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T
he UK Prospective Diabetes Study (UKPDS)
orchestrated by Robert Turner showed that,
even with treatment, in type 2 diabetes a pro-
gressive �-cell dysfunction in a large number of

patients was seen with the eventual need for additional
oral antihyperglycemic medication and even insulin treat-
ment (1). Such a progression could be from a continued
loss of �-cells, a progressive functional change, or from
the combination of both. During the decades when type 2
diabetes was considered mainly a disease of insulin resis-
tance, many older pathology studies that focused on the
islets in diabetic pancreata were ignored. However, with
the renewed appreciation of the role of the pancreatic
�-cell in type 2 diabetes, new studies have focused on
what happens to the �-cells in type 2 diabetes. This
perspectives in diabetes article will present what we know
and still need to know about the islets in type 2 diabetes.
Islet architecture in human pancreas. The islets of
most mammalian species have a nonrandom pattern with
a core of �-cells surrounded by a discontinuous mantle of
non-�-cells one to three cells thick (2,3). However, islets
of human and other primates have a more complex
arrangement with many different islet profiles, including
cloverleaf patterns. The profile differences have led to
controversy about whether they actually have a mantle-
core arrangement (3) or were random (4 – 6). In three
dimensions, human islets can be considered as compos-
ites of several mantle-core subunits (7) or as lobulated
with mantle-core lobules (3). In smaller islets, the
rodent mantle core subunit arrangement is maintained,
but in larger islets irregular fusion of such subunits are
seen (Fig. 1). Most of the non-�-cells are found along
penetrations of islet vasculature between subunits and
the periphery (3,4), thus maintaining a mantle-core
arrangement. Histologically, islets in the type 2 diabetic
pancreas do not appear to differ from those of the
nondiabetic pancreas, except for the presence of amy-
loid, as discussed below. Many years ago, pathologists
reported “hydropic degeneration” seen as vacuolization
in islets from diabetic persons. This vacuolization was
due to extraction during histological processing (8) of
large glycogen stores accumulated during poor meta-

