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ABSTRACT

	

Amodel was developed to describe the kinetics of slow, voltage-
dependent charge movement in the rat omohyoid muscle . To represent the
electrically distributed nature of the transverse tubular system (t-system), we
followed an approach similar to that described by Adrian and Peachey (197?
J. Physiol. [Lond.] . 235:103), and approximated the fiber with 12 concentric
cylindrical shells . Incorporated into each shell were capacitative and conductive
elements that represented the passive electrical properties of the t-system, and
an element representing the mobile charge . The charge was assumed to obey a
two-state scheme, in which the redistribution of charge is governed by a first-
order reaction, and the rate constants linking the two states were assumed to
depend on potential according to the constant field expression . The predictions
of this "distributed two-state model" were compared with charge movements
experimentally measured in individual fibers . For this comparison, first, the
passive electrical parameters ofthe model were adjusted to fit the experimental
linear capacity transient . Next, the Boltzmann expression was fitted to the
steady state Q vs . V data of the fiber, thereby constraining the voltage depend-
ence of the rate constants, but not their absolute magnitude. The absolute
magnitude was determined by fitting the theory to an experimental charge
movement at a single test potential, which in turn constrained the fits at all
other test potentials . The distributed two-state model well described the rising
and falling phases of ON, OFF, and stepped OFF charge movements at tempera-
tures ranging from 3 to 25°C. We thus conclude that tubular delays are
sufficient to account for the rounded rising phase of experimental charge
movements, and that it is unnecessary to postulate higher-order reaction
schemes for the underlying charge redistribution .

INTRODUCTION

A large, slow asymmetry current measured after the blockade of ionic currents
in vertebrate skeletal muscle has been implicated in excitation-contraction (E-C)
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coupling . This current, usually called "charge movement," has been hypothesized
(Schneider and Chandler, 1973) to represent the molecular rearrangement of a
charged structure that lies at least partially within the transverse tubular mem-
brane and has the function of coupling the depolarization of the t-system to the
release of calcium from the sarcoplasmic reticulum (SR) . The previous paper
(Simon and Beam, 1985) described charge movements measured in the rat
omohyoid muscle. These charge movements were found to be similar to charge
movements in frog twitch muscle (Chandler et al ., 1976; Adrian and Almers,
1976) and in rat extensor digitorum longus (EDL) muscle (Hollingworth and
Marshall, 1981 ; Dulhunty and Gage, 1983) . In order to understand the role
charge movement may play in the gating of calcium release from the SR, it is
necessary to understand the reaction scheme that governs the movement of the
charge . This paper presents a model that quantitatively accounts for the kinetics
of charge movement .
The simplest reaction scheme is one in which the charge moves back and forth

between two states . For a step in potential, a two-state scheme predicts a current
that rises instantaneously and then decays exponentially . By contrast, experimen-
tally measured charge movements typically have a slow rising phase and a
rounded peak, and it is not until several milliseconds after the step in potential
that the charge transient begins to decay exponentially . A possible explanation
for this slow rising phase is that it is due to the movement ofthe charge in several
sequential steps . A specific multistate reaction scheme for charge movement has
been proposed by Horowicz and Schneider (1981) and was shown by them to
give a good account of the kinetics of ON transients in frog muscle . We have
confirmed that the model of Horowicz and Schneider also accounts for the
kinetics of ON transients in the rat omohyoid muscle; however, we have shown
(Simon and Beam, 1983a) that it fails to account for transients evoked by a
stepped OFF pulse protocol, a protocol not tested by Horowicz and Schneider .
This failure prompted us to search for alternative descriptions for the kinetics
of charge movement.
Determining whether a two-state or multistate reaction scheme best describes

charge movement is complicated by the presumed tubular location of the mobile
charge . The voltage clamp controls the potential at the surface of the fiber, and
in order to change potential within the t-system, it must charge the tubular
membrane through the series resistance presented by the tubular lumen. The
total series resistance is largest for those portions of the t-system farthest from
the surface . Thus, the change in potential within the t-system will lag the change
on the surface, and this lag will be greater for portions of the t-system farther
from the surface . Not only will the propagation of voltage into the fiber be
delayed, but also the current produced by the movement of charge within the t-
system will be delayed in its appearance at the surface of the fiber where it is
measured. Experimental support for the importance of such tubular propagation
delays to the kinetics of charge movement is provided by the effects of temper-
ature described in the previous paper (Simon and Beam, 1985).
To quantify the effects of t-tubular delays on the kinetics ofcharge movement,

it is necessary to have a representation of the electrically distributed nature of
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the t-system . Toward this end, we have constructed a model of the muscle fiber
similar to that described by Adrian and Peachey (1983), but modified to incor-
porate the effects of the mobile charge in the t-tubular membranes. The mobile
charge wasassumed to obey a two-state model. Because atwo-state model predicts
that a step in potential will cause a current that rises instantaneously with no
delay, the use of such a model permits one to determine whether tubular delays
aloneare sufficient to account for the delays in measured charge movements, or
whether a more complicated, multistate model for charge movement is required .
We determined that a multistate scheme is unnecessary since a two-state model
distributed throughout the t-system gives a good account of both the rising and
falling phases of measured charge movements.
An abstract describing some of these results has appeared (Simon and Beam,

1983b).

METHODS

The Distributed Two-State Model

In our model, we have followed the general approach used by Adrian and Peachey (1973)
to reconstruct action potentials in frog muscle . The fiber is represented, in cross section,
as a series of concentric annuli. Each annulus is represented by a parallel combination of
a conductance and a capacitance, which correspond to the passive properties of the t-
tubular wall . A third element, in parallel with the conductance and capacitance, accounts
for the nonlinear charge movement across the tubular wall . Neighboring annuli are linked
together by a conductance that represents the current pathway within the lumen ofthe t-
system, with the outermost annulus being separated from the surface of the fiber by an
access resistance . For simplicity in our calculations, we have assumed that the leak
conductance of the t-tubular wall is negligible (see Discussion), and that no time-dependent
ionic currents flow across the surface or t-tubular membranes.
Ourapproach differs from that ofAdrian and Peachey (1973) in that they used annuli

that divided the fiber cross section into equal radial increments, whereas we have used
annuli that divide the cross section into equal areas. Specifically, for Nannuli and a fiber
of radius a, the nth annulus has inner and outer radii of a ( and a nN,
respectively (n = 1 to N) . The voltage of the nth annulus, V� , was taken at the point, r�,
with equal areas on either side . That is,

r� = a

with the conventions that

r, = 0 and rN+, = a.

