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Abstract: There has been an increased application of exopolysaccharide (EPS)-producing lactic
acid bacteria (LAB) in fermented dairy products, but interactions between EPS and casein (CAS),
and bioactivities of their complex are poorly studied. In this study, EPS produced by Lactobacillus
plantarum YW11 (EPS-YW11) was studied for interactions with CAS in a simulated fermentation
system acidified by D-(+)-gluconic acid δ-lactone. The results showed that there was interaction
between EPS-YW11 and CAS when EPS (up to 1%, w/v) was added to the casein solution (3%, w/v)
as observed with increased viscoelasticity, water holding capacity, ζ-potential and particle size of
EPS-YW11/CAS complex compared with CAS alone. Microstructural analysis showed that a higher
concentration of EPS facilitated more even distribution of CAS particles that were connected through
the polysaccharide chains. Infrared spectroscopy further confirmed interactions between EPS and
CAS by intermolecular hydrogen bonding, electrostatic and hydrophobic contacts. Further evalu-
ation of the bioactivities of EPS-YW11/CAS complex revealed significantly increased antibiofilm,
antioxidation, and bile acids binding capacity. The present study provides further understanding
on the mechanism of interactions between EPS produced by LAB and CAS, which would benefit
potential applications of EPS in fermented dairy products with enhanced functionality.
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1. Introduction

The exopolysaccharide (EPS) produced by lactic acid bacteria (LAB) is a type of
high molecular weight carbohydrate polymer secreted outside the cell wall during their
growth [1]. EPS has been reported with various bioactivities, such as antioxidation, anti-
tumor, anti-bacteria, anti-mutagen, immune regulation, and adjustment of gastrointestinal
floral balance [2]. During the last decade, EPS-producing LAB have been increasingly used
in fermented dairy foods in the improvement of texture and mouthfeel of the products [3].
It has been reported that EPS can interact with milk proteins to generate spatial barriers
among themselves, thus changing the viscosity, rheology and taste of fermented dairy
products, preventing whey separation and gel breakage in yogurt [4,5]. Interaction between
EPS and proteins also affected aggregation properties of milk protein clusters due to the
formation of a network structure [6], but the mechanism of interactions between these
polymers is not well understood.

Casein (CAS), which consists of αs1-, αs2-, β-, and κ-casein at a weight ratio of 4:1:4:1,
constitutes the major part of milk proteins [7]. CAS is present as stable micellar structures
in aqueous solutions due to the molecular self-assembly of its distinct hydrophobic and
hydrophilic domains [8]. The amphiphilicity of CAS molecules enhances their surface
activity, water-holding capacities, and emulsifying properties, as well as the ability to bind
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to ions or small molecules [9]. CAS has been increasingly used to improve the texture,
shelf life, and nutritive value of emulsions by interaction with biomolecules to form
complexes and conjugates with synergistic combinations of properties [10]. The interaction
between CAS and EPS was dependent on the system environment (pH, temperature,
ionic strength, etc.), and the structural properties of these two substances (molecular size,
charge, and charge distribution, etc.) [10]. Fermented milk containing EPS that might
interact with CAS was found with greater shear stress, hysteresis loop area, viscosity,
water-holding capacity, and gel strength [11]. EPS was found to promote agglomeration of
CAS micelles and recovery of gel structure of yogurt upon shearing [12].

Lactobacillus plantarum (L. plantarum) YW11 was previously isolated from Tibet kefir
in our laboratory, and it was shown to produce an EPS (EPS-YW11) at 131.26 mg/L in a
semi-defined medium (SDM) [13]. EPS-YW11 was characterized as an anionic polysac-
charide composed of glucose and galactose at a molar ratio of 2.71:1, with the possible
presence of N-acetylated sugar residues. EPS-YW11 exhibited a relatively strong ability
of binding moisture and high heat stability due to its highly branched and porous struc-
ture [14,15]. EPS-YW11 also possessed several bioactivities, e.g., anti-tumor, anti-ulcer,
serum cholesterol reduction and immunoregulation [16]. In the present study, interaction
between EPS-YW11 and CAS was studied under acidic conditions by using glucoronic acid
(GDL) as an acidifying agent to simulate the lactic fermentation process [17]. Formation
of the EPS-YW11/CAS complex under the acidic condition was evaluated by various
analyses including microrheology, texture profile analysis (TPA), particle size distribution,
transmission electron microscopy (TEM), ζ-potential, and infrared spectroscopy (IR). Bioac-
tivities of the EPS-YW11/CAS complex such as bile acid binding, antioxidant activities and
antibiofilm were also studied. This study provides further understanding of the mecha-
nism of interactions between EPS-YW11 and CAS, which may facilitate exploitation of the
potential application of EPS-producing LAB in functional fermented dairy products.

