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Background: Parkinson’s disease (PD) is an irreversible, chronic degenerative disease of the central 
nervous system, potentially associated with cerebral white matter (WM) lesions. Investigating the 
microstructural alterations within the WM in the early stages of PD can help to identify the disease early and 
enable intervention to reduce the associated serious threats to health.
Methods: This study selected 227 cases from the Parkinson’s Progression Markers Initiative (PPMI) database, 
including 152 de novo PD patients and 75 normal controls (NC). Whole-brain voxel analysis of the WM 
was performed using the tract-based spatial statistics (TBSS) method. The WM regions with statistically 
significant differences (P<0.05) between the PD and NC groups were identified and used as masks. The mask 
was applied to each case’s fractional anisotropy (FA) image to extract voxel values as feature vectors. Geometric 
dimensionality reduction was then applied to eliminate redundant values in the feature vectors. Subsequently, 
the cases were randomly divided into a training group (158 cases, including 103 PD patients and 55 NC) and a 
test group (69 cases, including 49 PD patients and 20 NC). The least absolute shrinkage and selection operator 
(LASSO) regression algorithm was employed to extract the minimal set of relevant features, then the random 
forest (RF) algorithm was utilized for classification using 5-fold cross validation. The resulting model was 
further integrated with clinical factors to create a comprehensive prediction model.
Results: In comparison to the NC group, the FA values in PD patients exhibited a statistically significant 
decrease (P<0.05), indicating the presence of widespread WM lesions across multiple brain regions. 
Moreover, the PD prediction model, constructed based on these WM lesion regions, yielded prediction 
accuracy (ACC) and area under the receiver operating characteristic (ROC) curve (AUC) values of 0.778 and 
0.865 in the validation set, and 0.783 and 0.831 in the test set, respectively. Furthermore, the performance of 
the integrated model showed some improvement, with ACC and AUC values in the test set reaching 0.804 
and 0.844, respectively.
Conclusions: The quantitative calculation of WM lesion area on FA images using the TBSS method can 
serve as a neuroimaging biomarker for diagnosing and predicting early PD at the individual level. When 
integrated with clinical variables, the predictive performance improves.
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Introduction

Parkinson’s disease (PD) is among the most prevalent 
neurodegenerative disorders (1), the incidence of which has 
been steadily rising in recent years. In the early stages of PD, 
symptoms are typically quite mild, making it challenging 
for physicians to establish a definitive diagnosis (2). During 
the prodromal phase, PD patients may present with non-
motor symptoms such as a diminished sense of olfaction 
and cognitive deficits (3). As the disease progresses, patients 
may develop classic motor symptoms such as tremors. 
The onset of motor symptoms generally indicates that the 
disease has reached an intermediate or advanced stage, 
and the optimal window for diagnosis and treatment has 
elapsed. Unlike visible symptoms such as tremors, cognitive 
decline is a gradual process, and its underlying causes and 
neuroanatomical basis remain incompletely understood (4). 
Currently, there is no effective cure for PD, and available 
treatments mainly focus on symptom management (5). 
Consequently, early diagnosis and detection of PD are of 
paramount importance (6). An efficient early diagnosis 
enables the timely detection of health issues and the 
implementation of intervention to minimize the severe 
health risks associated with the disease (1,2).

In the early stages, accurately and promptly identifying 
PD poses a significant challenge (7). Currently, the 
diagnosis of PD primarily relies on clinical rating scales and 
the expertise of clinicians. These diagnostic methods are 
imperfect, time-consuming, and labor-intensive, lacking 
standardized and effective quantitative indicators. Routine 
non-invasive neuroimaging examinations for PD patients, 
such as magnetic resonance imaging (MRI), contain a 
wealth of potentially valuable information, including 
grayscale range, intensity, and intracellular changes in 
brain tissue characteristics. These details can aid in better 
understanding the cerebral alterations in PD patients. 
However, recognizing this information solely based on the 
clinical expertise of radiologists can be challenging (8).

Significant research efforts have been devoted to 
innovative PD diagnostic methods (9,10), aiming to enhance 
disease detection capabilities. The Parkinson’s Progression 

Markers Initiative (PPMI) is an observational clinical 
cohort study that has been enrolling early-stage PD patients 
diagnosed within 2 years from approximately 50 research 
institutions since 2010. Following enrollment, PPMI 
continuously tracks the progression of various types of 
PD patients for over a decade. This study is based on the 
diffusion tensor imaging (DTI) series of cases participating 
in the PPMI.

Although the precise pathogenesis of PD remains 
unclear, growing evidence suggests that structural changes 
may occur in the white matter (WM) of PD patients during 
the early stage of the disease (4-11). These changes could 
potentially serve as indicators of cognitive decline in PD 
patients and warrant further exploration for their potential 
in disease diagnosis.

DTI, a non-invasive neuroimaging technique based on 
MRI, is capable of detecting early brain changes that may 
precede those observed through traditional structural MRI. 
It has been used extensively in elucidating alteration in 
brain WM (12,13). DTI is highly sensitive to the movement 
of water molecules, particularly their diffusion along WM 
axons. Consequently, DTI-derived metrics are adept 
at capturing WM changes associated with neurological 
disorders (14).

One such DTI metric is fractional anisotropy (FA), 
which reflects the extent of water molecule diffusion in 
different directions. Another important metric is the mean 
diffusivity (MD), which provides an overview of water 
molecule movement throughout the brain (12). FA and MD 
have been increasingly employed in quantitative studies of 
PD (15,16). These metrics, by highlighting abnormalities 
in WM, may offer insights into cognitive decline, attention 
deficits, and other prodromal non-motor symptoms 
associated with the disease (17).

The tract-based spatial statistics (TBSS) (18-20) method, 
developed based on DTI, represents an advanced spatial 
statistics approach rooted in the analysis of WM fiber 
bundles (21). Unlike voxel-based analysis (VBA) methods, 
TBSS effectively addresses issues related to significant 
registration errors and variations in smoothing kernel 
selection. It confines the analysis to the central region of the 
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major WM bundle, thereby enhancing the precision of the 
detection of WM abnormalities (22).

In cases with varying anatomical structures, TBSS excels 
at accurately aligning major fiber bundles and quantifying 
their characteristics. This capability provides valuable 
insights for clinicians seeking to understand the impact of 
PD on the brain from a WM fiber perspective, elucidate 
its cognitive damage mechanisms, and offer guidance for 
clinical diagnosis and treatment (22-24).