The conductance, g.., linking the nth and n + 1st annuli is :

a(r.+, + r�)G,
9.

	

(r.+, - r.)

where G, is the conductance of the lumen of the t-system per unit fiber volume . The
capacitance of each annulus is

C� = C..(iras/N),

where Cw is the capacitance of the t-system per unit fiber volume.



24 THEJOURNAL OF GENERAL PHYSIOLOGY " VOLUME 85 - 1985

The change in voltage across the capacitance of the nth annulus, caused by current
flowing between it and the two adjacent annuli, was calculated according to the difference
equation :

c"(dVnldt) _ (V- - Vn)g" - (V" - V.-,)g"-, - dQ"ldt,

	

(2)

where the calculation of dQA/dt, the nonlinear charge movement associated with the nth
annulus, is described below . N such difference equations were solved simultaneously to
give V� for each annulus as a function of time . That is, the values of V� at time t were
used to compute dV�/dt at each annulus by means of Eq . 2. V� at time t + h, where h is a
small increment in time, was then calculated according to :

V�(t + h) = V�(t) + hdV�(t)/dt,

	

(3)

and the process was repeated . The current flowing into a unit length of fiber, I, was then
calculated according to :

I = (V, - VN)/(2aaR. + 1/gN),

	

(4)

where V, is the voltage at the surface of the fiber, gN is the lumen conductance calculated
with Eq . 1, and R, is the "access" resistance between the surface and the outermost
annulus. V,(t) was expressed as:

V.(t) = Vf + (Vi - Vf)exp(-t/Tc),

where Vi and Vf are the initial and final potentials, and r, is the time constant for the
change in potential produced by the voltage clamp. Experimentally, the controlled
potential (at the V, electrode) was found to rise exponentially with a time constant varying
between 0.3 and 0.4 ms (see Fig . 1 B in Simon and Beam, 1983a) . An average r, of 0.35
ms was used in all of the modeling .

The Kinetic Modelfor the Underlying Charge Redistribution

The density of mobile charge was assumed to be uniform throughout the t-system,
proportional to the t-tubular area of each annulus . The charge was assumed to obey a
two-state reaction scheme and to respond to a potential change across the t-tubule
membrane by redistributing between the two states according to the first-order differential
equation :

dB/dt + (a + ,B)B = a,

where a and ,B, the forward and reverse rate constants, are instantaneous functions of
voltage, and B is the fraction of total charge in the state that becomes populated during
depolarization . In the steady state, B is given by the Boltzmann expression :

B = 1/[1 + exp(-0)] ;

	

0 = (V - V)/k,

	

(6a, b)

where V is the potential at which both states are equally occupied and k is a steepness
factor that depends on the valence of the charge . The amount o£ charge that moves, Q,
is equal to BQmax.
The solution to Eq . 5 for a step in potential is:

B = Bf + (Bi - Bf)exp[-t(a + 0)],

	

(7)

where B; and Bf are the initial and final values of B .
The rate constants, a and ,B, were assumed to depend on potential according to a

constant field diffusion model (Chandler et al ., 1976 ; Benz and Zimmermann, 1983):
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from which r = 1l(a +,6) is calculated as:

a = a¢/[ 1 - exp(-¢)] ;

	

i4 = a exp(-O),

	

(8)

r = (2r/O)tanh(0/2),
where 0 is given by Eq . 6b and a and T are the values of a and r at 0 = 0 .

For a step to a given potential, the asymmetry current related to voltage-dependent
charge movement was obtained as the difference between the "test" current transient
generated by Eq . 2, and the linear "control" current transient generated by Eq . 2 with
dQ"ldt = 0. This is analogous to the procedure used experimentally (Simon and Beam,
1985), except that the experimental control current was measured for a voltage step from
-135 to -90 mV and then appropriately scaled and subtracted from the test current .

Fitting Computergenerated Charge Movements to Experimental Data
The distributed two-state model summarized by Eqs . 1-9 was implemented in a computer
program that was written in Fortran IV and run in double precision (16 decimal places)
on a VAX 11/780 minicomputer (Digital Equipment Corp., Maynard, MA). The com-
puted charge movements were compared with experimental charge movements, which
were measured in the rat omohyoid muscle as described in the preceding paper . The
small delay (-100 As) added to the experimental records by electronic filtration (four-
pole, low-pass Bessel, f ".rr = 4 kHz) was ignored in the modeling . All the theoretical
curves illustrated in this paper were calculated using 12 annuli and an integration time
increment (cf. Eq . 3) of 0.5 As.
The first step in applying the theory was to fit the calculated linear capacity transient

to the measured transient . In the model, the passive electrical properties of the t-system
are governed by four parameters, the fiber radius a, R� G,, and Cw (cf. Eqs . 1, 2, and 4) .
In principle, one could measure the radius of each fiber as well as the morphometric
parameters of the t-system that are necessary in order to calculate G, and Cw. In fact, an
accurate visual determination o£ fiber radius is difficult and the morphometric measure-
ments of t-system for each fiber are impractical . Hence, we chose to fix the fiber radius
at 32 Am, the average diameter of the predominant fiber type in the omohyoid muscle
(Miintener et al ., 1980), and to fix the parameters Cw , p, and t, which define Cw, at values
(Table I) that yield a total fiber capacitance in agreement with the previously measured
values reported in the literature (see Discussion) . Various combinations of the remaining
two parameters, R, and G,, were found to give excellent fits to the linear capacity transient,
but an access resistance of 60 Il . cm2 resulted both in the best fits to the charge movement
data (see Results) and in values for G, similar to the value used by Adrian and Peachey
(1973) . Therefore, the access resistance was fixed at 60 U .cm2 and in order to fit the
experimental capacity transient of a given fiber, only G, was varied . The capacitance of
the fiber's surface was fixed at 1 AF/cm2 . This choice affects the first 250-500 AS of the
calculated linear capacity transient but little affects the value of G, that gives the best
overall fit to the experimental linear capacity transient, and thus does not affect the time
course of the calculated charge movements.
The choice ofa fixed radius and fixed morphometric parameters for the t-system means

