking
structural similarity to translationally controlled tumor-
associated proteins13 already suggested this. Indeed, after
application of 42 1C for a longer time or hydrogen peroxide
stimulation, Mss4 was transiently upregulated at both mRNA
and protein levels and half-life of its mRNA was prolonged
compared with unstressed cells. Furthermore, similar to heat
shock proteins, the amount of Mss4 dropped down with
ongoing stress accomplishing the abolishing of cell resistance
to stress and triggering them into the programmed cell death.
Finally, the promoter sequences of Mss4 contains the
characteristic 14-bp-long pelham motif that is common to
the vast majority of heat shock protein gene promoters.37

In terms of these data, Mss4 can be viewed as a novel heat
shock protein. Also, its transcriptional regulation is controlled
by the p38 and JNK MAPK stress signaling cascades, a
feature common to many heat shock proteins.38,39

Although eIF3f is known as a subunit of the core translation
initiation factor eIF3 with a negative impact on translation,
it was also shown to have pro-apoptotic activities.23,35,36

Overexpression of eIF3f facilitated apoptosis, whereas its
downregulation or genetical loss had the opposite effect.23

Furthermore, during apoptosis eIF3f has been shown to be
bound and phosphorylated by CDK11p46 kinase. The
CDK11p46 is the enzymatically active isoform of CDK11p110
which in turn is cleaved by caspase 3 under apoptotic
conditions. The phosphorylated eIF3f then increasingly
associates with the eIF3 protein complex leading to inhibition
of translation and to increased apoptosis.35 We showed here
that the Mss4 protein amount not only increases during first
stages of stress stimulation, but that Mss4 also efficiently
binds the eIF3f protein. The association of Mss4 with eIF3f
suggests that Mss4 is probably involved in regulation of
protein translation. Moreover, enhanced expression of Mss4
in A7 melanoma cells neutralized the translation inhibitory
effect of eIF3f, implying that association of eIF3f with Mss4 is
of importance in protection of cells from apoptosis and that the
anti-apoptotic properties of Mss4 are based on prevention of
translation inhibition by eIF3f. In contrast to Mss4, the
expression of eIF3f is not changed during apoptosis of
melanoma cells (Supplementary Figure 3 and Shi et al 35).
Of note, only overexpression of wt Mss4 protein but not the
F75A mutant that cannot bind to eIF3f was able to inhibit the
eIF3f-mediated apoptosis. On the basis of these results and
the already published data, we hypothesize that Mss4 binds
eIF3f avoiding its interaction with and phosphorylation by
CDK11p46 (Figure 7). This prevents the incorporation of
eIF3F into the functional eIF3 protein complex allowing
protein translational and inhibiting apoptosis. In other words,
at early stages of heat shock or other stress stimulation
increasing amounts of Mss4 protein efficiently bind the eIF3f
preventing its interaction with CDK11p46. When the number
of Mss4 molecules in cells dropped down owing to ongoing
stress, the CDK11p46 binds now and phosphorylates the

Figure 6 Expression of Mss4 abrogates the eIF3f-mediated inhibition of
translation. A7 melanoma cells were transfected with pRL-CMV vector along with
either empty pCS2þMT vector or pCS2þMT-Mss4, pCS2þMT-eIF3f or both
plasmids, and 24 h later cell lysates were tested for luciferase activity (a), amounts
of mRNA for luciferase (b), Mss4 (c) and eIF3f (d). Mean values±S.D. from two
repeated experiments are shown. ***Po0.001 relative to vector-transfected cells,
t-test
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released eIF3f resulting in inhibition of translation and
initiation of apoptosis.

Materials and Methods
DNA constructs and yeast two-hybrid screen. For the reporter gene
assays the putative complete Mss4 (alsp known as Rabif; accession no.
NM_002862.2) promoter sequence and the 1.0-kb large atg-proximal sequence
only were cloned into the pGL2-luc vector (pGL2-Mss4-luc), correct in frame
cloning was verified by DNA sequencing. For evaluation of transfection efficiency
a CMV-driven �-galactosidase construct was used (Galacto-LightPlus System,
Applied Biosystems, Foster City, CA, USA). The expression constructs for pFA2:
cJun; pFA2:Elk1; pFA:cFos; kRSPA:MKK6 c.a (T658E/S670E); kRSPA:MKK6 d.n.
(K82A); kRSPA:MKK3 c.a (S189E/T211E); kRSPA:MKK3 d.n. (S189A/T211A);
pRK5:CDC42 wt and d.n. (N17); pRK5:Rac1 wt and d.n.(N17); pEBG:MKK4 wt
and d.n.(K129R) and pCS3þMT:MKK7 c.a. (S271E, T275E,S277E) and also
pCS3þMT:MKK7 d.n. (S271A, T275A,S277A) were published elsewhere.40 The
expression of appropriate proteins was tested in preliminary western blot analysis
(data not shown).