A bioimaging marker is typically characterized by 
the volume or average intensity of images or regions. 
Neuroimaging studies of PD create essential conditions for 
the development of bioimaging markers for the disease (25). 
The utilization of TBSS technology to analyze DTI data 
from both early PD patients and normal cases can provide a 
deeper understanding of the WM structural characteristics 
in PD patients and pinpoint areas of WM pathology 
associated with PD. Through further experimentation, 
it becomes possible to explore the feasibility of using the 
potential neuroimaging information extracted from these 
areas as a neuroimaging biomarker for PD diagnosis. Early 
diagnosis and assessing disease risk based on biomarker 
changes hold significant importance (26).

In recent years, alongside traditional quantitative and 
semi-quantitative analysis methods, machine learning 
(ML) techniques have gained significant traction in the 
realm of medical imaging analysis (7,8,15,27). Particularly 
in studies involving brain tumors and neurodegenerative 
disorders, the automated extraction and analysis of 
potential high-dimensional image information have 
demonstrated their potential for the detection and diagnosis 
of neurodegenerative diseases. This automated approach 
may prove more effective than manual detection processes 
(5,23,28).

This study aimed to identify PD-related WM lesion 
regions through TBSS analysis, validate their potential 
as imaging biomarkers, and employ them as regions of 
interest (ROIs) for extracting distinctive features to develop 
machine learning-based prediction models. The specific 
process unfolded as follows: Firstly, cases were selected 
based on their inclusion in the PPMI database, with both 
imaging and non-imaging information utilized to establish 
an early PD database. To be more precise, the early PD 
imaging database comprised cases diagnosed within 3 years, 
who had not yet initiated medication. Following image 
preprocessing and TBSS analysis, areas of WM exhibiting 
statistically significant differences were employed as masks 
to extract features from each case’s FA image. Subsequently, 

these features underwent screening and analysis through 
geometric dimension reduction and least absolute shrinkage 
and selection operator (LASSO) logistic regression (29). 
These obtained features, when combined with demographic 
and clinical data of the cases, were used to construct an 
individual-level PD prediction model. This model was 
designed for the early diagnosis of PD patients utilizing 
the RF classifier, incorporating 5-fold cross-validation, and 
predicting individual-level PD risk within the test set.

The contributions and innovations of this study are as 
follows:

(I) On the public PPMI dataset, for the first time, 
the principles of data screening and inclusion for 
constructing an early PD database based on DTI 
images were explicitly proposed. A convincing early 
multicenter PD DTI database was created, and 
data processing and analysis were conducted. The 
research results demonstrated good generalizability.

(II) The study exclusively utilized DTI images, combined 
with demographic and clinical information, to train 
a predictive model using single-modal MRI data, 
and obtained high early PD identification indicators.

(III) The study used the TBSS method to calculate 
the imaging biomarkers of PD, and leverage the 
biomarkers to assist clinicians in understanding PD 
from the perspective of WM damage, providing 
valuable insights for clinical diagnosis and disease 
treatment; Subsequently, the ML method was used 
to verify the ability of the biomarker to distinguish 
early PD from NC, and an early PD diagnostic 
model was developed, achieving good predictive 
performance.

We present this article in accordance with the TRIPOD 
reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-23-1478/rc).

Methods

Figure 1 illustrates the fundamental framework of the 
prediction model proposed in this paper. Firstly, the process 
begins with preprocessing the cases’ DTI images, which 
involves the removal of non-brain tissues, such as skulls. 
This step enables the calculation of DTI quantitative values 
and the generation of scalar value images, including FA, 
radial diffusivity (RD), MD, and axial diffusivity (AD). 
Secondly, the TBSS method is employed to compute the 
WM fibrous skeleton (ROI area) by identifying regions with 
significant differences (P<0.05) between the PD group and 

https://qims.amegroups.com/article/view/10.21037/qims-23-1478/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-1478/rc
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the NC group. This ROI area serves as a mask to extract 
corresponding regions from each case’s FA map. The FA 
values within this area collectively form the 3-dimensional 
(3D) spatial features for each case. Thirdly, the 3D spatial 
features of the cases are geometrically partitioned. Each 
partition’s value is determined as the sum of the pixel 
values within the block, resulting in reduced 3D spatial 
features composed of the superblock values. These are then 
flattened to create the corresponding 1-dimensional (1D) 
spatial feature vectors. Fourthly, the LASSO regression 
algorithm (29-31) is utilized for feature selection and the 
selected features are arranged according to their regression 
coefficients. A 5-fold cross-validation method is further 
employed to identify the optimal feature combination, 
which is fed into the RF method for PD prediction, 
constituting our neuroimaging prediction model, referred 
to as NeuroM. Simultaneously, the non-neuroimaging 
information from the cases for basic statistics and disease 
predictions is gathered to form the clinical prediction 
model, denoted as ClinicalM. The integration of these 
two models yields our comprehensive prediction model, 
referred to as CombineM. The subsequent section provides 
a detailed exposition of our methods. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Cases screening and early PD database construction

Based on the Hoehn and Yahr (H&Y) score (≤2.5) (32), 
Montreal Cognitive Assessment (MoCA) score (≥20), 
the duration of the patient’s disease (duration of disease  
≤14 months), the patient’s treatment and medication 
status (not yet receiving any relevant treatment and not 

taking PD-related medications), and after excluding 
DTI images of cases with significant noise and artifacts, 
a total of 227 cases, comprising 75 NC and 152 PD 
patients, were meticulously chosen to construct an 
early PD database from the PPMI database (https://
www.ppmi-info.org/data).  The non-neuroimaging 
data and clinical scores of the cases are presented in  
Table 1. According to the H&Y score (≤2.5), these cases 
were regarded as de novo PD patients, who were in the early 
stages of PD. The DTI data from the year they were first 
enrolled in PPMI were utilized in the study.

The cases’ enrollment years were selected as shown in 
Table S1. To ensure the robustness of our prediction model, 
the data from each case’s baseline year was specifically 
selected. It should be noted that the baseline years of 
enrollment varied among cases (indicated by the circle), 
and not all cases’ data was continuous (marked by the 
checkmark). Some cases only underwent examination for 
a single year (e.g., case with ID 4139, examined solely in 
2013). Importantly, during the baseline year examination of 
the cases, these individuals had not yet initiated PD-related 
treatment and did not take any medication.

All cases’ DTIs were acquired using Siemens scanners 
(Siemens, Erlangen, Germany), utilizing an axial fast gradient 
echo sequence (MPRAGE) along the AC-PC plane. This 
scan covered the entire brain, from the base of the cerebellum 
to the top of the brain, and adhered to the following main 
parameters: acquisition type: 4D; field strength: 3.0 Tesla; 
flip angle: 90°; in-plane pixel resolution: 1.98 mm × 1.98 mm  
(X & Y); slice thickness: 2.0 mm; b value: 1,000 s/mm2; 
diffusion gradient directions: 64; image matrix: 116×116×72; 
number of non-diffusion (b0) image: 1; repetition time (TR): 
900 ms; echo time (TE): 88 ms.