2. Materials and Methods
2.1. Materials

L. plantarum YW11 was maintained as frozen (−80 ◦C) stocks in SDM medium sup-
plemented with 20% (v/v) glycerol and adjusted to pH 6.6 with 1 M acetic acid [18,19]. L.
plantarum YW11 was revitalized in SDM medium by two overnight sub-culturing events at
37 ◦C before use for preparation of EPS.

CAS was purchased from Beijing Mreda Technology Co. Ltd. (Beijing, China), and D-
(+)-gluconic acid δ-lactone (GDL) from Beijing Hua Wei Rui Ke Chemical Co. Ltd. (Beijing,
China), chenodeoxycholic acid (CDCA) from Sigma–Aldrich (St. Louis, MO, USA), total bile
acids (TBA) kit and total antioxidant capacity (T-AOC) kit from Nanjing Jiancheng Bioengi-
neering Institute. Potassium dihydrogen phosphate, potassium citrate, potassium sulfate and
calcium chloride were purchased from Beijing Pinellia Technology Development Co., Ltd.
(Beijing, China). Sodium hydroxide, sodium citrate, and potassium chloride were pur-
chased from Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai, China).
Sodium dihydrogen phosphate and disodium hydrogen phosphate were purchased from
Sinopharm Group Chemical Reagent Co. Ltd. (Beijing, China). All reagents were of
analytical grade.

2.2. Preparation of EPS Samples

EPS produced by L. plantarum YW11 in a SDM was isolated by ethanol precipitation,
purified by DEAE-cellulose and sepharose CL-6B chromatography, and then analyzed as
described earlier [14]. The purified EPS sample, which contained 92.35 ± 2.38% polysac-
charide, 2.52 ± 0.12% moisture, 1.56 ± 0.09% uronic acids and 1.38 ± 0.25% protein as
previously determined [14], was used in the preparation of EPS-YW11/CAS sample for
our study.
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2.3. Preparation of EPS-YW11/CAS Samples

Simulated milk ultrafiltrate (SMUF) was prepared using 1.58 g/L potassium dihydro-
gen phosphate, 1.2 g/L potassium citrate, 2.12 g/L sodium citrate, 0.18 g/L potassium
sulfate, 1.32 g/L calcium chloride, 0.65 g/L magnesium chloride, 0.30 g/L potassium
carbonate, and 0.60 g/L potassium chloride [20]. The SMUF was adjusted to pH 6.7 with
0.1 M sodium hydroxide. EPS-YW11/CAS complex samples for different analyses of this
study were prepared as described previously [21,22]. Briefly, CAS powder (3%, w/v) was
added to SMUF, stirred for 20 h at 4 ◦C, then stirred for 30 min at 95 ◦C till it was com-
pletely dissolved. Subsequently, different proportions (0%, 0.25%, 0.50%, 0.75%, and 1%)
of EPS were added to the CAS suspension in SMUF (20 mL), and the pH was adjusted
to 6.7 after EPS was completely dissolved. GDL (1%) was then added to the mixture to
be maintained at 42 ◦C, and the change of pH and rheology was monitored till the pH
reached 4.5. The iCinac dairy fermentation monitor (AMS Alliance, Rome, Italy) was used
to monitor the pH changes during the simulated fermentation process. Data were collected
every 1 min and measured for 2.5 h.

2.4. Microrheological Analysis

Microrheological analysis was performed during the simulated fermentation process
of the samples upon addition with GDL. The sample solution (20 mL) was transferred into
a special sample cell of the microrheometer (Rheolaser Master, Formulation Inc., Toulouse,
France), and the test program was run. The changes in the elasticity index (EI), viscosity
index (MVI), and fluidity index (FI) of the samples were monitored over time during the
acidification process at 42 ◦C. Data were collected every 2 min and measured for 2 h.

2.5. Texture Profile Analysis

Analysis of hardness, viscosity, cohesion, and adhesion of the samples was performed
with a texture analyzer (Brook-Field, Middleboro, MA, USA), using a cylindrical TA10
probe at 10 mm test distance, at 2.0 mm/s pre-test speed, 0.50 mm/s test speed, 0.50 mm/s
return speed, and 20.0 points/s data frequency over three loop tests.