that computations were carried out in terms of an idealized fiber with a total linear
capacitance of 5.8 pF/cm2 (Table 1) . Because the fiber radius and t-system geometry vary
from fiber to fiber, the actual linear capacitance also varies . Thus, in order to compare
the kinetics of the calculated and measured linear capacity transients, the amplitude of
the theoretical curve was scaled to match that of the measured transient . We preferred
to use a standard set of geometric parameters rather than to adjust these parameters to
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fit individual fibers, since our experimental methods, while optimal for resolving charge
movement kinetics, do not yield a precise measurement of the absolute (uF/cm s ) fiber
capacitance (Beam and Donaldson, 1983).
Once the parameters that define the linear electrical properties of the fiber are chosen,

the three kinetic parameters of charge redistribution, -f, V, and k, remain to be fit. Vand
k (and also Q,.) were obtained by fitting the Boltzmann expression (Eq . 6a) to the steady
state Q vs . V data of the individual fiber. The remaining parameter, f, was varied until a
visual best fit was obtained of the ON charge movement at 0 mV. With f chosen, the
kinetics of the calculated ON and stepped OFF charge movements at all other potentials
were completely constrained . The theoretical charge movements were calculated with a
density of 30 nC/AF, which is typical of the density of mobile charge measured in our
experiments. To critically compare their kinetics, we superimposed the calculated and
measured charge movements. For this purpose, the theoretical charge movements were
scaled in magnitude by Q,./(30 nC/gF) t5%, where 5% is comparable to the scatter of
the actual Q vs . V data around the Boltzmann curve .

Convergence oftheModel

The model employed in our calculations differs from that of Adrian and Peachey (1973)
in that the annuli have equal areas, rather than being spaced at equal radial increments.
We determined that convergence with the equal-area model required fewer than half as
many annuli as the model with equal radial increments . Convergence is more rapid with
the equal-area method, because both the linear capacitative load presented by an annulus
and the nonlinear currents that it contributes are proportional to area . With equal radial
increments, the inner annuli have small areas and thus contribute to the calculation time
while having only a small effect on the time course of current flow from the surface into
the first annulus .
One test of convergence was to compare the linear capacity transient predicted by the

equal-area model, with the exact solution of the differential equation describing the
propagation of potential within a fiber having a continuously distributed t-system :

'92
V KaV__8V

K&s + r 8r

	

8t'
(10)

where r is the radial distance from the center of the fiber, V is the voltage across the t-
tubule membrane as a function of position and time, and K is a constant equal to
For an exponentially rounded step in potential at the surface of the fiber, the solution to
Eq. 10 is:

V(r, t) = 1 - exp(-t/-rc) - 2 j j
o(a°r/a)[exp(-amt/as ) - exp(-t/rc)J

	

(11)
a,j,(a�x1 - Ka.2-rja2)

	

'

where rc is the time constant of the command step on the surface of the fiber, Jo andJ,
are Bessel functions of the first kind, and a � are the zeroes ofjo (see Appendix) . With 12
annuli and an integration time increment of 0.5 ILs, the potential as a function of time at
four positions within the fiber, as predicted by the equal-area model, was in good
agreement with the solution given by Eq. 11 . (For this comparison, the access resistance
was assumed to be zero.)

Another test of convergence was to compare the predictions of the equal-area model
for differing time increments and numbers of annuli . Both the linear capacity transient
and the charge movements calculated with 12 annuli were in good agreement with those
calculated with 24 annuli . With 12 annuli, the time increment of 0.5 ps in Eq . 3 was
shown to generate charge movements virtually identical to those generated with a time
increment of 0.1 us, and 0.5 us was therefore used in all the calculations .
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RESULTS

Fits ofthe Distributed Two-State Model to Measured Charge Movements
Figs . 1-3 compare charge movements predicted by the distributed two-state

C

0

10

B

10 ms

N
Ev

0<

FIGURE 1 .

	

Comparison of charge movements predicted by the distributed two-
state model, with charge movements measured in a fiber at 7°C . In this and the
following two figures, theoretical curves are shown as solid lines. (A) Superposition
of calculated and measured ON charge movements for depolarizations from -90
mV to the indicated test potentials. (B) Superposition of calculated and measured
stepped OFF charge movements for repolarizations from 0 mV to the indicated test
potentials . (C) Comparison ofthe calculated and measured linear capacity transient .
The experimental linear capacity transient was measured as the current elicited by
a depolarizing step from -135 to -90 mV. Theoretical charge movements were
calculated according to Eqs . 1-9, with V = -30 mV, k = 10.5 mV, z = 5.4 ms, and
Gi = 13 AS/cm . Details of the fitting procedure are given in the text . Experimental
charge movements from muscle 99-2 . Current and time calibrations apply to A and
B; for C, the horizontal calibration = 5 ms, and the vertical calibration = 320 pA/
cm2.

model with charge movements measured experimentally at temperatures of 7
(Fig . 1), 15 (Fig . 2), and 25 ° C (Fig. 3, same fiber as in Fig. 1). As described in
Methods, the first step in applying the model to a particular fiber was to adjust
the parameters that define the passive properties of the t-system until a good fit

-a0 -20

.~ -so --- _a0

-s0 -s0
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of the linear capacity transient was obtained . The fits of the model to-experi-
mental linear capacity transients are illustrated in Figs . 1C, 2C, and 3B. The
parameters used to calculate these theoretical linear capacity transients are
summarized in Tables I and II . The second step in applying the model was to
obtain values for k and V by fitting the Boltzmann expression, Eq. 6a, to the
steady state Q vs . V data of the fiber . The values of k and V constrain the voltage
dependence of the rate constants for charge redistribution, but not their absolute

100
NA/cm2

10 ms

-20

O

10
C

-30

FIGURE 2 .