Table 1 Baseline statistics for non-neuroimaging data and clinical scale scores of the cases in the study

Demographic/clinical scale PD (n=152) NC (n=75) P t value

Age (years) 61.60±9.54 [38, 82] 59.97±11.14 [31, 81] 0.23 1.192

Gender 0.82 0.224

Male 97 (66.4) 49 (33.6)

Female 55 (67.9) 26 (32.1)

Years of education 15.22±3.15 [8, 22] 15.73±2.97 [9, 22] 0.24 −1.167

Duration of disease (month) 6.74±6.86 [0, 32] – – –

MoCA score 27.61±2.10 [20, 30] 28.23±1.16 [22, 30] 0.02* −2.359

Statistical analysis was conducted and the data for each category was represented as n (%) or mean ± standard deviation [range]. *, 
P<0.05, considered statistically significant. PD, Parkinson’s disease; NC, normal control; MoCA, Montreal Cognitive Assessment.

https://www.ppmi-info.org/data
https://www.ppmi-info.org/data
https://cdn.amegroups.cn/static/public/QIMS-23-1478-Supplementary.pdf
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Data preprocessing and diffusion quantitative indicators 
calculation

In order to obtain the differential region between the PD 
group and NC group and verify its ability to predict early 
PD at the individual level, it is necessary to first preprocess 
the DTI images of the cases and calculate the diffusion 
tensor and quantitative parameter images. Figure 2 shows 
the basic data preprocessing process.

For each case’s 4-dimensional (4D) diffusion-weighted 
image sequence, the preprocessing process is as follows: 
(I) convert the original data from digital imaging and 
communications in imaging (DICOM) format into 
neuroimaging informatics technology initiative (NIfTI) 
format that can be easily utilized by FSL software (http://
www.fmrib.ox.ac.uk/fsl/) using MRIcron software, and 
the diffusion gradient table and b-value table are obtained 
simultaneously; (II) visually inspect the image, including 
resolution, size, and gradient direction. Then, use the 
fsleyes plugin of FSL software to check the image quality 
of each volume layer by layer, and exclude images with 
signal loss, artifacts, and severe head movements from this 
study; (III) use Flirt in the FSL software package to affine 
transform all images of each case to its first b0 image to 

eliminate small head motion offsets, and use the eddy_
correct function of the FDT plugin to eliminate eddy 
current effects, and adjust the gradient direction based on 
the changes in the eddy current correction; (IV) before 
calculating the tensor, a mask image needs to be generated 
to determine the calculation range, so that the analyzed 
voxels are limited to the brain area, reducing the amount 
of computation and improving the accuracy of spatial 
registration. Generally, the corresponding binary brain 
mask is obtained through the b0 image. In this study, the 
BET tool of the FSL software is used to remove the skull 
and other non-brain images from the b0 image, and the 
threshold is set to 0.2 for removing non-brain tissue; (V) 
calculate the tensor-fitting and scalar indicators such as FA 
or MD values using the DTIFIT tool of FSL software.

Group-level analysis in TBSS

The TBSS method allows for the identification of distinct 
WM regions distinguishing the PD group from the NC 
group, providing a comprehensive whole-brain perspective. 
In this study, the standard TBSS program from the FSL 
software is utilized to preprocess FA images, as illustrated in 

Figure 2 Data preprocessing: (A) data format conversion; (B) image quality check and removal of unqualified images; (C) eddy current 
correction, elimination of deformation errors caused by head motion and eddy currents during the scanning process, and gradient direction 
correction; (D) removal of non-brain tissues such as the skull, limiting the tensor calculation range to the brain tissue; (E) calculation of 
the tensor and simultaneous acquisition of related scalar indicators such as FA. FA, fractional anisotropy; DICOM, digital imaging and 
communications in imaging; NIfTI, neuroimaging informatics technology initiative.

Convert raw DICOM to NIfTI

Image quality check: remove unqualified images

Head movement eliminate and eddy correct

Remove non-brain tissue

Calculate the tensor and FA maps

A C

D

E
B

http://www.fmrib.ox.ac.uk/fsl/
http://www.fmrib.ox.ac.uk/fsl/
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Figure S1.
The specific TBSS process comprises the following steps:
(I) Image alignment: linear and non-linear registration 

are employed to align each case’s individual FA image 
with the reference FA image, FMRIB58_FA. This 
alignment is followed by affine transformation to map 
the individual FA images to the standard space.

(II) Skeleton construction: the average FA image and 
WM skeleton of all cases are constructed, applying 
an FA threshold of 0.2 to all FA images registered 
in the standard space.

(III) Data projection: each case’s aligned FA data is 
projected onto the skeleton, enabling comparisons 
within a common framework.

(IV) Statistical analysis: the randomize method is 
employed to perform 5,000 permutation tests, aimed 
at identifying WM regions exhibiting significant 
differences. The result is a family-wise error 
(FWE) corrected 1 − P_value image, represented 
by the red skeleton in Figure S1. The red skeleton 
denotes areas where there is a statistically significant 
difference between the PD group and the NC group 
exists, with P<0.05 (FWE corrected), indicating 
statistical significance.

Skeleton geometric dimensionality reduction and feature 
sparse representation

In this study, regions exhibiting statistically significant 
differences between the PD and NC groups were identified 
as ROIs and subsequently transformed into binary masks, 
with voxel values outside these masks set to 0. The 
procedure involves extracting voxel values within the mask 
area from each case’s FA image, resulting in the creation of 
a 3D skeleton. This skeleton can be further processed to 
derive a 1D feature vector through a series of dimensionality 
reduction operations.

All FA images of the cases were meticulously registered to 
the standard space. The average FA map boasts dimensions 
of 182×218×182, comprising a total of 7,221,032 voxels. The 
voxel values are uniformly distributed in the interval [0, 1], 
where the minimum (min) value is 0, and the maximum value 
(max) is 0.94. Of all these voxels, those falling outside the 
ROI were set to 0. This led to 46,831 voxels, constituting 
a mere 0.65% of the total voxels, surpassing the minimum 
threshold of 0. Moreover, 20,808 voxels, which account for a 
significant 44.43% of voxels greater than the midpoint value 
of max/2=0.47, were found. The cumulative voxel values 

summed up to 21,580.93, yielding a mean value of 0.003 and 
a standard deviation of 0.040. It is worth noting that the WM 
fiber skeleton, characterized by voxel values exceeding max/2, 
occupies only a minute portion of the entire image space. 
Consequently, a more rational representation is imperative to 
bolster the performance of the prediction model.