bolic control; it is less commonly reported now that it is
understood. Fibrosis, particularly along the islet micro-
vasculature, has also been previously reported but has
since been found to occur equally in nondiabetic pan-
creata (9).
Cell composition of human islets. The �-cell composi-
tion in human islets has been reported in a number of
studies presented as percentage on the basis of cell
number or cell volume, with ranges of 52–75% in nondia-
betic adults (10–16). The measure of proportion is further
complicated because the probability of seeing a nucleus in
a 1-�m optical section is higher in non-�-cells than in
�-cells since the nuclear volumes are comparable but the
cell volume of �-cells is more than twice that of non-�-
cells. Unlike rodent islets, the islets within a single human
pancreas are highly variable in composition (Fig. 1); there
are occasional large islets seen with a majority of glucagon-
positive cells (11,15), and islets from the pancreatic
polypeptide (PP)-rich uncinate process are mainly PP
cells, with �-cells being only 32.7 � 7.8% as compared with
65.5 � 4.9% in the rest of pancreas (12). (Similar values
have been reported by Stefan et al. [10].) Because of this
variability within a pancreas, it is imperative that a large
number of islets are measured. In our studies (S.B.-W.)
using ultrastructural analysis to determine cell type and
cell boundaries, we found 72.8 � 1.7% �-cells/islet in islets
isolated from 41 pancreata. However, in studies using
laser-scanning confocal microscopy on fewer islets, the
�-cell number in islets was estimated to be 55% (2–5
islets/section, 5 pancreata) (5) or 53.9 � 2.5% (32 islets
isolated from 6 pancreata) (6). Thus, for comparison of
cell composition in islets from type 2 diabetic and nondi-
abetic pancreata, it is important to use data from the same
study. For example, by measuring cell volume, Butler et al.
(16) found that islets from lean nondiabetic subjects have
52.0 � 4.1% �-cells, but islets from lean diabetic subjects
have only 38.0 � 3.9%; Yoon et al. (15) reported 59 � 10.3%
and 68.8 � 12.2% for nondiabetic control subjects but
38.3 � 12.4% for diabetic subjects; and Maclean and
Ogilive (17) found 74.8% for nondiabetic subjects and 63%
for diabetic subjects. Thus, in three studies, there is at
least a tendency for the percentage of �-cells per islet to be
decreased in type 2 diabetes.
Pancreatic weight. Pancreatic volume changes with age
and obesity but is quite variable as measured by computed
tomography (18). Most studies do not provide the pancre-
atic weights or volume, but even with similar (European)
adult populations, major differences have been reported.
Rahier et al. (14) reported mean pancreatic weight from 20
control patients as 85.4 g, from 4 type 1 diabetic patients as
40 g, and from 7 type 2 diabetic patients as 70.9 g; data
from only the type 1 diabetic pancreata were reported to
be statistically different. However, Kloppel et al. (13)
divided their data between obese and nonobese and found
no differences in the more selective measure of pancreatic
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parenchyma volume (equivalent of pancreatic volume
without the fat cells) among nonobese control subjects,
nonobese type 2 diabetic subjects, and obese type 2
diabetic subjects (40 � 11, 30 � 10, and 40 � 13 ml,
respectively), but a twofold increase in pancreatic paren-
chyma volume in obese nondiabetic subjects (80 � 28 ml).
Thus, in this study, pancreata from obese type 2 diabetic
subjects are reduced in expected volume as compared
with those from obese nondiabetic subjects. Using a
different technique to make such estimates, a recent study
measured pancreatic parenchymal volume by computed
tomography: with 460 lean and 230 obese patients, the
parenchyma volume was still significantly increased, but
only by 10%, in the obese (48.7 � 18.0 [SD] cm3) compared
with the lean subjects (43.2 � 15.7 cm3); here, type 2
diabetes pancreata (n � 165) were 7–8% decreased in
parenchymal volume without stratification as to obesity
(18). The trends of changes in pancreatic weight/volume
are consistent in these three studies, even if the values
differ. The finding that pancreatic volume/weight differs
with obesity and with diabetes is important in evaluating
recent studies that only measured relative �-cell volume
(percent relative to pancreas) and not absolute �-cell
mass/volume, which is the product of the relative �-cell
volume and the pancreatic volume/weight.
Changes in �-cell mass in obesity. As early as 1933, it
was suggested that many obese individuals had abnor-
mally high islet volume density (number of islets per area)
(19). However, it was not until 1985 that increased �-cell
mass in nondiabetic obese people was clearly shown,
albeit with a low number of pancreata (13). �-cell mass is
used to indicate the total volume of �-cells within a
pancreas without regard to number or size of the �-cells.
In rodents it has been clear that there is a compensatory
increase in �-cell mass in response to insulin resistance or
obesity (20), so we assume a similar increase in humans is
compensatory. In 2003 two studies with more human
pancreata convincingly showed a compensatory increase
in �-cells with increasing BMI. Using a morphometric
approach on multiple sections of each of nine weighed
pancreata, Yoon et al. (15) showed a linear relation
between body weight and �-cell mass in a Korean popu-
lation. Butler et al. (16) showed increased �-cell volume

density in 35 pancreata from nondiabetic obese people
from Minnesota, about a 50% increase in the percentage of
pancreatic volume comprised of �-cells (%, relative �-cell
volume) (2.6 � 0.4% in obese nondiabetic individuals vs.
1.7 � 0.3% in lean nondiabetic individuals). Because the
evidence discussed above suggests that, in obesity without
diabetes, pancreatic parenchymal volume also increases,
the actual increase of �-cells may be enhanced to even a
greater degree.
Changes in �-cell mass in type 2 diabetes. The contro-
versial aspect of islet pathology in type 2 diabetes has been
whether there is a decrease in �-cell mass or just a
functional decrease. Older studies such as that by Maclean
and Ogilvie (17) showed decreased �-cell mass in diabetes
but did not distinguish between type 1 and type 2 diabetes,
even though the age at onset roughly categorizes their
cases. While several groups have maintained there is no
significant decrease in �-cell mass in type 2 diabetes
(11,14,21,22), most studies have shown a 40–60% de-
crease, particularly compared with pancreata from nondi-
abetic individuals of similar body weight or BMI. Using
morphometric analysis on multiple sections throughout
each pancreas, studies several decades ago estimated
absolute �-cell mass (pancreatic weight � relative �-cell
volume) in pancreata from diabetic subjects. One study
reported 40% decreased �-cell mass (in 26 type 2 diabetic
vs. 37 nondiabetic pancreata) (23); another reported 62.5%
in nonobese and 50% decreased �-cell mass nonobese and
obese type 2 diabetic pancreata compared with those from
body weight–matched nondiabetic subjects (13). In their
study of pancreata from 14 Japanese type 2 diabetic
patients, Sakuraba et al. (12) reported only a 30% decrease
in �-cell mass, although in the 7 of those subjects who
were on insulin therapy, there was a 40% decrease. Sur-
prisingly, a reduction of �-cell mass shown clearly by the
three aforementioned studies was not accepted by the
field until the publication of previously mentioned articles
in 2003 (i.e., refs. 15,16), even though these latter studies
only provided relative �-cell volume (percent pancreas)
rather than actual �-cell mass.