2.6. Water-Holding Capacity Analysis

Water-holding capacity (WHC) of the CAS clot sample was determined in a centrifuge
tube. Centrifugation was performed at 25 ◦C at 2800× g for 10 min. The supernatant was
removed, and the centrifuge tube was inverted for 10 min and then immediately weighed [23].

WHC (%) = weight of centrifuge sediment/weight of sample × 100% (1)

2.7. Measurement of ζ-Potential

The electrical characteristics (ζ-potential) of the particles in solution were determined
by measuring the electrophoretic mobility (Zetasizer Nano-ZS90, Malvern Panalytical,
Malvern, UK). Sample solutions (2.0 mg/mL) were in the folded capillary cell and sealed
with two stoppers. The cells were then mounted to determine the ζ-potential of the
molecules. The ζ-potential tests were performed in triplicate.

2.8. Particle Size Analysis

The particle size distribution of the samples was determined with a laser particle size
analyzer (LS13320, Beckman Coulter, CA, USA). After the sample was stirred evenly, it was
slowly added dropwise to the water tank of the particle size analyzer till the test system
reached the turbidity of 40%, then the particle size was determined. All samples were
measured three times.

2.9. Infrared Spectral Analysis

The infrared spectra of the samples were acquired by using the total-reflectance
mode of a Fourier transform infrared (FT-IR) spectrometer (Nicolet 6700, Thermo Fisher,
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Waltham, MA, USA). Samples were freeze-dried and mixed with potassium bromide (KBr)
at a ratio of 1:100, and then compressed into tablets. Measurements were performed in the
mid-infrared region (400–4000 cm−1). All samples were analyzed three times under the
same conditions.

2.10. Transmission Electron Microscopy

TEM analysis was performed to observe the molecular morphology of the sample.
To prepare TEM samples, one drop of the complex suspension was placed on a copper
grid and stained with 2% phosphotungstic acid, which was then air dried overnight.
The grid was placed in the microscope for imaging at 100 kV accelerating voltage, while the
images were taken on a Gatan electron energy loss spectrometry system using a 6 eV
energy slit [24].

2.11. Bile Acid Binding Capacity

The bile acid binding capacity of the samples was examined using a reported method
slightly modified [25]. In brief, each EPS-YW11/CAS sample (10 mg) was added to 1 mL of
1 mM CaCl2 solution. Subsequently, 100 µL of 0.01 M HCl was added while gently shaking
at 37 ◦C. 10 µL of 0.01 M NaOH was added to neutralize the mixture, and then 500 µL of
400 mM CDCA solution was added. Reaction in the simulated intestinal fluid was carried
out at 37 ◦C for 1 h. A total of 100 µL of supernatant was taken, and a TBA kit was used to
determine bile acid. The absorbance was measured at 405 nm.

2.12. Determination of Total Antioxidant Capacity

The EPS-YW11/CAS sample was diluted four times to obtain a transparent solution.
According to the kit instructions of the Nanjing Jiancheng Institute of Biological Engi-
neering, T-AOC of the sample was measured in a 96-well microplate. The OD value was
measured at 405 nm using a microplate reader (Thermo, USA). T-AOC of the sample was
calculated as follows: T-AOC = Asample − Acontrol. Asample is the absorbance of the
sample and ABTS (2,2′-azino-bis 3-ethylbenzthiazoline-6-sulfonic acid) working solution,
and Acontrol is the absorbance of water and ABTS working solution [2].

2.13. Assay of In Vitro Anti-Biofilm Activity

The concentration of activated Staphylococcus aureus CMCC 26071, Enterobacter sakazakii
CICC 21544, Shigella flexneri CICC 21534, and Salmonella typhimurium CICC 22,956 was
adjusted to 1.0 × 108 cfu/mL. The EPS-YW11/CAS sample was formulated as an aqueous
solution with a concentration of 1.0 mg/mL (0.22 µm membrane filtration sterilization).
A total of 100 µL of bacterial solution was taken, and 100 µL of the sample was mixed
with it evenly and added to a 96-well microplate. The negative control well contained
only medium. The samples were incubated at 37 ◦C for 24 h. Then the wells were washed,
and the adhered cells stained with 2% (w/v) crystal violetto, which was solubilized with
0.16 mL of 33% (v/v) glacial acetic acid per well for the measurement of optical density
(OD) at 590 nm. The biofilm inhibition rate was calculated as follows: inhibition rate (%)
= [1 − (ODsample/ODcontrol)] × 100%. Each data point was averaged from three replicate
wells, and the standard deviation (SD) was calculated.