The pCS2þMT: HSF1 was produced by cloning the human HSF1 sequence
(accession no. NM_005526.2) in frame behind the myc-tag using the following
primers: fwd 50-ATAGAATTCAATGGATCTGCCCGTGGGCCCC-30 and rev
50-ACACTCGAGCTAGGAGACAGTGGGGTCCTTGG-30 from human HeLa cell
cDNA as template. For the transient expression of myc-tagged Mss4 and eIF3f
(accession no. NM_003754.2) the respective human sequences were cloned into
pCS2þMT vector. The pEBG: Mss4 wt and F75A constructs were described
before.10 For stable expression of Mss4 wt and F75A mutant in A7 melanoma cells,
the myc-tagged human Mss4 wt and F75A were removed from the pCS2þMT
plasmids and recloned into the pBabe-puro vector.

For the yeast two-hybrid screen a cDNA fragment coding for full-length human
Mss4 (accession no. NM_002871) was inserted into the DNA-binding domain vector
pAS2-1 and used as bait for screening a human placenta cDNA library cloned into
pACT2 yeast two-hybrid vector (MATCHMAKER, Clontech, Palo Alto, CA, USA).
The yeast two-hybrid screen for proteins binding to Mss4 was performed as
described in.6 Mutants of Mss4, Mss4-del1 (aa 13-123); Mss4-del2 (aa 20-123);
Mss4-EF loop (aa 49–55 were deleted) and Mss4-F75A (F at position 75 was
exchanged for A), cloned into pAS2-1 vector were derived by extrasize-overlapping
PCR procedure with appropriate primers and were described in.10

Cell culture and stimulations. Human HeLa cervix carcinoma cells were
maintained in DMEM and human A7 melanoma cells in MEM supplemented
with 10% FCS at 37 1C and 5% CO2. Cell stimulations were carried out under
regular temperature and pressure conditions except for heat shock treatments,

which have been conducted at 42 or 43 1C. Celastrol (Biomol, Hamburg,
Germany) was used in concentrations of 6 and 10 mM with DMSO as solvent
control. For reporter gene analysis HeLa cells were stimulated for 5 h with:
10 ng/ml PDGF, 50 ng/ml EGF, 10% FCS, 10 mg/ml anisomycin, 5 ng/ml TNFa,
5 mM hydrogen peroxide or 600 mM sorbitol. The inhibition of p38- and
JNK-stress cascades was accomplished by treatment with 20 mM SB203580
and 10 mM SP600125, respectively (Calbiochem, Nottingham, UK).

Half-life time estimation for Mss4 mRNA. For these kind of assay
A7 melanoma cells were chosen because they express more endogenous Mss4
than HeLa cells. A7 cells were cultivated under regular conditions to confluency of
50–60%. The MEM with 10% FCS was exchanged for complete medium
containing 5 mg/ml actinomycin D for time periods up to 24h. Additionally, to study
the half-life time of Mss4 mRNA in stressed cells, the A7 cells were treated for 24 h
with 5 mg/ml of actinomycin D. A 43 1C heat shock was performed 2 h ahead of
the actinomycin D treatment, whereas the hydrogen peroxide stimulation (5 mM) in
parallel to the transcription inhibition. At the chosen time points lysates were taken
in order to isolate the RNA. Subsequently the cDNA synthesis and qRT-PCR were
performed. The acquired Mss4 mRNA levels were calculated relative to the
unstimulated controls.

Reporter gene assay. Transfection of HeLa cells was achieved with PEI
(polyethylenimine). A7 cells were transfected with FuGENE-6 (Roche, Penzberg,
Germany) according to the manufacturer’s instructions. The reporter plasmids
pGL2-Mss4-luc (500 ng) and pCMV-bGal (100 ng) were co-transfected with 500ng
of expression vectors for transcription factors, MKKs, or other constructs of the
JNK and p38-pathway. The total plasmid DNA per dish was kept constant by
adding the appropriate amount of empty expression vector. Each transfection was
carried out in triplicate. Luciferase activities were measured 48 h after transfection
using the Luciferase Assay System (Promega, Madison, WI, USA) and were
normalized to -b Galactosidase activity.

Western blotting and pull down binding assays. For western
blottings cells were washed twice with PBS and lysed in RIPA supplemented with
1 mM sodium vanadate, 200 mM pefablock, 5 mg/ml leupeptin, and 5 mg/ml
aprotinin for 10 min on ice. The lysates were cleared by centrifugation at 10 000 g
for 10 min at 4 1C. Supernatants were resolved by 10, 12.5 or 15% SDS-PAGE,
and, after electroblotting onto a nitrocellulose membrane, proteins were detected
with appropriate antibodies using the ECL detection system (Bio-Rad Inc., Munich,
Germany). The antibodies used were: affinity purified rabbit polyclonal anti-Mss4,
rabbit polyclonal HSF1 (Cell Signaling, Frankfurt, Germany); mouse monoclonal
anti-beta-Actin (Sigma, Hamburg, Germany), rabbit polyclonal anti-cleaved PARP
(Asp214) (Cell Signaling); mouse monoclonal anti-myc (9E10); mAb anti-GST
(G3E7); rabbit polyclonal anti-phospho-MAPKAPK-2 (Cell Signaling); mouse
monoclonal anti-phospho-JNK (Becton Dickinson, Heidelberg, Germany). All
western blotting experiments were repeated 2 to 4 times.