To effectively represent the WM fiber skeleton within 
each case’s individual FA image, the FA images, originally 
sized at 182×218×182 in the standard space, were 
downscaled with a step size of 12, resulting in images of 
dimensions 16×18×16. Here, each voxel’s value represents 
the summation of the voxel values within the corresponding 
12×12×12 block in the original image. After arranging 
these reduced-dimensional images in a row-column-page 
order, a 4,608-dimension vector was obtained. Following 
the removal of zero elements from this sparse matrix, a 
streamlined 613-dimensional vector can be obtained, as 
illustrated in Figure 3 and detailed in Table S2. It should 
be noted that for computational convenience, the FA 
image with dimensions of 182×218×182 was padded with 
additional rows and columns, ultimately yielding FA image 
of dimensions 192×216×192.

Upon inspecting Figure 3 and Table S2 and post-
gridding dimensionality reduction, the resulting image 
comprised 4,608 voxels, with a voxel value distribution 
spanning the interval [min, max]=[0, 205.233]. Within 
this voxel set, 613 voxels, constituting 13.3% of the total 
voxel count, surpassed the minimum threshold of 0. 
Additionally, 62 voxels, accounting for 10.11% of voxels 
with values greater than 0, exceeded the threshold of 103 
(max/2=205.233/2≈103). The sum of voxel values remained 
consistent at 21,580.93, with a mean value of 4.683 and a 
standard deviation of 18.820.

After gridding the skeleton maps, the mean value 
expanded from 0.003 to 4.683, and the maximal value 
expanded from 0.94 to 205.233. Consequently, the 
difference between the mean and maximal voxel values 
increased significantly. Accordingly, the percentage of 
voxels with voxel values greater than max/2 decreased from 
44.43% to 10.11%. Gridding clustered the voxel values of 
the original image, concentrated them, amplified the values 
in the ‘grid voxels’, and resulted in a more extreme and 
sparse distribution of voxel values.

The primary advantage of gridding is dimensionality 
reduction while preserving positional information. 
However, whether gridded or not, the positions of values 
greater than 0 remain fixed. Therefore, non-zero values can 
be directly extracted and combined into feature vectors.

https://cdn.amegroups.cn/static/public/QIMS-23-1478-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-1478-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-1478-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-1478-Supplementary.pdf
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Figure 3 Gridded geometric dimensionality reduction and sparse feature representation. White matter skeleton areas displaying statistically 
significant differences (P<0.05, FWE corrected) between the PD group and NC group that serve as masks. These masks are utilized to 
extract the corresponding regions from the FA images of each case, which have been aligned to the standard space. The resulting image is 
geometrically reduced to a size of 16×18×16, with a step size of 12. Each pixel value in this reduced image represents the sum of pixel values 
within the original image’s corresponding grid block. Subsequently, the image is flattened into a 4,608-dimension vector. Through sparse 
representation techniques, this vector is further condensed into a more concise 613-dimensional feature vector. FWE, family-wise error; 
PD, Parkinson’s disease; NC, normal control; FA, fractional anisotropy.

For any given case’s DTI image, following preprocessing 
steps such as diffusion index calculation, TBSS group-
level analysis, individual skeleton geometric downscaling, 
and sparse representation, a reshaped feature vector of size 
1×613 could be obtained from the case’s FA image.

Selection of LASSO regression features

In scenarios involving high-dimensional and multi-regional 
features, it is often desirable to identify a smaller subset 
of regional features that exhibit strong discriminative 
capabilities, highlighting the key regions with the most 
significant impact. To address this, we employed the 
LASSO algorithm, which effectively filters relevant features 
while mitigating the challenges posed by high-dimensional 
data redundancy.

LASSO integrates the L1-norm into the classical linear 
regression least squares estimation. This integration allows 
LASSO to assign unimportant feature coefficients to 0, 
thereby enhancing parameter estimation accuracy. This 
process facilitates variable selection, ultimately leading to 
feature dimensionality reduction.

In our experiment, 15 positional features with the highest 

weight coefficients were selected to be incorporated into 
the construction of the PD-NC prediction model.

Dataset partition and individual prediction model 
construction

To assess the discriminative potential of features extracted 
by LASSO from differential regions between the early PD 
group and NC groups, the widely employed RF algorithm 
was utilized. At the same time, in order to construct and 
train a reliable PD prediction model, theoretically, the 
number of cases should be at least 10 times the number 
of features (15,33-36). Therefore, as shown in Figure 4, 
this study randomly divided the dataset into training and 
testing sets in 7:3 ratios, with the training group consisting 
of 103 PD and 55 NC participants, and the testing group 
consisting of 49 PD and 20 NC participants. The selected 
features were subjected to a 5-fold cross-validation on the 
training set for case classification.

In this study, we noted a slight class imbalance among 
the enrolled cases. To address this, the Synthetic Minority 
Over-sampling Technique (SMOTE) algorithm was 
employed, which generated additional samples within 
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the training set to facilitate model training. To mitigate 
the limitations associated with fixed dataset feature 
selection and the risk of overfitting, the 5-fold cross-
validation method was adopted for model training. We 
selected the most appropriate model, characterized by the 
smallest average error (including hyper-parameters), and 
subsequently evaluated its performance on the test set. 
Model classification prediction performance was assessed 
using metrics such as accuracy (ACC), precision, recall, F1 
score, and area under the receiver operating characteristic 
(ROC) curve (AUC).

Furthermore, we evaluated the classification performance 
of combining regional location feature information (i.e., 
neuroimaging information) with clinical scale information, 
specifically the MoCA. Additionally, we assessed the 
classification performance when using MoCA data alone.

Statistical analysis of non-neuroimaging information

The non-neuroimaging data in this study encompassed case 
demographics and their clinical MoCA scales. These were 
subjected to analysis using IBM SPSS Statistics 20 (IBM 
Corp., Armonk, NY, USA). A comparison between the PD 
group and the NC group was conducted using independent 

sample t-tests, with measurements presented as mean 
± standard deviation. A significance level of P<0.05 was 
employed to determine statistical significance.

Results

Demographics and clinical scores of cases

Table 1 presents the demographic information and clinical 
scores statistics of the study cases. The MoCA is a tool 
employed for the rapid screening of mild cognitive 
impairment (MCI) (37). The assessment of cognitive 
domains encompasses memory, language, abstract thinking, 
attention and concentration, visual-spatial skills, executive 
function, calculation, and orientation, among others. The 
normal range of the scale test falls within [26, 30], with a 
maximum total score of 30 points.