2.14. Statistical Analysis

All experiments were performed in triplicate, and the experimental data were analyzed
by one-way ANOVA with Fisher’s least significant difference (LSD) method by using SPSS
22.0 software (IBM, Armonk, NY, USA). p < 0.05 indicated significant difference. Origin 8.5
software (OriginLab, Northampton, MA, USA) was used for mapping.
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3. Results and Discussion
3.1. pH Analysis of GDL-Simulated Fermentation Process

GDL can be hydrolyzed to produce gluconic acid, which lowers the pH of the milk
system and causes protein to aggregate, precipitate and form gels [26,27]. Using GDL to
simulate the fermentation process of yogurt has the advantage of good repeatability and
can avoid potential differences caused by the growth of lactic acid bacteria [12]. The pH
change of the EPS-YW11/CAS complex during the GDL-simulated fermentation process
over time is shown in Figure 1A. The pH curves of all samples had roughly the same
decreasing trend of pH with the acidification process by GDL. An increasing concentration
of EPS resulted in a faster decrease of pH in the EPS-YW11/CAS complex, while CAS alone
showed the slowest decrease of pH. This suggested that the interaction between EPS-YW11
and CAS was beneficial to the formation of the clot upon decreasing pH [28].
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Figure 1. The pH and microrheological analyses of EPS−YW11/CAS complex during the GDL−simulated fermentation
process. (A): change in pH; (B): change in EI; (C): change in MVI; (D): change in FI of EPS−YW11/CAS complex with
increasing EPS concentration up to 1% (w/v). EPS−YW11: exopolysaccharide produced by L. plantarum YW11; CAS: casein;
GDL: D− (+)−gluconic acid δ-lactone; EI: elastic index, MVI: macroscopic viscosity index; FI: fluidity index.

3.2. Microrheological Analysis

Microrheological analysis can be performed with an optical microrheometer to moni-
tor the movement of particles without damaging the sample [29]. During the fermentation
process of yogurt, the microstructure and rheological properties of the milk-based mixture
upon inoculation with the LAB culture change significantly from fluid to formation of a gel
structure [30]. Plots of elastic index (EI), macroscopic viscosity index (MVI), and fluidity
index (FI) as a function of time reflect changes of the elasticity, viscosity, and fluidity of
the sample, respectively [31]. The rheological change of the GDL-simulated fermentation
process over time of the EPS-YW11/CAS complex sample is shown in Figure 1B–D. The EI,
MVI, and FI of all samples had roughly the same trend over time, but the specific values of
the rheological properties under different conditions showed certain differences. The vis-
coelastic changes of each group of samples in the acidification process with time could be
roughly divided into three stages. In the early stage of acidification, the samples were in a
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state of low viscosity, low elasticity, and high fluidity. Subsequently, within 20–60 min of
acidification, there were rapid changes in elasticity, viscosity and fluidity of the samples
due to protein aggregation and gelation reaction (Figure 1A). Specifically, the elasticity
increased significantly (p < 0.05) when the addition of EPS-YW11 was increased to 1%,
indicating that the interaction between EPS and CAS improved viscoelasticity of the EPS-
YW11/CAS complex. Previously, excluding the EPS effect, GDL induced gelation of milk
causing an obvious decrease of viscoelasticity and fluidity when the pH value of milk
decreased to about 5.2. In the final stage, with further extension of time, the changes in
elasticity, viscosity, and fluidity of the EPS-YW11/CAS complex slowed down when the
pH reached 4.5, and a stable gel formed with a slight increase in MVI and decrease in FI
probably due to a certain degree of dehydration of the samples [32].

3.3. Texture Profile Analysis

A texture profile analysis by simulating human chewing of food has been widely
used to evaluate textural properties of solid and semi-solid foods [33]. The texture of
fermented food is closely related to its internal structure as reflected by its hardness,
viscosity, and adhesiveness [34]. As shown in Table 1, increasing the addition of EPS-
YW11 from 0.25% to 1% (w/v) resulted in decreased hardness, adhesiveness and increased
viscosity of the EPS-YW11/CAS complex samples, but cohesion of the samples were not
obviously affected (p > 0.05). This might be due to increased interactions of EPS with CAS
when more EPS was added, leading to less hard and adhesive samples [35–37]. Previously,
Zhang et al. [38] reported that EPS could affect the textural properties of a yogurt clot by
decreasing its hardness.