	

Fits of the distributed two-state model to charge movements measured
at 15°C. (A) Predicted and measured ON charge movements. (B) Predicted and
measured stepped OFF charge movements . (C) Predicted and experimental linear
capacity transients . Muscle 99-1 : V = -35 mV; k = 8.5 mV; f = 3.2 ms; 6, = 10 'US/
cm . Current and time calibrations apply to A andB; for C, the horizontal calibration
= 5 ms, and the vertical calibration = 400 ,A/cm' .

magnitude. This last free parameter was determined by adjusting f until the
theory fit the experimental charge movement at a single test potential (0 mV).
The charge movements at all other test potentials were then calculated with no
additional adjustment of parameters . The values of k, V, and T used to calculate
the charge movements in Figs . 1-3 are summarized in Table II .

Fig . 1 illustrates that ability of the theory to fit ON and stepped OFF charge
movements measured at 7"C. The theory gives a good account of both ON
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charge movements (A), which were measured for depolarizing steps from -90
mV to test potentials ranging from -50 to +10 mV, and stepped OFF charge
movements (B), which were measured for repolarizing steps from 0 mV to test
potentials ranging from -20 to -90 mV. Fig . 2 demonstrates that the theory
gives a similarly good account of ON (A) and stepped OFF (B) charge movements
at 15°C, and Fig . 3 shows that the calculated curves agree well with ON charge

A

J-"*"~-

N
V

O
f

8 fff"

-40

-30

-20

B

0

FIGURE 3 .

	

Fits of the distributed two-state model to ON charge movements at
250 C. Same muscle fiber as in Fig . 1 . (A) Comparison of calculated and measured
ON charge movements. The prominent bump on the falling phase of the charge
movement at -40 mV may represent the Q, component of charge movement that
has been described for frog muscle . (B) Calculated and measured linear capacity
transients. Muscle 99-1 : V = -30 mV; k = 8.5 mV; f - 2.2 ms; 6, = 1 :3 juS/cm .
Current and time calibrations apply to A ; for B, the horizontal calibration = 4 ms,
and the vertical calibration - 2001AA/cms.

movements measured at 25°C. No attempt was made to fit the stepped OFF
charge movements at 25 ° C because they were contaminated by ionic currents .
The fits of the model shown in Figs . 1-3 are typical of the fits obtained of ON
and stepped OFF charge movements measured in other fibers at temperatures
ranging from 3 to 25°C. Two consistent, small deviations between the theory
and data should be noted . The first is that for small voltage steps, the experi-
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TABLE I

Physical and Electrical Constantsfor Surface and Tubular Membranes

a, fiber radius
C� , capacitance per unit area ofsurface and t-tubule membrane
G,, conductivity of lumen
p, fraction of fiber volume occupied by tubules
t, volume-to-surface ratio of tubules
a, network geometric factor
R� access resistance

Constants and parameters based on these units:
C�, capacitance of t-system per unit volume = C�pli'
G,, conductance oflumen of t-system per unit volume - G,pa
C� capacitance oft-system per unit area of fiber surface =
aC�/2

Total capacitance per unit area of fiber surface

* Typical values for fibers at 15°C .

mental charge movements rise slightly more rapidly than predicted by the theory .
This mismatch of the rising phases is present both for ON charge movements
(e.g ., in Figs . 1 A, 2A, and 3A at test potentials in the range -50 to -30 mV)
and for stepped OFF charge movements (e.g ., in Fig. 2B at -30 mV). Possible
sources of this small mismatch ofthe risingphase are considered in the Discussion .
The second discrepancy is that at test potentials near V, the decay of ON charge
movements frequently showed a "bump" of current not accounted for by the
theory (e.g., Fig. 2A at -30 mV and Fig. 3A at -30 and -40 mV). The bump
may represent the Q,. component of charge movement (see Discussion in Simon
and Beam, 1985) . The bump at -40 mV in Fig. 3A is the largest observed in
any of the fibers we have studied.

Despite the presence of these small discrepancies, it is clear that the theory
gives a good description ofboth the rising and falling phase of charge movements.
Thus, tubular delays, by altering the measured kinetics of a simple two-state
reaction, can account for the experimentally observed rising phase and delay to
peak, and a multiple-state reaction scheme for the mobile charge is not necessary.

Effect ofAccess Resistance on the Time Course ofCharge Movement

in order to model action potentials in frog skeletal muscle fibers, Adrian and
Peachey (1973) found it necessary to include an access resistance in their
concentric annular representation of the t-system . The access resistance (Ra ,

THEJOURNAL OF GENERAL PHYSIOLOGY " VOLUME 85 - 1985

TABLE II

5 .8 pF/cm'

Constants Usedfor Calculating the Charge Movements Shown in Figs. 1-3

32 ,um
1 pF/cm =
8 .7 mS/cm*
0.003
10' cm
0.5
60fl-cmp

3,000 WF/cm'
13 pS/cm*
4 .8 pF/cm'

Muscle number
Tempera-

ture

°C

G,

US/cm

V

mV

k

mV

t

ms
99-2 7 10 -30 10 .5 5 .4
99-1 15 10 -35 8.5 3 .2
99-2 25 13 -30 8.5 2 .2
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52 - cm') separates the lumen of the t-system from the bulk fluid surrounding the
fiber. The physical basis of R, is uncertain. It has been suggested that R, arises
from a narrowing or tortuosity of the t-tubules near the surface of the fiber
(Adrian and Peachey, 1973), and from the relatively small number of t-tubular
openings onto the surface (Huxley and Taylor, 1958). However, Valdiosera et
al . (1974) have argued that an appreciable access resistance is inconsistent with
their impedance measurements on frog skeletal muscle fibers . Thus, we investi-
gated the effect of varying R,. For any given value of R, between 0 and 150 Sl .
cm 2, a corresponding value for G, could be determined such that the model

A

B

S ms

1 ms
FIGURE 4 .