Notably, the MoCA score levels indicated that the cases 
included in this study were in the prodromal stage of PD. 
There were no significant differences observed in gender, 
age, or years of education between the PD group and the 
NC group. However, it is worth mentioning that the MoCA 
scores in the PD group were lower than those in the NC 
group, and this disparity was statistically significant (P<0.05). 
This observation aligns with prior research findings 

Figure 4 Dataset partition and model training process. PD, Parkinson’s disease; NC, normal control; SMOTE, synthetic minority 
oversampling technique.
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suggesting that non-motor symptoms may manifest in PD 
patients during the prodromal phase of the disease.

Differences in FA skeleton between PD and NC groups

The statistical findings concerning the disparities in WM 
skeleton regions on FA images between the PD and NC 
groups were visualized using the fsleyes plugin within the 
FSL software, as depicted in Figure 5. It is important to note 
that the highlighted areas in this context signify regions 
with significant differences(P<0.05). Furthermore, the 
‘cluster’ command provides relevant information about key 
cluster regions, which is detailed in Table 2. Additionally, 
the ‘atlasquery’ command yields information regarding 
important WM fiber bundles, as illustrated in Figure 6, and 
queries their presence within the standard template areas.

Notably, nearly the entire WM region in the brains 
of PD group patients exhibited substantial alterations, 

characterized by a significant decrease in FA values when 
compared to the NC group. In Figure 5, the red areas 
represent coronal planes with statistically significant 
differences, whereas the green areas represent FA fiber 
skeletons demonstrating disparities between the PD and 
NC groups.

Figure 6, based on the TBSS standard process, further 
overlays the WM fiber skeleton (depicted in white) with 
statistical differences (P<0.05) associated with PD onto the 
Johns Hopkins University (JHU) white-matter tractography 
atlas (https://identifiers.org/neurovault.collection:264). 
This overlay allows for the observation of the anatomical 
distribution of distinct WM regions.

Table 3 presents the primary distinguishing fiber bundle 
structures between the PD group and the NC group using 
the standard JHU white-matter tractography atlas template. 
In this context, higher average probability values indicate 
greater impairment to the corresponding brain regions.

Figure 5 TBSS results showed a noteworthy contrast in WM regions (highlighted in red) between the PD group and the NC group in 
sagittal and horizontal plane. PD patients exhibit a significantly reduced FA value compared to the NC group (P<0.05, FWE corrected). 
The green overlay represents the FA skeleton with significant disparities between the PD group and the NC group, with the red portion 
denoting the regions of pronounced difference. TBSS, tract based spatial statistics; WM, white matter; PD, Parkinson’s disease; NC, normal 
control; FWE, family-wise error; FA, fractional anisotropy.
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Figure 6 The white matter fiber skeleton (depicted in white) associated with PD was overlaid onto the JHU white-matter tractography atlas. 
PD, Parkinson’s disease; JHU, Johns Hopkins University.

Table 2 Comprehensive statistical overview of fiber bundle characteristics within regions exhibiting significant disparities in FA imaging

Cluster index Voxels Probability in the region Peak center coordinate Coordinates of the center of gravity

1 47899 0.979 55, 108, 98 85.7, 103, 84.1

FA, fractional anisotropy.

Feature selection

We employed LASSO (29) for feature selection and 
dimension reduction. A larger LASSO coefficient indicated 
a stronger predictive capability of the associated feature. 
In Figure 7, features corresponding to different superblock 
regions are filtered and ranked based on their LASSO 
coefficients, with the feature corresponding to the 45th 
superblock region demonstrating the highest predictive 
potential. Figure 8 illustrates that retaining the features of 
15 superblocks yields the highest AUC and ACC values for 
early PD prediction.

Model validation and classification results

Table 4 presents the performance comparison of various 
prediction models on both the training and testing datasets. 
These models encompass the following: the NeuroM model 
exclusively relies on neuroimaging features. The ClinicalM 
model utilizes solely clinical scales. The CombineM model 
is constructed by amalgamating neuroimaging features with 
clinical scales. The evaluation aimed to assess the predictive 
capabilities of these models in the context of PD diagnosis.

Using solely neuroimaging markers for early PD 
prediction, the validation set yielded AUC and ACC scores 
of 0.865 and 0.778, respectively, whereas the test resulted 
in scores of 0.831 (AUC) and 0.783 (ACC). When utilizing 

only clinical information for early PD prediction, the 
evaluation set showed AUC and ACC scores of 0.667 and 
0.576, respectively, with the test set producing scores of 
0.707 (AUC) and 0.609 (ACC). However, by amalgamating 
neuroimaging features and clinical data, the predictive 
performance for early PD improved significantly. In the 
validation set, AUC and ACC reached 0.883 and 0.816, 
respectively, whereas in the test set, they reached 0.844 
(AUC) and 0.804 (ACC). Additionally, F1_score, recall, and 
precision values all exceeded 0.800.

Figure 9 visually depicts the prediction performance of 
various models in the test set using ROC curves. Neuroimaging 
features exhibited strong predictive capabilities, and when 
combined with clinical indicators, the CombineM model 
demonstrated superior predictive performance (AUC =0.844).

Ablation experiment

Table 5 illustrates the influence of varying feature numbers 
on the predictive performance of both the training and test 
sets. Notably, when the feature count was set to 15, both the 
training and test sets exhibited robust predictive performance.

Discussion

PD represents an irreversible, chronic, degenerative central 
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Table 3 Statistical disparities in major fiber bundles between 
the PD and NC groups using the standard JHU white-matter 
tractography atlas template

Atlas label
Average 

probability

Anterior thalamic radiation L 1.5189

Anterior thalamic radiation R 1.1459

Corticospinal tract L 0.9842

Corticospinal tract R 0.8636

Cingulum (cingulate gyrus) L 0.1523

Cingulum (cingulate gyrus) R 0.1270

Cingulum (hippocampus) L 0.0877

Cingulum (hippocampus) R 0.0630

Forceps major L 0.7363

Forceps major R 1.3485

Inferior fronto-occipital fasciculus L 1.5463

Inferior fronto-occipital fasciculus R 1.7804

Inferior longitudinal fasciculus L 1.2493

Inferior longitudinal fasciculus R 1.0993

Superior longitudinal fasciculus L 1.6912

Superior longitudinal fasciculus R 1.5079

Uncinate fasciculus L 0.4126

Superior longitudinal fasciculus R 0.2309

Superior longitudinal fasciculus (temporal part) L 0.8229

Superior longitudinal fasciculus (temporal part) R 0.5507

PD, Parkinson’s disease; NC, normal control; JHU, Johns 
Hopkins University; L, left; R, right.