Table 1. The hardness, viscosity, cohesion, and adhesion of the EPS−YW11/CAS complex at EPS
concentrations up to 1% (w/v).

EPS-YW11 (%) Hardness (g) Viscosity (mJ) Cohesion Adhesion (g)

0 71.3 ± 5.01a 0.03 ± 0.01d 0.64 ± 0.03a 42.6 ± 2.34a
0.25 66.3 ± 4.54a 0.09 ± 0.01bc 0.63 ± 0.02a 41.9 ± 2.25a
0.5 49.8 ± 3.58b 0.08 ± 0.01c 0.65 ± 0.01a 32.4 ± 2.08b

0.75 34.4 ± 2.64c 0.09 ± 0.02bc 0.67 ± 0.02a 23.2 ± 1.48c
1 29.0 ± 2.21d 0.11 ± 0.01a 0.66 ± 0.01a 19.2 ± 1.45c

The results are represented as mean ± SD (n = 3). Different letters in the same column indicate significant
difference (p < 0.05).

3.4. Water-Holding Capacity

WHC is an indicator of the ability of a gel to bind water. The better the WHC of the
gel, the stronger the force of the gel to bind water, and the better the stability of the gel [39].
The WHC of fermented milk played a key role in extending the shelf life of the products [40].
Figure 2A shows that the WHC of the EPS-YW11/CAS samples increased significantly
(p < 0.05) when more EPS was added. The WHC reached 56.7% when EPS was at 1% (w/v),
which was 19.9% higher than that obtained with CAS alone. Previously, EPS was shown to
significantly increase the viscosity of the clot and reduce dehydration [41]. Dehydration of
the clot system during the storage of yogurt might cause weakening of the gel network
structure [42]. In the presence of EPS, the gel did not undergo dehydration immediately
under stirring conditions [33]. Interaction of EPS with bound water, CAS, and colloidal
particles played an important role in improving WHC and limiting syneresis of dairy
products [43]. The milk fermented by the strain Ldb2214 producing EPS showed good
WHC value [43].
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Figure 2. Changes of water-holding capacity, ζ-potential, particle size and infrared spectra of
EPS−YW11/CAS complex during the GDL−simulated fermentation process. (A): change of
water−holding capacity; (B): change of ζ−potential; (C): change of particle size; (D): change of
infrared spectra of EPS−YW11/CAS complex with increasing EPS concentrations up to 1% (w/v).
The results are represented as mean ± SD (n = 3). Values with different stars were significantly
different from the control group (* p < 0.05, ** p < 0.01, *** p < 0.001). EPS−YW11: exopolysaccharide
produced by L. plantarum YW11; CAS: casein; GDL: D−(+)−gluconic acid δ-lactone.

3.5. ζ-Potential Analysis

ζ-Potential is typically used to describe the surface charge of colloidal particles in
colloidal chemistry. The greater the absolute value of the ζ-potential, the more stable
the colloid [44]. The results in Figure 2B showed that the potential of the samples was
always negative. The absolute value of the ζ-potential increased with the addition of EPS-
YW11, reaching the maximal value of −13.76 mV at the EPS concentration of 0.75% (w/v),
which suggested the presence of electrostatic interactions between EPS and CAS [45]. In the
whey protein concentrate solution added with pullulan, the electrostatic interactions also
played a great role during the gelation [46]. The enhanced charge density of molecules or
dispersed particles upon addition with EPS suggested improved stability of the mixture [47].
The addition of EPS333 to the CAS solution at pH 6.0 was found to increase ζ-potential
and thus improve stability of the mixture [48].

However, when the addition of EPS increased to 1% (w/v), the absolute value of
the ζ-potential decreased, which might be due to the steric barrier caused by excess EPS
molecules, leading to a weakened electrostatic interaction between the particles in the
system and thus reduced stability of the system [49]. Therefore, a change in the ζ-potential
of the system, as described above, indicated a possible shift in the affinity type between
CAS and EPS-YW11 during acidification.