	

The effect of changing the access resistance (R,) on the time course of
calculated charge movements. (A) Charge movements calculated fora depolarization
from -90 to -20 mV, f = 3 ms, and access resistances of 0, 60, and 120 Q "cm', as
indicated . The curve for R, = 60 Sl "cm' is the same theoretical charge movement
as illustrated at -20 mV in Fig. 2A . (B) Linear capacity transients corresponding to
each of the charge movements in A. For the different values of R� it was possible
to adjust G, such that the time course of the linear capacity transient remained
approximately the same . The resulting values of L°, were 7, 13, and 30 US/cm,
respectively, for R, = 0, 60, and 120 0 "cm'.

provided an accurate fit to the experimental linear capacity transient. Although
equally good fits of the linear capacity transient are possible for a range of values
for Ra, this is not the case for charge movement . Too small an access resistance
results in calculated charge movements that rise too quickly and are too broad
at half-height, whereas too high an access resistance yields charge movements
that rise too slowly and are too narrow at half-height. The optimal value of R,
was found to be ^-60 U.cm2.
The effects of varying R, are illustrated in Fig. 4A, which compares charge

movements calculated with access resistances of 0, 60, and 120 il . cm2. (The
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charge movement calculated for R, = 60 II .cm2 is the same one illustrated in
Fig. 2 at -20 mV.) For each of the three values of R� a value was determined
for G, such that the time course of the calculated linear capacity transient
remained about the same. Fig. 4B demonstrates that for access resistances of 0,
60, and 120 SZ . cm2, lumen conductances of 7, 13, and 30 ,us/cm, respectively,
yielded capacity transients that were nearly identical and which would each have
provided a good fit to the experimental linear capacity transient shown in Fig.
2C. However, neither the charge movement calculated with Ra = 0 nor that
calculated with Ra = 120 SZ . cm2 provides as good a fit of the experimental charge
movement in Fig. 2A as does the charge movement calculated for Ra = 60 a.
cm2. This value is considerably smaller than the 150 U " cms found by Adrian and
Peachey (1973) to best describe action potentials in frog muscle fibers, but it is
similar to the 50 U "cm2 found by Heiny et al . (1983), who used concentric annuli
to model anomalous rectification in the t-system of frog muscle . The model of
Heiny et al . was constrained by both the electrical measurement of current
flowing into the fiber and the optical measurement of potential within the t-
system . Using impedance analysis, Valdiosera et al . (1974) found values for Ra
of -20, 40, and 130 St .cm2, respectively, for frog muscle fibers bathed in normal
Ringer, Ringer 2x hypertonic with sucrose, and Ringer 2.5x hypertonic with
sucrose.
With an access resistance of 60 0-cm2, theJ linear capacity transient in the

omohyoid was best modeled with a G, of -13 uS/cm (assumed fiber radius of 32
pin and temperature of 15°C).This Gam, is in good agreement with the value of
15 ;S/cm used by Adrian and Peachey (1973) and with the 13.5 ;iS/cm used by
Heiny et al . (1983) .

Effect ofTubular Delay on Charge Movement Decay
One would expect tubular propagation delays to affect not only the rising phase
of charge movement, but also the decay phase. As a means of estimating the
magnitude of this effect, Td«ay was obtained by fitting a single exponential to the
decay phase of theoretical charge movements using the same fitting procedure
that was described for experimental charge movements in the previous paper
(Simon and Beam, 1985). Fig. 5 plots, as a function of potential, Tdmy for
theoretical oN (open symbols) or stepped oFF (filled symbols) charge movements
calculated with f equal to 6 (squares), 3 .5 (circles), or 2 (diamonds) ms. These
values of T were chosen to generate charge movements that approximate those
that would be measured experimentally at 5, 15, and 25°C, respectively. In the
absence of tubular propagation delays, the charge movements would have
decayed exponentially with a time constant given by Eq. 9. This time constant,
TQ, is plotted in Fig. 5 both for T - 6 ms (upper dashed curve) and for T = 2 ms
(lower dashed curve) . (A plot of TQ for T = 3.5 ms was omitted from Fig. 5 to
avoid crowding the figure .) TQ can be thought of as the time constant with which
charge movements would decay for an instantaneous step in voltage. Tubular
delays cause Tray to be slower than TQ, with the relative magnitude of the slowing
depending on both temperature and potential. At a given temperature, the
slowing of decay is least at -30 mV, which is the value of 7 used for these
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calculations, and greatest at -90 mV, which is the potential farthest from V for
which charge movements were calculated. The relative slowing is minimal for
the slowest of the theoretical charge movements, those calculated for a temper-
ature of 5°C. At 5°C, -rd,,c,y/rQ varies from a minimum of 1 .08 (at -80 mV) to a
maximum of 1 .22 (at -90 mV). For the calculated charge movements at 15°C,
rd,.y/-rQ varies from 1 .19 at -30 mV to 1 .48 at -90 mV. Thus, tubular
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The voltage dependence of rd.y at 5, 15, and 25°C. Values of r&.y
were determined by fitting exponentials with a least-squares procedure (Simon and
Beam, 1985) to the falling phase of charge movements calculated with the distrib-
uted two-state model. Open symbols were obtained from ON charge movements and
filled symbols from stepped OFF charge movements. The charge movements were
calculated with V = -30 mV, k = 8.5 mV, iff, = 13 ;S/cm (which yields a time
constant of -0.8 ms for the slow phase of the linear capacity transient), and f = 6
(squares), 3.5 (circles), or 2 ms (diamonds) . The values chosen for i correspond to
a Q, 0 of-1 .75, and result in computed charge movements similar to those measured
experimentally at 5, 15, and 25°C. The voltage dependence ofrQ, the time constant
of the underlying charge redistribution that is given by Eq. 9, is plotted for z = 6
(upper broken curve) and 2 ms (lower broken curve). For a plot of rd.,. vs . potential
for experimental charge movements at 7, 15, and 25 °C, see Fig. 8 of Simon and
Beam (1985) .