Figure 7 Predictive performance of features corresponding 
to different superblock. LASSO, least absolute shrinkage and 
selection operator.

nervous system disorder. In its early asymptomatic stages, 
subtle changes can occur in the brain structure, with 
ongoing structural alterations as the disease progresses over 
time. PD’s etiology remains unclear, and no cure currently 
exists; medications merely aim to alleviate symptoms. 
The development of biomarkers for early PD diagnosis is 
crucial for comprehending disease progression early on and 
intervening to reduce health risks.

The PPMI project has been tracking various PD 
patient types for over a decade, conducting comprehensive 
observational clinical research involving multiple centers, 
sequences, and time series. However, prior studies utilizing 
the PPMI database (38,39) often lacked clear criteria for 
the neuroimaging data selection. They either listed the 

numbers of PD patients and NC without detailed matching 
criteria or used discontinuously matched data, typically 
lacking records over a continuous 10-year period, leading to 
potential bias. In this study, we meticulously screened and 
investigated DTI data from cases enrolled at the baseline 
of the project’s initiation. We employed DTI-based TBSS 
methods to explore WM changes in early-stage PD patients, 
analyzing and identifying lesion regions. Furthermore, we 
assessed the potential of this area as an image biomarker 
for early PD diagnosis through ML. Our individual level 
prediction model achieved an impressive AUC of 0.844 in 
the test set.

Presently, many studies employ multimodal data to 
predict PD disease states. However, obtaining multimodal 
data is more challenging and costly compared to single 
MRI modality, and it often involves lengthy scanning times. 
Additionally, due to its high noise and complexity, multimodal 
data may not be suitable for clinical applications (40). In 
our study, we utilized a single DTI modality to achieve high 
classification accuracy, reducing patient discomfort from 
extended scanning times, minimizing detection errors due 
to head movement, and saving the patients’ expenses and 
medical resources while maximizing data utility. Furthermore, 
our proposed predictive model offers preliminary screening 
assistance to radiologists in their diagnostic efforts.

DTI data can be collected automatically using a 3T 
scanner in under 12 minutes, eliminating the need for 
radioactive tracers. Implementing our approach could 
positively impact the clinical management of PD patients 
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Figure 8 Optimal features selected via LASSO. LASSO, least absolute shrinkage and selection operator; AUC, area under the receiver 
operating characteristic curve; ACC, accuracy.

Figure 9 The ROC curves of different prediction models. ROC, 
receiver operating characteristic; AUC, area under the receiver 
operating characteristic curve.

Table 4 Comparative performance analysis of various prediction models on the training and testing sets

Model Dataset F1_score Recall Precision AUC ACC

ClinicalM Training dataset 0.481 0.433 0.684 0.677 0.576

Testing dataset 0.617 0.644 0.592 0.707 0.609

NeuroM Training dataset 0.772 0.755 0.794 0.865 0.778

Testing dataset 0.767 0.733 0.805 0.831 0.783

CombineM Training dataset 0.816 0.812 0.829 0.883 0.816

Testing dataset 0.800 0.800 0.800 0.844 0.804

AUC, area under the receiver operating characteristic curve; ACC, accuracy.

and reduce misdiagnoses in clinical trials.
Despite the absence of visually apparent brain MRI 

changes in PD, DTI analysis with ML algorithms offers 
highly accurate individual PD patient detection, presenting 
potential applications in clinical neuroradiology. Leveraging 
existing MRI data through advanced data analysis methods 
can provide a cost-effective means for early and specific 
diagnosis. Our aim is not to replace existing methods but 
rather to complement them comprehensively.

Impact of PD on brain WM

Numerous neuroimaging studies have employed ROI 
approaches (41) to explore microscopic brain structure 
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Table 5 Influence of different feature counts on predictive performance in the evaluation and test sets

Feature 
numbers

Training dataset Testing dataset

AUC ACC F1_score Recall Precision AUC ACC F1_score Recall Precision

1 0.767 0.688 0.707 0.748 0.675 0.796 0.739 0.676 0.556 0.862

2 0.816 0.746 0.743 0.741 0.75 0.816 0.739 0.755 0.822 0.698

3 0.843 0.76 0.762 0.767 0.762 0.766 0.739 0.721 0.689 0.756

4 0.856 0.764 0.771 0.786 0.758 0.797 0.761 0.756 0.756 0.756

5 0.858 0.793 0.789 0.777 0.812 0.79 0.772 0.759 0.733 0.786

6 0.861 0.792 0.795 0.796 0.81 0.796 0.783 0.773 0.756 0.791

7 0.854 0.773 0.77 0.748 0.807 0.817 0.815 0.805 0.778 0.833

8 0.86 0.778 0.782 0.786 0.783 0.805 0.804 0.8 0.8 0.8

9 0.874 0.783 0.786 0.786 0.794 0.8 0.783 0.756 0.689 0.838

10 0.877 0.797 0.797 0.795 0.807 0.81 0.772 0.764 0.756 0.773

11 0.875 0.792 0.794 0.795 0.799 0.811 0.793 0.782 0.756 0.81

12 0.886 0.792 0.796 0.805 0.796 0.835 0.793 0.782 0.756 0.81

13 0.885 0.797 0.799 0.794 0.807 0.819 0.783 0.783 0.8 0.766

14 0.886 0.797 0.797 0.785 0.814 0.825 0.783 0.767 0.733 0.805

15 0.883 0.816 0.816 0.812 0.829 0.844 0.804 0.8 0.8 0.8

16 0.882 0.792 0.789 0.775 0.811 0.843 0.804 0.791 0.756 0.829

17 0.882 0.806 0.806 0.803 0.816 0.842 0.783 0.773 0.756 0.791

18 0.884 0.816 0.819 0.831 0.812 0.835 0.783 0.778 0.778 0.778

19 0.883 0.806 0.804 0.794 0.827 0.837 0.772 0.764 0.756 0.773

20 0.882 0.816 0.818 0.822 0.82 0.838 0.772 0.764 0.756 0.773

21 0.881 0.797 0.793 0.775 0.822 0.841 0.772 0.769 0.778 0.761

22 0.885 0.792 0.786 0.766 0.822 0.833 0.761 0.744 0.711 0.78

23 0.879 0.792 0.79 0.775 0.811 0.834 0.783 0.773 0.756 0.791

24 0.878 0.802 0.798 0.784 0.824 0.838 0.772 0.753 0.711 0.8

25 0.875 0.811 0.81 0.803 0.826 0.836 0.761 0.744 0.711 0.78

26 0.876 0.802 0.8 0.794 0.814 0.836 0.761 0.744 0.711 0.78

27 0.88 0.801 0.797 0.784 0.823 0.834 0.772 0.759 0.733 0.786

28 0.878 0.802 0.798 0.784 0.824 0.841 0.761 0.761 0.778 0.745

29 0.88 0.806 0.804 0.794 0.825 0.836 0.783 0.75 0.667 0.857

30 0.88 0.797 0.795 0.784 0.816 0.837 0.772 0.779 0.822 0.74

AUC, area under the receiver operating characteristic curve; ACC, accuracy.

alterations associated with PD. These studies typically rely 
on a priori knowledge to guide ROI and feature selection, 
which can be subjective and may overlook changes 
occurring beyond the selected areas. Notably, no single 

brain region, such as substantia nigra (SN), has consistently 
demonstrated DTI-derived image metrics as reliable a 
priori markers for validating the course and severity of 
early PD (42). Moreover, conflicting studies exist regarding 
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whether the FA value of the SN can serve as a diagnostic 
imaging marker (42-44).