The study that swayed the balance of thought was that
of Butler et al. (16). That study had a large number of
autopsied pancreata from patients with good clinical
records and categorized by body weight index. Addition-
ally, it had measurements of various determinants of �-cell
mass that suggested possible mechanisms (see below).
There was a 63% decrease in relative �-cell volume in 41
obese type 2 diabetic compared with 35 obese nondiabetic
and a 41% decrease in lean type 2 diabetic subjects
compared with 17 lean nondiabetic subjects. Importantly,
this study included measurements of 15 obese subjects
with impaired fasting glucose in whom the relative �-cell
volume was decreased 40% compared with obese nondia-
betic subjects. One criticism of this study has been that
only one random section was evaluated in this study;
however, several other studies (12,15,17) have shown that,
with the exception of the PP-rich uncinate process, most
sections across the pancreas have similar densities of
islets and of �-cells. Even so, differences in pancreatic
parenchyma volume in obese and lean, diabetic and non-
diabetic subjects may amplify the differences in actual
�-cell mass; the data to determine this are lacking due to
the common procedures of autopsies today.
Mechanisms of changes in �-cell mass in type 2
diabetes. Changes in �-cell mass in type 2 diabetes is thus
fairly certain, but such findings do not mean that there

FIG. 1. Nonrandom distribution of glucagons-positive cells in human
islets. In normal adult human pancreas, there is a nonrandom distri-
bution of glucagon cells (brown) similar to that seen in rodents. In
some small islets, glucagon cells form a mantle around a core of �-cells
while larger islets seemed composed of irregular subunits of mantle-
core organization. Immunoperoxidase staining for glucagon (brown);
hematoxylin. Magnification bar � 50 um. (Please see http://dx.doi.org/
10.2337/db07-1842 for a high-quality digital representation of this
figure.)

PERSPECTIVES IN DIABETES

2900 DIABETES, VOL. 57, NOVEMBER 2008



cannot be progressive functional changes in human
�-cells, as seen in rodents with chronic hyperglycemia
(24). Another issue is what causes the decreased �-cell
mass or relative volume. The current concept is that there
is a slow continuous turnover of �-cells within the pan-
creas with a careful balance, or even positive input, of cell
renewal and cell loss. It cannot be ruled out that there is
some impairment of compensatory growth mechanisms,
such that a person who cannot compensate for increasing
obesity develops type 2 diabetes. Even so, the favored
scenario is that there is an imbalance in loss and renewal
of �-cells that eventually results in the decreased �-cell
mass. Cell renewal is by replication of preexisting �-cells
and by differentiation from non-�-cell precursors. Mitotic
figures or Ki67-positive cells are rarely reported in islets in
adult human pancreas; mitotic figures in islets have been
reported mainly in cases of liver disease (25), and Ki67-
positive islet cells were fewer than 0.03 cells/islet (16).
However, insulin-positive cells within ducts, considered
neogenesis, were more frequent in obese versus lean
pancreata but not different between diabetic and nondia-
betic pancreata in either obese or lean individuals (16).
Thus, the current favored view is that apoptosis or loss of
cells is increased and a target for prevention. However,
increased apoptosis has not consistently been shown.
While Butler et al. (16) found a tendency of increased
frequency of apoptosis/islet in obese type 2 and statistical
significance only in lean diabetic subjects, Sakuraba et al.
(12) found no evidence of apoptosis in either diabetic or
nondiabetic individuals. However, in the latter study, there
were signs of oxidative stress and decreased protective
superoxide dismutase enzymes. The presence of amyloid
deposits in type 2 diabetes (Fig. 2) has led to the sugges-
tion that it is causal for diabetes since islets with amyloid
deposits have decreased percentage of �-cells, and islet
amyloid polypeptide (IAPP) fibrils have been shown to
induce apoptosis (26). Yet, the finding that only 10% of
those persons with impaired fasting glucose had any
amyloid-positive islets but already a 40% deficit of relative