propagation delays slow the decay of charge movement by <-50 % at 15 ° C and
below. At 25°C, however, where rQ becomes comparable to r,tt(the time constant
of the linear capacity transient), the slowing of charge movement decay is already
appreciable at -30 mV (rde~y/ro = 1 .44) and is even greater at -90 mV (rd..y/
rQ = 2.10) .
At both 5 and 15 0C, rd«,y is slower than 7Q, but the ratio rd,,r y/rQ does not

vary appreciably with voltage . Thus, for the charge movements calculated at
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these temperatures, the constant field expression, Eq. 9, describes not only the
potential dependence of TQ but also that of Tdecay. Since the kinetics of the
calculated and experimental charge movements are in good agreement, it is also
the case that the constant field expression gives a good description of Tdecay for
experimental charge movements measured in the omohyoid muscle at tempera-
tures of 15'C and below. At 25°C, however, Tdecay/TQ varies considerably with
potential and, as a result, Tdecayshows less dependence on potential than predicted
by the constant field expression .
One prediction of the distributed two-state model that mirrors the experimen-

tal data involves the behavior of rdecay for ON and stepped OFF pulses to the same
test potential. In Fig. 5, Tdecaywas determined for both ON (TON) and stepped OFF
(Tstepped OFF) charge movements at -30, -40, and -50 mV. At all three potentials,
TON and Tstepped OFF are similar, but at -50 and -40 mV, Tstepped OFF is slightly
larger than TON . The explanation is that during the time when potential is
changing during a step from -90 to either -50 or -40 mV, TQ is always faster
than it will be at the final potential. Thus, the average rQduring the depolarizing
step is smaller than TQ at the final potential. For a stepped OFF pulse to the same
potential, however, voltage must pass through V, where TQ is slower than at -40
or -50 mV. Thus, during the time when potential is changing, the average TQ is
larger for the stepped OFF charge movement . The observation that at a given
potential the calculated 'rstepped OFF is greater than TON is in agreement with the
experimental data in Fig. 8 of Simon and Beam (1985) .

Voltage Dependence ofthe Rate Constants of Charge Redistribution

The theoretical charge movements illustrated in this paper were calculated with
rate constants having a voltage dependence given by Eq. 8, the constant field
expression, which can be derived from a model in which the redistribution of
charge between two states is governed by diffusion andaconstant intramembrane
field that is proportional to the transmembrane potential (Chandler et al ., 1976 ;
Benz and Zimmerman, 1983). However, the applicability of such a continuum
electrodiffusion description to the molecular rearrangements of the protein(s)
that probably mediates E-C coupling is questionable. Thus, we also calculated
charge movements with rate constants that have a voltage dependence derived
from the Eyring rate theory description ofa charge moving between two energy
wells separated by a barrier (Adrian, 1978). In the case where the barrier is
equidistant between the wells, the rate constants are given by :

and the time constant of decay by :
a = a exp(¢/2) ;

	

,B = a exp(-0), (12)

T = 1/(a + fl) = T/cosh(0/2).

	

(13)

Fig. 6 compares the predictions of Eyring rate theory, Eq. 13, and the constant
field expression, Eq. 9, for the voltage dependence of T. The r predicted by
Eyring rate theory (broken curve) shows a steeper voltage dependence than that
predicted by the constant field expression (smooth curve) . This steeper voltage
dependence of the rate constants given by Eyring rate theory results in calculated
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charge movements that decay too rapidly at potentials far from V, when compared
with experimental charge movements.

If the Eyring theory is modified to include nonlinear effects of the external
field on the potential energy profile within the membrane (Stevens, 1978 ;
Almers, 1978), it is then possible to obtain a voltage dependence for r similar to
that predicted by the constant field expression . In particular, if the height of the
barrier depends on potential raised to both the first and the second powers (~
and 02), then the rate constants become :

and t is given by :

a = & exp(0/2 - d02/4);

	

,B = a exp(-¢),

	

(14)

7 = f exp(d02/4)/cosh(¢/2),

	

(15)
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A comparison of the voltage dependence of r(V) predicted by the
constant field expression, "linear" Eyring rate theory, and "nonlinear" Eyring rate
theory . The solid line is a plot of Eq . 9, which is derived from a constant field
diffusional model, and the broken line is a plot of Eq. 13, which is derived from
"linear" Eyring rate theory for the movement ofcharge between two potential wells
separated by a single energy barrier with a height depending linearly on potential .
The filled circles are derived from "nonlinear" Eyring rate theory, Eq . 15, in which
the barrier height depends on both the first and second powers of potential. The
illustrated points were obtained with d = 0.15 in Eq . 15, where d is the coefficient
of the potential squared term . Over the potential range from -90 to +20 mV, the
nonlinear Eyring rate theory is nearly indistinguishable from the constant field
expression . For all three plots, V= -30 mV, k = 10 mV, and f = 3 ms .

where d is the coefficient of the ,A2 term. With a suitable choice for d, Eq . 15 can
be made to approximate the constant field expression over the potential range
where charge movements have been measured . This is illustrated in Fig. 6,
where the filled circles are a plot of Eq. 15 for d = 0.15. Thus, either the constant
field expression or Eyring rate theory with a barrier height that depends
nonlinearly on potential yields rate constants with the appropriate voltage de-
pendence to account for the experimentally measured charge movements.
The magnitude of the nonlinear potential term in Eq . 15 can be compared

with the other terms as follows. Theenergy barrier required to give rate constants
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of the order of 160/s, corresponding to the f of 3 ms that was used to generate
the curves in Fig. 6, would be -24 RT units high . For the linear Eyring rate
theory with V = -30 mV and k = 10 mV, the barrier height at +10 mV differs
from that at Vby 2 RT. The inclusion of the 0s dependence with d = 0.15 in Eq.
15 increases the barrier height at +10 mV by 0.6 RT.
Andersen and Fuchs (1975) have used a continuum electrodiffusion treatment

to describe the kinetics of movement of the lipophilic anion tetraphenylborate
absorbed into a lipid bilayer separating two aqueous solutions . They numerically
integrated the Nernst-Planck diffusion equation assuming a particular nonlinear
potential profile, which included a large central image-force barrier, and a deep,
narrow minimumnear each ofthe two interfaces between the bilayer andaqueous
solution . The resulting expression is identical to Eq . 15, the nonlinear Eyring
theory. In the treatment of Andersen and Fuchs, the coefficient of the potential

5ms

FIGURE 7 .