In this study, we employed the TBSS method to analyze 
FA values, investigating abnormal WM microstructure in 
PD patients. Previous PD research has identified changes 
in the overall integrity of specific brain WM regions (24). 
FA, a comprehensive measure of microstructural integrity, 
is linked to myelin integrity and fiber density (45). Although 
the precise mechanisms underlying extensive microstructural 
disruptions in early-stage PD remain unclear, our findings 
suggest the presence of highly relevant ROIs within brain 
WM. Information related to the structure of these ROIs 
may hold implications for early and accurate PD prediction, 
as well as cognitive brain function.

Through the standard TBSS process, FA images from 
all cases are mapped onto the average FA skeleton through 
non-linear registration. Skeletonization enhances the 
accuracy of inter-group comparisons, with skeleton areas 
representing statistically significant (P<0.05) WM regions 
between the PD and NC groups. Figure S1 displays the 
WM skeleton (red) extracted from any case’s brain image. 
The WM skeleton highlights brain regions potentially 
associated with PD, with deeper red indicating higher 
relevance to PD. Consequently, the skeleton (ROI) can 
serve as an image biomarker for PD, and changes in its 
diffusion quantitative parameters can provide valuable 
diagnostic information for physicians (46).

Preliminary research results on the skeleton ROI  
(Figures 5,6, Table 3) demonstrate that FA values in PD 
patients are significantly reduced compared to those in 
NC cases, primarily distributed in commissural fibers and 
projection fibers. This observation aligns with previous 
research findings (24,44). Notably, decreased FA in PD 
patients’ WM is evident in bilateral anterior thalamic 
radiations (ATRs), corticospinal tracts (CSTs), cingulum 
(cingulate gyrus) (CgC), cingulum (hippocampus) (CgH), 
forceps major (Fma), inferior fronto-occipital fasciculus 
(IFOF), inferior longitudinal fasciculus (ILF), superior 
longitudinal fasciculus (SLF), uncinate fasciculus (UF), and 
superior longitudinal fasciculus (temporal part) (tSLF). 
Among these, bilateral ATR, IFOF, ILF, SLF, and right 
Fma notably exhibit reduced FA values.

The ATR (47) consists of fibers connecting the medial 
thalamic nucleus and the frontal cortex, with the former 
related to memory and emotional regulation and the latter 
associated with motor, memory, and emotional functions. 
The IFOF, spanning from the occipital lobe to the frontal 
lobe, is the longest combined fiber bundle in the brain 

and plays a role in cognitive and attention functions (48). 
The ILF, positioned outside the visual radiation, links 
the anterior temporal lobe and the dorsolateral region 
of the occipital lobe, contributing to visual learning and  
memory (49). The SLF comprises 2 parallel pathways 
connecting the temporal, parietal, occipital, and frontal 
lobes and is associated with language processes (50). The 
Fma, a major fiber bundle, originates from the splenium of 
the corpus callosum and extends to connect the occipital 
lobe. Prior studies have implicated these regions in various 
cognitive and emotional processes. The microstructural 
damage in these regions suggests abnormalities in the brain 
WM of early-stage PD patients, correlating with cognitive, 
attentional, emotional, and other related functional 
impairments occurring in the early stages of PD. Future 
research focusing on changes in these brain WM regions 
and their potential links to specific symptoms may provide 
valuable insights.

The study cohort consisted of 152 PD and 75 NC 
participants, all of whom completed the MoCA. When 
considering the individuals with values from other 
assessment scales (such as Movement Disorder Society 
Unified Parkinson’s Disease Rating Scale, MDS-UPDRS; 
H&Y; University of Pennsylvania Smell Identification 
Test, UPSIT; Geriatric Depression Scale, GDS; Scales for 
Outcomes in Parkinson’s Disease - Autonomic, SCOPA-
AUT, and so on), the number of participants reduces to 
146 in the PD group and 56 in the NC group. Due to the 
limited number of participants, the primary experimental 
framework of this study did not include data from other 
scales. However, statistical analysis of the relevant scales for 
this part of the data is provided in Table S3 (Appendix 1). 
There were significant statistical differences in the results 
of the MDS-UPDRS, H&Y, UPSIT, MoCA, GDS, and 
SCOPA-AUT between the two groups of participants. 
Therefore, the WM fiber bundles with differential regions 
between the two groups are related to both advanced 
cognitive function and motor symptoms, showing that in the 
early stages of PD, the impact of disease on brain structure 
has already affected cognitive and motor functions.

In the early stages of PD, the patient’s cognitive function 
has already experienced certain damage. Due to different 
cognitive functions, there may also be certain differences 
in the structural damage of WM fibers caused by PD (51). 
In this case, MoCA results could indeed reflect cognitive 
dysfunction itself, and therefore can serve as an important 
factor in identifying early suspected PD patients. The WM 
damage reflects the cognitive function of PD patients, 

https://cdn.amegroups.cn/static/public/QIMS-23-1478-Supplementary.pdf
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which can serve as one of the effective diagnostic factors 
and further improve the diagnostic accuracy of the model. 
This is consistent with the research results of this article.

The purpose of this study was to screen and identify 
PD patients early. Cognitive function, as a complex brain 
function, exhibits significant differences between NC and 
PD patients. Therefore, cognitive decline can be one of the 
effective indicators for early diagnosis models of PD. This 
study developed an early diagnosis model for PD based on 
imaging data and clinical MoCA results, which can assist 
clinicians in identifying individuals with early-stage PD as 
much as possible, and initiate intervention measures as early 
as possible to reduce the serious health threats caused by 
the disease.