For GST pull-down analysis 2� 105 HEK293 cells were plated on six-well dishes
48 h before transfection, which was performed with PEI. 1 mg of each cDNA plasmid
was used per transfection, and the total amount (2 mg/well) was equalized if
necessary with appropriate empty expression vectors. Forty hours post transfection
cells were washed twice with PBS and lysed in a Triton lysis buffer (TLB), that
contained 0.5% Ttriton-X100, 25 mM tris/HCl pH 7.5 and 137 mM NaCl,
supplemented with 1 mM sodium vanadate, 200 mM pefablock, 5 mg/ml leupeptin,
and 5 mg/ml aprotinin. Two hundred micrograms of total TLB cell lysates were
rotated for 2 h at 4 1C with glutathione-sepharose beads. The beads were
subsequently washed three times with TLB, resuspended in Laemmli loading buffer
and heat-denatured. To reduce the nonspecific binding of proteins to sepharose
beads, the latter were blocked with 1% BSA in TLB before incubation with cell
lysates. Samples were resolved by 12.5% SDS-PAGE followed by electroblotting
onto nitrocellulose membrane. The detection of co-precipitated proteins was
performed with mouse-anti-myc (clone 9E10) and mouse-anti-GST (clone G3E7)
antibodies.

mRNA isolation, cDNA synthesis and qRT-PCR. Cell lysates of
accordingly stimulated cells were taken and mRNA was isolated with RNeasy
Minikit (Qiagen, Hilden, Germany). cDNA synthesis was performed with Revert Aid
H Minus reverse transcriptase (Fermentas, St. Leon-Rot, Germany) according to
the protocol of the manufacturer. Quantitative real time polymerase chain
reactions were performed with a Roche Light Cycler 480 II. RT-PCR primers were:

Figure 7 Proposed scheme of eIF3f and Mss4 interaction in context of
apoptosis. In case of regular conditions or low stress amounts Mss4 is tightly bound
to eIF3f, inhibiting its phosphorylation and subsequent association with eIF3 protein
complex and pro-apoptotic functions. (left picture). If a certain threshold of stress is
crossed, Mss4 is downregulated, leading to a release of eIF3f, which can now be
phosphorylated by the caspase-activated CDK11p46 kinase, incorporated into the
eIF3 protein compound, which in turn results in inhibition of translation and induction
of apoptosis (right picture)
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human GAPDH fwd 50-GCATCCTGGGCTACACTGAG-30, rev 50-TGCTGTAGCCA
AATTCGTTG-30; human Mss4 fwd 50-CTTTTCCTTCCCTCCATGAGAA-30, rev
50-AGACCAGAAACTTGATGTTGCCCA-30, human eIF3f fwd: 50-TGACAGTGA
AATACGCGTAC-30, rev 50-GTCACTTGAGAGTCCAATCAC-30, luciferase fwd:
50- CAACTGCATAAGGCTATGAAGAGA-30, rev 50-ATTTGTATTCAGCCCATATC
GTTT-30.

Quantification of apoptosis. HeLa and A7 cells were treated with either
heat or hydrogen peroxide for the desired time periods, the supernatants were
collected, the cells detached with 5 mM EDTA in PBS at room temperature. The
consolidated cells and supernatants were centrifuged at 5000 r.p.m. for 5 minutes,
the pellets washed once with PBS and then resuspended in 70% ethanol and
fixed overnight at � 20 1C. Before staining with PI, the cells were treated with
250mg/ml PureLink RNase A (Invitrogen, Karlsruhe, Germany) for 30 minutes at
37 1C. The PI staining (10 mg/ml) was done for 30 minutes at 37 1C. The amount
of apoptotic cells was evaluated by flow cytometry (FACSCalibur, BectonDickinson,
Heidelberg, Germany) as described previously.

Direct yeast two-hybrid interaction assays. The yeast strain Y190
was cotransformed with the pAS2-1 plasmid containing the GAL4-BD fused with
appropriate cDNAs as bait and with pACT2 plasmids containing cDNAs fused to
GAL4-AD as prey. Transformants were grown on SD medium lacking leucine,
tryptophan and histidine in the presence of 25 mM 3-amino-1,2,4-triazole. On day
6 the colonies were tested for the lacZ reporter gene activity in a b-Gal filter assay.
The interaction was scored as negative (� ) when no blue colonies were visible
after 8 h, and scored as: weak (þ ), intermediate (þ þ ), or strong (þ þ þ )
when blue colonies became visible after 8 h, 4 h or 1 h, respectively.
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