	

The effect of charge density on the kinetics of charge movement.
Theoretical oN charge movements were calculated with identical parameters except
for the charge density, which for the solid trace was 30 nC/;tF, a typical physiological
density, and for the dotted traces was O.1X and 5x this density. To facilitate
comparison of kinetics, the charge movements were scaled so that their peaks
coincided. rd-,was 3.1, 3.2, and 4.5, ms, respectively, for charge densities of 0.1 x,
1 x, and 5x physiological . Test pulse = 0 mV, G, = 13 ;&S/em, V = -30 mV, k = 10
mV, f=3ms.

squared term was found to be related to the shape of the central barrier and the
width of the membrane.

Effect ofCharge Density on Tubular Propagation Delays
The theoretical charge movements illustrated in Figs. 1-4 were calculated with
the density of the mobile charge assumed to be 30 nC/,F, which is representative
of the values measured experimentally in the omohyoid muscle (Simon and
Beam, 1985). The presence of this quantity of mobile charge means that a step
in potential from -90 to 0 mV requires not only 90 nC/,F to charge the linear
capacitance of the fiber, but also 30 nC/EAF to move the nonlinear charge . Thus,
the question arises whether the presence of this quantity of charge slows the
propagation of voltage within the t-system . As a means of addressing this issue,
we calculated charge movements, varying the total density of the mobile charge .
The assumption underlying this approach is that if the mobile charge were itself
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slowing tubular propagation, then decreasing the charge density would speed
propagation and hence speed the kinetics of the computed charge movement .
Fig. 7 illustrates three charge movements calculated with charge densities of
0.1 X, 1 X, and 5X the standard density, but with otherwise identical parameters,
for a step from -90 to 0 mV. To facilitate the comparison ofkinetics, the records
were scaled so that the peaks coincided . A comparison of the records with 1X
(continuous curve) and 0.1X standard density shows that a 10-fold reduction in
density only slightly speeds the decay of the calculated charge movement .
Specifically, an exponential fitted to the decay phase of the records had a time
constant of 3.2 ms for the 1X density and 3.1 ms for the OA X density. An
additional 10-fold reduction, to 0.01X, had no further effect on the time
constant . However, when the density was increased from 1X to 5X, the kinetics
were significantly slowed and rdK,r increased to 4.3 ms .
The computations illustrated in Fig. 7 are based on parameters that describe

the charge movements that would have been measured experimentally at ^-15 °C.
A similar result was obtained for computed charge movements approximating
those that one wouldexpect to measure at temperatures ranging from 5 to 37°C:
decreasing the charge density 10-fold from its physiological value had only a
small effect on the propagation velocity, whereas increasing the density to 5X
physiological slowed propagation.

This result is significant with regard to the experimental procedure used to
measure charge movements. In order to measure charge movements, a control
current, elicited by a step in voltage over a potential range where little nonlinear
charge moves, is scaled and subtracted from the test current elicited by a step in
voltage that does move charge . The validity of this procedure requires that the
kinetics of the voltage change within the t-system be the same during the control
and test steps. Our calculations with the distributed two-state model suggest that
this condition is met and that charge movement at its physiological density in the
omohyoid muscle has little effect on the passive propagation of voltage in the t-
system .

DISCUSSION

This paper describes a simple physical model that can account for many of the
properties of charge movement observed in mammalian skeletal muscle . In the
model, a mobile charge obeyinga two-state reaction scheme is located throughout
an electrically distributed t-system . The model accurately fits the time course of
ON, OFF, and stepped OFF charge movements at temperatures ranging from 3 to
25°C and test potentials that span the range from -90 to +10 mV. The model
reproduces the experimental observation that the Qto ofcharge movement decay
depends on both temperature and test potential, and accounts in particular for
the observation that at test potentials far from 7, raising the temperature from
15 to 25°C has only a small effect on the kinetics of charge movement . The
ability of the model to fit not only the falling phase of charge movements but
also the rising phase suggests that the rising phase is a consequence of the
distributed nature of the t-system, which functions to slow the propagation of
potential . Thus, a simple two-state model appears sufficient to describe the
underlying charge redistribution process.
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Na Gating Current on the Surface ofthe Fiber

In principle, one would expect Na channel gating current to be present as a
component of the total asymmetry current measured in muscle, but the contri-
bution of Na gating current to our records appears to be small. Measured in
frog muscle with the rapid, vaseline-gap voltage-clamp technique, Na gating
current is seen as a spike-like transient of current that precedes charge movement
(Campbell, 1985). To investigate the effects of Na gating current on calculated
charge movements, the distributed two-state model was modified to include Na
gating current on the surface of the fiber . For this calculation, the potential on
the surface of the fiber wasassumed to change exponentially with a time constant
of 550 As, which corresponds to that observed experimentally (see Methods) .
Even with this relatively slow change in potential, the calculated Na gating
current appeared as a distinct spike on the rising phase of the charge movement .
No such spike-like component appears to be present in our records of charge
movement in rat muscle (Simon and Beam, 1985). Furthermore, the rising
phases of an ON charge movement at +10 mV and an OFF charge movement at
-90 mV are nearly identical and can be well fitted by the model without Na
gating current. In frog muscle, a 31-ms depolarizing step to +10 mV would
immobilize more than two-thirds of the Na gating current (Campbell, 1983).
Thus, one would expect the contribution of Na gating current to be nearly three
times larger for the ON charge movement than for the OFF. The similarity of the
rising phases of ON and OFF charge movements thus suggests that very little Na
gating current is present in either .
The apparent absence of significant Na channel gating charge is consistent

with estimates of the amount of charge expected . Pappofe (1980) determined a
peak Na conductance of 40-50 mS/cm2 in rat fast-twitch muscle fibers at 12°C.
After correction for contraction, the total linear capacitance of the fibers aver-
aged 5.9 jF/cm2 of surface membrane . Under the assumptions that about half
the total Na channels are open at the peak of current (Sigworth, 1980), that the
single Na channel conductance is 18 pS (Sigworth and Neher, 1980), and that
the equivalent of six charges moving across the membrane is associated with the
gating of each channel (Hodgkin and Huxley, 1952), then the Na gating charge
would be -1 nC/,uF . In rabbit fast-twitch skeletal muscle, a direct measurement
indicates that 1 .7 nC/jAF of Na channel gating charge is present (D . T. Campbell,
personal communication) . Thus, the estimated Na channel gating charge is no
more than 6% ofQ,.., which could easily have been missed in our measurements .