Artificial intelligence (AI)-based explainable early PD 
prediction model

In the realm of AI, the decision-making process of numerous 
ML or deep learning models often remains opaque to human 
understanding (5,10,40), lacking tangible and reproducible 
results. Particularly in high-risk medical research areas, 
interpretability becomes a pivotal concern (8). This study’s 
strength lies in the model’s ability to select highly disease-
correlated and interpretable features. Moreover, the results 
demonstrate minimal deviation between the unseen dataset 
(test set) and the training set (5-fold cross-validation 
results). This illustrates the model’s smooth operation 
and robust generalization, fostering a certain level of trust 
among end-users, including clinicians (Table 4 and Figure 9).

In conjunction with traditional methods, leveraging 
statistically significant disease lesion areas as neuroimaging 
biomarkers not only enhances our understanding of 
the disease but also assists physicians in formulating 
personalized treatment plans and gauging patient’s 
responses to those plans (52). This approach facilitates real-
time monitoring of disease progression and the evaluation 
of clinical treatment effectiveness, ultimately playing a 
crucial role in treatment selection and prognosis prediction.

Scientific advancements and clinical applications rely 
heavily on independently reproducible research results, yet 
most current research algorithms heavily depend on trained 
models. When replicating methods from the literature, the 
source of biases in the results remains uncertain, especially 
regarding the methods and parameter settings employed 
in the preprocessing phase, which can significantly impact 
outcomes (53). The merit of this study lies in its meticulous 
documentation of key steps and parameters utilized in data 

grouping and preprocessing from the outset, ensuring the 
reliability and reproducibility of the results.

The MoCA (37), developed by Professor Nasreddine in 
2004, served as a rapid screening tool for MCI. It assesses 
various cognitive domains, including attention, executive 
function, memory, language, visual-spatial skills, abstract 
thinking, calculation, and orientation. The scale’s total score 
is 30 points, with a normal control typically scoring no less 
than 26 points. MCI is common in patients with early PD 
before the onset of motor impairment, and is associated with 
the risk of dementia (54). MoCA is currently utilized as a 
global cognitive screening tool and has been recommended 
as a simplified diagnostic tool for assessing MCI within 
the broader context of global cognitive function (55). 
Consequently, it is reasonable to incorporate the MoCA 
scale as a clinical information tool for predicting diseases in 
the development of clinical predictive models (56).

Some previous AI-based interpretable PD prediction models 
have been hindered by small dataset sizes, incorporating as 
few as 45 PD patients (57), 29 PD patients (58), and 44 
PD patients (59). Additionally, some studies have involved 
longer disease durations, with the primary dataset indicating 
disease duration of 10.0±6.2 years, 15.8±13.3 years in 
external datasets (60), or 6.3±4.1 years in mid-to-late stage 
PD (61). The strength of our model lies in its utilization 
of publicly available multi-center datasets for early PD 
prediction, achieving high accuracy (ACC =0.804, AUC 
=0.844 in the test set), underscoring its generalizability.

Limitations, challenges, and future prospects

In the diagnosis of PD, DTI can provide information about 
the WM fiber bundles in the midbrain SN, including their 
integrity and connectivity. By evaluating the microstructure 
and connectivity of the SN in the midbrain, DTI can help 
doctors make a clear diagnosis of PD.

The melanin images and magnetic susceptibility images 
of the SN in the midbrain are usually obtained using other 
MRI techniques. Magnetic susceptibility imaging (MSI) 
is used to display the structure of tissues, whereas melanin 
imaging typically uses a special MRI sequence to display the 
melanin content in the SN of the midbrain.

Although DTI is not directly used to evaluate melanin 
images or magnetic susceptibility images, combining 
DTI and these MRI techniques can provide a more 
comprehensive assessment of the nervous system, helping 
to diagnose and study diseases related to the midbrain SN, 
such as PD (62).
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In future research, we aim to conduct a comprehensive 
analysis of the SN by integrating DTI images with other 
modal MRI images such as MSI. Our goal is to provide 
additional perspectives for the study of diseases related to 
the midbrain SN, including PD.

The TBSS method can effectively compare the structural 
differences of WM fiber bundles in different groups. The 
brain regions with structural differences between PD 
patients and normal cases may be affected by PD lesions 
and require special attention.

Currently, TBSS is primarily applied to DTI images. To 
further extend the application of TBSS, diffusion kurtosis 
imaging (DKI) (63) scans can be performed on suspected 
PD patients in the future, and TBSS calculations can be 
performed on DKI.

DKI is an advanced DTI technique, and compared to 
DTI, DKI is more suitable for detecting WM properties in 
complex fiber regions and can provide richer and relatively 
more detailed microstructure information. In addition 
to obtaining traditional diffusion parameters, such as 
anisotropy of diffusion tensors (FA) and mean diffusion rate 
(MD), DKI introduces unique parameters such as mean 
kurtosis (MK), which can better reflect the complexity and 
non-Gaussian nature or tissue microstructure.

Compared to DTI, DKI can provide a more comprehensive 
set of scalar metrics. MK is more sensitive to complex 
fiber regions than FA and can more accurately estimate the 
diffusion distribution function of water molecules. This 
makes DKI, and particularly MK, valuable for exploring PD 
pathological regions with greater accuracy.

Although this study has yielded highly satisfactory 
results, several limitations need to be recognized: Firstly, 
brain changes in the early stages of PD may already 
exist before clinical symptoms manifest. Consequently, 
DTI may not be the optimal tool for evaluating early 
PD abnormalities, as functional changes might precede 
structural abnormalities. Nevertheless, DTI analysis can 
still serve as a valuable means to distinguish disease stages, 
particularly as FA and MD values could potentially serve 
as quantitative markers for tracking disease progression. 
Secondly, this study adopted a cross-sectional research 
design, whereas longitudinal research methods would be 
better suited to investigate disease progression over time. 
Thirdly, the generalizability of our findings should be 
further validated in a larger population, with particular 
attention to variations in disease severity. The patient 
population in this study is more than twice the size of the 
control group, leading to potential exaggeration of AUC 

and other accuracy metrics; also, the experiment lacked 
external validation, and a larger database of cases could 
solve this problem. To address these limitations, we plan 
to refine our research direction and content in future 
investigations.

Conclusions

This study has successfully constructed an early PD 
prediction model using a large-sample multi-center dataset 
from PPMI. Rigorous screening of DTI sequences from 
cases enrolled at the project’s baseline year, alongside a 
standardized data processing pipeline and data-driven cross-
validation across multiple centers, facilitated the systematic 
evaluation of WM abnormality patterns in PD. Moreover, 
the study assessed the utility and generalizability of WM 
features in PD identification, affirming their potential 
as imaging marker for PD recognition. These findings 
offer a promising avenue for future clinical translational 
applications in PD diagnosis and management.
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