�-cell volume has suggested a lack of causality; such an
interpretation ignores some of the complexity of IAPP and
islet amyloidosis as discussed below.
Role of amyloidogenesis in �-cell loss and malfunc-

tioning. More than 20 years ago the striking association
between �-cell loss and the occurrence of islet amyloid-
osis in both humans and similar animal models led to the
pursuit of the biochemical identity of this form of amyloid.
At that time we hypothesized that “the presence of islet
amyloid may represent an important clue to the basic
derangements of islet cells that occur in patients with
age-associated impairment of glucose tolerance and overt
diabetes mellitus” (27). In pursuit of this clue to the
pathogenesis of type 2 diabetes, two independent groups
(including Robert Turner’s) reported the amino acid se-
quence of human IAPP (amylin) in 1987 (28,29), and since
then enormous strides have been made in the understand-
ing of the pathogenesis of islet amyloidosis and its poten-
tial role in the loss of �-cells in type 2 diabetes. IAPP was
shown to be copackaged and cosecreted with insulin as a
normal product of the �-cell (28,30). IAPP, therefore, must
be normally prevented from undergoing aggregation and
polymerization into fibrils. It was thus clear that in order
for IAPP to undergo amyloidogenesis (and to produce islet
amyloid [IA]), pathologic alterations in synthesis, protein
trafficking and chaperoning, secretion, or degradation, or
combinations of these mechanisms must occur in associ-
ation with type 2 diabetes. While much still needs to be
elucidated concerning the molecular pathogenesis of IAPP
amyloidogenesis, there is growing evidence supporting a
role for this process in �-cell malfunction and loss in the
development and progression of type 2 diabetes.
Cytotoxicity of IAPP. In order for IA or amyloidogenesis
to play any role in the pathogenesis of type 2 diabetes,
IAPP or aggregates must be shown to be directly cytotoxic
to �-cells and/or to set off a molecular cascade of events
that are cytotoxic. There is now abundant evidence of
cytotoxic effects of amyloidogenic proteins in general,
including IAPP (26,31–33). For example, it was found that
incubation of human but not rodent IAPP was shown to be
cytotoxic to �-cells under in vitro conditions (26). Because
rodent IAPP is nonamyloidogenic, these findings also
suggested a role for amyloidogenesis in this toxic effect.
Likewise, COS-1 cells transfected with human IAPP
showed rapid cell death associated with marked fibril
formation within the endoplasmic reticulum (ER), and cell
lines expressing human IAPP (hIAPP) could not be estab-
lished in these cells (34). By comparison, cells transfected
with rodent IAPP (rIAPP) were viable and readily estab-
lished long-term stably transfected cell lines. Using this
same system it was subsequently shown that the cell death
in the hIAPP-transfected cells was due to apoptosis.
Several other studies have further documented pro-apop-
totic effects of hIAPP on �-cells and neurons. Interestingly,
the effects of hIAPP on neurons closely resemble those of
the Alzheimer’s disease–associated A� (�-protein). Mech-
anisms involved in A� cytotoxicity include oxidative
damage by reactive oxygen species, lipid peroxidation,
reduced mitochondrial transmembrane potential, and
destabilization of intracellular calcium homeostasis
(35). Of special interest is the finding that membrane
lipid peroxidation initiated by A� is also associated with
impaired glucose transport into cultured rat hippocam-
pal neurons (36). If similar alterations were induced in
�-cells by IAPP fibrillogenesis, this may be yet another

FIG. 2. Amyloid deposits along the islet capillaries. In islets with
severe amyloid deposits such as this one, there is a loss of insulin-
positive (brown) �-cells and a distorted islet structure. Immunoperox-
idase staining for insulin (brown); hematoxylin. Magnification bar � 25
um. (Please see http://dx.doi.org/10.2337/db07-1842 for a high-quality
digital representation of this figure.)
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mechanism by which IAPP fibrillogenesis impairs nor-
mal �-cell function.

While mature amyloid fibrils were initially thought to be
the likely mediators of hIAPP toxicity, it has become
increasingly apparent that it is actually the relatively small
soluble oligomers of hIAPP that are most toxic to �-cells
(26,33). Several studies have now shown that prefibrillar
oligomers act by disrupting lipid bilayers and can lead to
membrane fragmentation (37). Other studies have demon-
strated that nonselective ion-permeable membrane pores
form upon exposure to hIAPP oligomers (31). This mech-
anism may further lead to destabilization of the intracel-
lular ionic milieu and lead to generation of reactive oxygen
species and free radical formation. Furthermore, these
activities of hIAPP have been linked to induction of
apoptosis and, thus, potentially to �-cell death in type 2
diabetes (32,33).