3.6. Particle Size Analysis

The interaction of biopolymers may result in changes of the particle size and distri-
bution of the dispersion system that in turn affect its surface area, turbidity, bulk density,
and macroscopic properties [50]. As shown in Figure 2C, the increasing addition of EPS-
YW11 up to 1% (w/v) resulted in increased particle size of the EPS-YW11/CAS complex
(870–1150 nm). This might be due to the increased interaction between EPS and CAS
molecules to form more macromolecular complexes as the strength of the force between
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the protein molecules reduced [38]. Electrostatic interaction was found to be the major
driving force for polysaccharide/CAS complexation, and its particle size was dependent
on the concentration of the polysaccharide [24].

3.7. Infrared Spectral Analysis

FT-IR spectroscopy is an effective method to evaluate the binding interaction for
complex formation and the secondary structure changes in CAS after the addition of
polysaccharide [24]. As shown in Figure 2D, the FT-IR spectrum of the EPS-YW11/CAS
complex samples demonstrates a broad peak at 3396 cm−1, which is attributed to the
strong –OH stretching vibration absorption [51]. The strong absorption peak at 1653 cm−1

corresponds to the stretching vibration of the C=O bond, and the absorption at 1536 cm−1

to the C-N bending of amides II of protein [14]. The absorption peak around 1232 cm−1

is attributed to the N-H bending of amides III of protein. The absorption peak around
1056 cm−1 and 580 cm−1 might be a symmetrical absorption peak of the pyranose ring
C–O–C [52]. The intensity change and spectral shift at 1653 cm−1 (mainly C=O stretch) are
related to the change of the secondary structure of the protein [53,54].

Figure 2D also shows that the absorption peaks of CAS (without addition of EPS)
do not shift significantly after binding with EPS-YW11 at the concentration from 0 to 1%
(w/v). The increased intensities of the absorption peaks of CAS suggest increased random
coil structures of the protein upon addition of more EPS. The change in the intensity
of the absorption peak (at 1653 cm−1) is due to EPS-YW11 binding to the C=O of CAS
via hydrogen bonding and hydrophobic contacts [55]. Moreover, the broadening of the
absorption peak at 3396 cm−1 for CAS also verifies the existence of hydrogen bonds
and O–H stretching in EPS-YW11/CAS complexes, indicating that the intermolecular
hydrogen bonds contribute to interactions of polymers [56]. Therefore, FT-IR spectroscopy
confirmed the presence of molecular interactions between CAS and EPS-YW11 in different
forms of force, and the secondary structure of CAS changed due to its binding with the
polysaccharide.

3.8. Microstructural Characteristics

Microstructures of the EPS-YW11/CAS complex samples as observed by TEM in
comparison with those of EPS-YW11 and CAS are shown in Figure 3. EPS-YW11 was
shown to be a highly branched and porous structure (Figure 3A), while CAS was randomly
distributed in a spherical shape (Figure 3B). After acidification with GDL, CAS aggregates
formed (Figure 3C). However, with the increasing addition of EPS-YW11 up to 1% (w/v),
the CAS aggregates were dispersed to smaller aggregates (Figure 3D,E), and they became
more evenly distributed with CAS connected and distributed in the composite through
the polysaccharide chains (Figure 3F,G) [57]. Similarly, the CAS/κ-carrageenan complex
existed in aggregates with CAS micelles connected to each other by κ-carrageenan chains
and randomly distributed in the aggregates as revealed by TEM [58]. Thus, interactions
between CAS and EPS-YW11 resulted in more uniform texture of CAS/EPS-YW11 complex
that was beneficial for application in foods with improved textural properties.
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3.9. Anti-Biofilm Activities of EPS-YW11/CAS Complex

Some EPSs produced by LAB may act as signaling molecules to regulate gene ex-
pression involved in bacterial biofilm formation, thus mediating anti-biofilm activity [59].
EPS (5.0 mg/mL) from L. plantarum YW32 was shown with a strong ability to inhibit
biofilm formation by several pathogens such as Shigella flexneri (44.67%), Staphylococcus
aureus (45.13%), and Salmonella typhimurium (44.04%) [60].