Passive Properties of the T-System
The solutions used for the measurement of charge movements reduce the
conductance of the fiber membrane to a low level. Thus, for simplicity, we have
assumed that the leak conductance across the t-tubular wall (G�.,�) is zero . GW,�
for omohyoid muscle fibers underour experimental conditions can be estimated
from the measured space constant of -2 mm, an assumed fiber radius of 32 jum,
and an assumed internal resistivity of 220 11-cm (cf. Hodgkin and Nakajima,
1972), which yield R�, = 5,500 SE . cm2 (normalized per unit area of fiber surface) .
If we assume that the surface and tubular membranes have equal specific leak



SIMON AND BEAM

	

Charge Movement in Rat Muscle II.

	

39

conductance, this value of R�, is equivalent to a G,v,� of 0.032 mS/cm2 (normal-
ized per unit area of membrane) for G, = 13 #S/cm. We examined the effect of
a nonzero GW, � and determined that the amplitude and time course of a charge
movement calculated for a step from -90 to 0 mV were virtually identical for a
G�.,� of 0 and 0.032 mS/cm2. A further 10-fold increase in G�.,� , to 0.32 mS/cm2,
reduced the amplitude of the calculated charge movement by -30% but had
little effect on its time course . This latter value of G�,, � yields an Rm of 600 St .
cm2, nearly as low as the values reported for rat EDL (Camerino and Bryant,
1976) and diaphragm (Palade and Barchi, 1977) muscle fibers in physiological
solutions at 37°C. Hence, it is clear iziat under the experimental conditions used
to measure charge movements, G�,,� is sufficiently small that it can be neglected.

In fitting the model, we used the same values for the geometric parameters of
the t-system (Table I) used by Adrian and Peachey (1973) for frog muscle . We
are unaware of morphometric measurements of the t-system in the rat omohyoid
muscle, although such measurements do exist for other mammalian fast-twitch
muscles. For the mouse EDL, Luffand Atwood (1971) reported that p = 0.4%,
and that the surface area of the t-system, relative to the area ofthe fiber surface,
is 3 .1 cm2/cm2 for a 30-,um-diam fiber; from these, one calculates that r = 0.97
x 10-6 . Other values reported in the literature include p = 0.27% and r = 1 .9
x 10-6 for the vastus muscle of the guinea pig (Eisenberg and Kuda, 1975), p =
0.28% and ~ = 1 .6 x 10-6 for fast-twitch fibers of the human quadriceps
(Eisenberg, 1983), and p = 0.42% and r = 1 .3 x 10-6 for the rat EDL (Cullen
et al ., 1984). All of these are in reasonable agreement with the values of p =
0.3% and t = 10-6 that we have used . These latter values were chosen not only
because they result in a good description of the time course of passive charging
of the t-system (Figs. 1C, 2C, and 3B), but also because they yield a total fiber
capacitance in good agreement with measured values . Specifically, they yield a
total membrane capacitance of 5.8 AF/cm2 (calculated for a 32-,um-radius fiber
with a specific membrane capacitance of 1 ;&F/cm 2 of tubular or surface mem-
brane) . For comparison, the electrically measured values for rat fast-twitch
muscles (EDL, sternomastoid) include 6.6 (Adrian and Marshall, 1977), 5.9
(Pappone, 1980), 5 .1 (Hollingworth and Marshall, 1981), and 6.2 pF/cm2 (Dul-
hunty and Gage, 1983).
The value of G, in Table I is calculated from the fitted value of G, assuming a

network geometric factor of 0 .5 . Such a network geometric factor has the
disadvantage that it can be evaluated only for specific geometric arrays, which
cannot in general describe the t-system . Mathias et al . (1977) have shown that
the network geometric factor can be replaced by r, a tortuosity factor, which can
be derived from morphometric measurements of the t-system . For frog twitch
fibers, Mathias et al . give a value of 0.32 for r. If one assumes that r = 0.32 for
the rat omohyoid muscle (we are unaware of the existence in the literature from
mammalian fibers of the morphometric parameters necessary for the calculation
of r), then our estimate of G, at 15 ° C changes from 8.7 to 13.6 mS/cm. This is
the only effect of choosing a specific value for a or r since G, is the parameter
describing the luminal conductance that we vary to fit the measured capacity
transients .
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Charge Movement on the Surface ofthe Fiber
In the model presented here, charge movement was assumed to reside only in
the t-system . A variation of the model, which included charge on the surface,
was also investigated . This inclusion introduces an additional free parameter, the
relative density of charge on the surface compared with that in the t-system . If
for simplicity it is assumed that the surface and tubular densities are the same, it
is then necessary to use a larger value for the access resistance, 100 0-cm', to
obtain a good fit of the measured charge movements . Generally, the inclusion
of charge on the surface was found to improve the fit of the rising phase for
small depolarizations without substantially changing the fits for larger depolar-
izations . However, other models might also improve the fit. For example, the
charge might be present only in the t-system but present at higher densities
nearer the surface of the fiber. Our data do not allow us to choose between these
possibilities . Nonetheless, it is clear that the fits are already excellent with the
simple distributed two-state model .

APPENDIX
Radial Propagation ofVoltagefor a Rounded Step at the Surface

The solution to the radial cable equation (Eq . 10) for a unit step in potential on the
surface of the fiber is given by (Adrian et al ., 1969) :

°° exp(-amt/a')fo(a�r/a)A(r, t) = 1 - 2 Z

	

ajl(a^)

	

(A1)

whereJo andJ l are Bessel functions of the first kind, a � are the roots ofjo(x) = 0, a is the
radius of the fiber, and K = The solution to Eq . 10 for an arbitrary potential
change on the surface, V(a, t), is :
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