Recently it has also been demonstrated that toxic oli-
gomers (and not monomers or mature amyloid fibrils),
formed by different amyloidogenic proteins including
hIAPP, A�, synuclein, transthyretin, and prion protein,
share a common epitope (38). Antibodies raised to this
epitope using toxic oligomers of A�1–40 also bind to toxic
oligomers generated from the other amyloidogenic pro-
teins and, in cell culture, block the cytotoxic effects of
each of these diverse oligomers. These findings suggest a
common molecular mechanism involved in the pathogen-
esis of several different disease conditions, all of which
share the commonality of amyloid formation as part of the
pathologic condition. In addition, antibodies obtained
against this marker for the toxic epitope have allowed
examination of the presence and location of these oli-
gomers in hIAPP-transgenic mouse models of type 2
diabetes (39). In both models examined in this study, the
toxic oligomer epitope was detected intracellularly in
�-cells and was not found in extracellular locations. Toxic
oligomers were also not found in nontransgenic mice of
the background strain or in mice transgenic for rIAPP. In
addition, vaccination of the hIAPP transgenic mice against
the toxic epitope of A�1–40 failed to prevent hIAPP-
associated �-cell death or induction of diabetes in either of
these mouse models. These findings together are consis-
tent with an intracellular location for the earliest stages of
IAPP amyloidogenesis, as suggested by previous studies
(34). In addition, toxic IAPP oligomers may trigger the
programmed cell death cascade by signaling at the �-cell
surface (40,41). Evidence from RIN cells demonstrated
that hIAPP but not rIAPP stimulated apoptosis involving a
JNK1-mediated signaling cascade (40). More recently it
was also shown in mouse islets and in two different
insulinoma �-cell lines that exposure to solutions of hIAPP
elicited increased expression and activation of Fas and
Fas-associated death domain and led to �-cell apoptosis
(41). Anti-Fas/FasL antibodies blocked the apoptotic ef-
fects of hIAPP, further implicating this mechanism in
hIAPP induction of apoptosis. Interestingly, the Fas/FasL
antagonist, Kp7-6, also blocked hIAPP-induced apoptosis
and was also found to be an inhibitor of hIAPP fibrillogen-
esis, thus providing a further linkage between amyloido-
genesis and the toxic and apoptotic effects of hIAPP.
Although currently it appears that hIAPP toxic oligomers
form intracellularly, it is possible that they may transit the
secretory pathways or otherwise arrive in the extracellular
compartment and initiate the apoptotic signaling cascades
in that fashion; there is still much to be learned in this
area.