As shown in Figure 4, EPS produced by L. plantarum YW11 showed different anti-
biofilm activities against Salmonella typhimurium CICC 22956, Enterobacter sakazakii CICC
21544, Staphylococcus aureus CMCC 26071, and Shigella flexneri CICC 21534. CAS alone
had no effect on the formation of biofilm (data not shown). However, all EPS-YW11/CAS
complex samples with different concentration of EPS from 0.25 to 1% (w/v) exhibited
significantly higher (p < 0.05) anti-biofilm activities than EPS alone. Increased activities
of EPS-YW11/CAS complex samples were observed with higher concentrations of EPS,
reaching the highest activity (60.21%) on Staphylococcus aureus CMCC 26,071 at 1% of EPS.
This indicated the existence of interactions between EPS-YW11 and CAS that played an
important role in the enhanced anti-biofilm activity of the EPS-YW11/CAS complex.

3.10. Antioxidant Activity of EPS-YW11/CAS Complex

The antioxidant activity of samples can be evaluated by determining their total antiox-
idant capacity. As shown in Figure 5A, the antioxidant activities of all EPS-YW11/CAS
complex samples were higher than those of EPS-YW11 and CAS alone. The antioxidant
activity of the EPS-YW11/CAS complex increased with the increase in EPS concentration,
reaching the highest value (0.72) at 1% (w/v) of EPS. This indicated interaction between EPS
and CAS that increased antioxidant activity of the EPS-YW11/CAS complex. Previously,
EPS-YW11 (up to 3.0 mg/mL EPS) was shown with strong antioxidant activity by both
in vivo and in vitro tests [16]. The antioxidant effect of polysaccharides was related to
their structural characteristics such as chain conformation, monosaccharide composition,
and molecular weight of the polymers [61]. Therefore, interactions between EPS and CAS
resulted in increased antioxidant capacity of the EPS-YW11/CAS complex probably due to
the change of the polysaccharide structure.
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3.11. Bile Acid Binding Capacity of EPS-YW11/CAS Complex

Macromolecular networks with tighter connections and more branches were shown
to possess a better ability of binding bile acids in relation to the concentration [62].
Polysaccharides could effectively bind bile acid, exhibiting good hypolipidemic effects
in vivo [63]. EPS produced by L. plantarum YW11, which had a highly branched and
porous structure [14], was capable of binding bile acids in a concentration dependent
manner (Figure 5B). Although CAS alone could not bind bile acids (data not shown),
the EPS-YW11/CAS complex showed a higher capacity of binding bile acids than EPS
alone. The bile acid binding capacity of the EPS-YW11/CAS complex increased with in-
crease in EPS concentration from 0.25 to 1% (w/v), reaching the highest value (0.244 mg/g)
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at 1% (w/v) of EPS. This indicated interactions between EPS and CAS that resulted in the
formation of a more complex network structure, promoting the binding of bile acids by
the EPS-YW11/CAS complex. Previously, polysaccharides extracted from loquat leaves
exerted remarkable in vitro binding capacities for bile acids [64]. Moringa oleifera leaf
polysaccharide fraction with the highest galactose content and a large proportion of linear
macromolecules exhibited the strongest bile acid binding capacity with potential hypolipi-
demic effects [65].

4. Conclusions

In this study, interactions between EPS (0%, 0.25%, 0.5%, 0.75%, and 1%, w/v) pro-
duced by L. plantarum YW11 and CAS were studied by different analytical methods,
and bioactivities of EPS-YW11/CAS complex were evaluated. During the GDL-simulated
acidification process, the increased addition of EPS caused a faster decrease of pH of the
complex. Microrheological studies showed that the viscoelasticity of the EPS-YW11/CAS
complex was improved when compared with CAS alone. Addition of EPS at higher con-
centrations increased WHC and viscosity, but decreased hardness and adhesiveness of
the EPS-YW11/CAS complex, though cohesion of the samples was not obviously affected
(p > 0.05).

Complexation between EPS-YW11 and CAS also increased the particle size and ζ-
potential of the complex. Infrared spectroscopy confirmed interactions between EPS and
CAS by intermolecular hydrogen bonding, and electrostatic and hydrophobic contacts,
which caused changes of the secondary structure of CAS. Further microstructural anal-
ysis showed a more uniform texture of CAS/EPS-YW11 complex could be formed with
increased EPS concentration, which was beneficial for application in foods with improved
textural properties. Evaluation of the bioactivities of the EPS-YW11/CAS complex re-
vealed significantly improved antibiofilm, antioxidation, and bile acids binding capacity
compared with those of EPS-YW11 or CAS alone. Therefore, it would be of interest to
further explore EPSs produced by LAB by employing effective interactions with casein for
potential applications in functional dairy products.
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