The studies noted above provide potential mechanisms
whereby IAPP amyloidogenesis may damage �-cells and
ultimately lead to apoptosis and diminished �-cells in type
2 diabetes. However, factors that might trigger this cas-
cade of IAPP fibrillogenesis are largely unknown. A role
for increased expression and synthesis of IAPP in amyloi-
dogenesis has long been suggested as a likely participating
factor due to the tendency for parallel regulation of insulin
and IAPP (42,43). Although insulin and IAPP tend to be
regulated in parallel, such as their upregulation in insulin
resistance, significant divergence from this parallel ex-
pression may occur under some physiologic or pathologic
conditions that may play roles in amyloidogenesis (43).
Marked hyperglycemia and corticosteroids have both been
shown to result in disproportionate upregulation of IAPP
versus insulin, thus altering the ratio of IAPP to insulin
secreted by the �-cells. Further support for a role in
increased IAPP expression in IA development is found in
studies of human IAPP transgenic mice. IA formation
occurs in these mice only under conditions of high IAPP
expression due to the presence of high hIAPP gene copy
number, due to upregulation of IAPP expression by expo-
sure to hormones or diet that induce insulin resistance, or
by breeding genetic obesity into hIAPP transgenic mice
(44–46). However, the mechanisms coupling the increased
hIAPP synthetic/secretory demand in �-cells with initia-
tion of amyloidogenesis are currently unknown but may
involve events that trigger ER stress. �-cells, like other
“professional” secretory cells, are known to be particularly
sensitive to perturbations of ER function that may lead to
misfolded proteins (47). In the case of increased hIAPP
synthesis, such an event could allow generation of toxic
oligomers with subsequent triggering of the ER stress
response that includes 1) early and transient suppression
of protein synthesis; 2) activation of genes encoding
components of the ER protein translocation, folding, se-
cretion, and degradation machinery; and 3) induction of
programmed cell death. Precisely such responses, which
included upregulation of C/EBP homologous protein
(CHOP) expression followed by nuclear translocation and
apoptosis, were demonstrated recently in INS-1 cells in-
duced to express hIAPP (48). INS-1 cells similarly trans-
fected with rIAPP or GFP showed no such responses.
Likewise, �-cells in HIP rats (transgenic for hIAPP)
showed similar upregulation of caspase-12 and CHOP in
�-cells and increased apoptosis in comparison to wild-type
rats. Finally, in human �-cells, perinuclear CHOP expres-
sion was found to be more frequent in obese type 2
diabetic patients than obese or lean nondiabetic individu-
als, and nuclear CHOP was significantly more common in
obese diabetic patients than in either obese or lean non-
diabetic patients (49). These findings strongly implicate
misfolding of IAPP in the ER of �-cells in the pathogenesis
of type 2 diabetes.
IAPP amyloidogenesis as cause of type 2 diabetes? As
noted above, there is now general consensus that devel-
opment of type 2 diabetes in humans is associated with a
significant decrease of �-cells. A recent study found that
obese patients with type 2 diabetes exhibited a 60%
reduction in �-cell volume, while obese patients with
impaired fasting glucose (IFG) exhibited a 40% reduction
in �-cell volume as compared with nondiabetic obese
control subjects (16). Interestingly, �88% of the patients
with type 2 diabetes and 10% of those with IFG had
detectable IA deposits. Similarly, in spontaneous animal
models of diabetes in macaques, domestic cats, and HIP
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rats, development of IA is detectable in pre-diabetic ani-
mals and corresponds to �-cell functional decline and loss
of �-cells. In an elegant longitudinal study of Macaca

nigra, Howard evaluated �-cell function and, using serial
pancreatic biopsies, evaluated islet morphology, including
IA formation (49). He found that monkeys with mild IA
also had mild decrements in glucose clearance and incre-
mental insulin response and that development of diabetes
was associated with relatively severe IA. Thus, there is a
strong association between development of IA and the
development of impaired �-cell function and �-cell loss.
However, the amount of IA detectable in the islets does
not always correlate well with the degree of �-cell loss, as
seen in the human patients with IFG (16). This may be
interpreted to mean that IAPP amyloidogenesis is not
causative but merely follows as a secondary phenomenon.
An alternative interpretation based on the current under-
standing of hIAPP amyloidogenesis would be that a cor-
relation with detectable (mature) IA deposits per se is not
necessary (or even expected) since the toxic components
of this process are the early soluble oligomers that may or
may not proceed to form mature amyloid fibrils. The
soluble oligomers are not detectable by Congo red or other
commonly used amyloid stains. Thus, detectable IA depos-
its may, in fact, be of relatively less pathologic importance
and may indeed be a secondary phenomenon. It was
recently shown that the fibrillar inclusions formed by
mutant huntingtin in Huntington’s disease neurons were
protective rather than detrimental to the cells in which
they occurred (50). Neurons that failed to form inclusions
were more susceptible to cell death. A similar situation
may occur in �-cells in which generation of toxic oli-
gomers leads to cell death, whereas formation of mature
amyloid fibrils may be a late indicator of the process, and
their formation may even be protective.

The evidence cited above presents considerable evi-
dence for a role of hIAPP amyloidogenesis in �-cell injury
and induction of programmed cell death. But why doesn’t
the proliferative response of the endocrine pancreas re-
plenish the damaged �-cells? If much of the regenerative
capacity of the �-cells comes from the existing �-cells, the
explanation may then be related to increased susceptibil-
ity of cells undergoing cell division to the effects of
cytotoxic insults, such as hIAPP toxic oligomers. In sup-
port of this hypothesis, it has been found that RIN and
HeLa cells, when exposed to hIAPP toxic oligomers, had
increased apoptosis within 3 h of mitosis (51). Thus, the
�-cell deficiency in type 2 diabetes may, at least partially,
result from a failure to adaptively increase �-cell mass due
to the increased vulnerability of replicating �-cells to
apoptosis.

It can now be seen that the morphologic and molecular
clues to diabetes that were sought by Dr. Turner and many
others, and provided by IA and IAPP, have led us down
many interesting pathways that now also appear to be
leading us ever closer to an understanding of the molecu-
lar pathogenesis of type 2 diabetes.
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