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Abstract

The anti-metabolite chemotherapeutic, gemcitabine is relatively effective for a spectrum of 

neoplastic conditions that include various forms of leukemia and adenocarcinoma/carcinoma. 

Rapid systemic deamination of gemcitabine accounts for a brief plasma half-life but its sustained 

administration is often curtailed by sequelae and chemotherapeutic-resistance. A molecular 

strategy that diminishes these limitations is the molecular design and synthetic production of 

covalent gemcitabine immunochemotherapeutics that possess properties of selective “targeted” 

delivery. The simultaneous dual selective “targeted” delivery of gemcitabine at two separate sites 

on the external surface membrane of a single cancer cell types represents a therapeutic approach 

that can increase cytosol chemotherapeutic deposition; prolong chemotherapeutic plasma half-life 

(reduces administration frequency); minimize innocent exposure of normal tissues and healthy 

organ systems; and ultimately enhance more rapid and thorough resolution of neoplastic cell 

populations. Materials and Methods: A light-reactive gemcitabine intermediate synthesized 

utilizing succinimidyl 4,4-azipentanoate was covalently bound to anti-EGFR or anti-HER2/neu 

IgG by exposure to UV light (354-nm) resulting in the synthesis of covalent 

immunochemotherapeutics, gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-

[anti-HER2/neu]. Cytotoxic anti-neoplastic potency of gemcitabine-(C4-amide)-[anti-EGFR] and 
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gemcitabine-(C4-amide)-[anti-HER2/neu] between gemcitabine-equivalent concentrations of 

10−12 M and 10−6 M was determined utilizing chemotherapeutic-resistant mammary 

adenocarcinoma (SKRr-3). The organoselenium compound, [Se]-methylselenocysteine was 

evaluated to determine if it complemented the anti-neoplastic potency of the covalent gemcitabine 

immunochemotherapeutics. Results: Gemcitabine-(C4-amide)-[anti-EGFR], gemcitabine-(C4-

amide)-[anti-HER2/neu] and the dual simultaneous combination of gemcitabine-(C4-amide)-[anti-

EGFR] with gemcitabine-(C4-amide)-[anti-HER2/neu] all had anti-neoplastic cytotoxic potency 

against mammary adenocarcinoma. Gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-

amide)-[anti-HER2/neu] produced progressive increases in anti-neoplastic cytotoxicity that were 

greatest between gemcitabine-equivalent concentrations of 10−9 M and 10−6 M. Dual 

simultaneous combinations of gemcitabine-(C4-amide)-[anti-EGFR] with gemcitabine-(C4-

amide)-[anti-HER2/neu] produced levels of anti-neoplastic cytotoxicity intermediate between each 

of the individual covalent gemcitabine immunochemotherapeutics. Total anti-neoplastic 

cytotoxicity of the dual simultaneous combination of gemcitabine-(C4-amide)-[anti-EGFR] and 

gemcitabine-(C4-amide)-[anti-HER2/neu] against chemotherapeutic-resistant mammary 

adenocarcinoma (SKBr-3) was substantially higher when formulated with [Se]-methylsele-

nocysteine.
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1. Introduction

Monoclonal immunoglobulin preparations or pharmaceuticals with binding-avidity for 

HER2/neu (e.g. anti-HER2/neu: trastuzumab, pertuzumab), EGFR (e.g. anti-EGFR: 

cetuximab, gefitinib) [1]–[4], HER2/neu and EGFR (e.g. anti-HER2/neu and anti-EGFR: 

panitumumab) [3]–[6] IGF-1R, VEGFR and inhibitors of trophic membrane receptors can 

all potentially be effective treatment options for certain neoplastic conditions including 

cancer affecting the breast, intestinal tract, lung or prostate. The significant advantage of 

these preparations is their ability to function as a selective anti-cancer treatment modality 

that also avoids many of the sequelae associated with conventional chemotherapy. 

Unfortunately, most monoclonal immunoglobulin-based therapies that inhibit the function of 

trophic membrane receptors are usually only capable of exerting cytostatic properties and as 

a monotherapy are almost invariably plagued by an inability to evoke cytotoxic activity that 

is potent enough to effectively resolve most aggressive and advanced forms of neoplastic 

disease [7]–[12]. Alternatively, enhanced levels of anti-neoplastic cytotoxicity can be 

attained when monoclonal immunoglobulin-based biotherapies are applied in concert with 

conventional chemotherapeutics or other anti-cancer treatment modalities [13]–[15].

The potential for selective and simultaneous “targeted” delivery of a single or multiple 

chemotherapeutic agents or pharmaceuticals at two or more uniquely or over-expressed 

trophic receptor complexes for the purpose of evoking an enhanced level of anti-neoplastic 

cytotoxicity or other types of a biological effect against specific cancer cell types remains a 
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facet of oncology and pharmacology that has not been extensively delineated. Based on the 

increased level of anti-neoplastic cytotoxicity that can potentially be gained through dual 

simultaneous selectively targeted” epirubicin delivery at trophic receptors over-expressed 

(EGFR) and highly over-expressed (HER2/neu) by chemotherapeutic resistant mammary 

adenocarcinoma (SKBr-3) [16] the concept of this molecular strategy does have therapeutic 

merit. Reported in this research investigation is the anti-neoplastic cytotoxicity of 

gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] against 

chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) applied simultaneously as a 

dual selectively “targeted” chemotherapeutic regimen. The strategy has clinical relevance in 

part due to the effectiveness of gemcitabine, especially in combination with paclitaxel, 

carboplatin and cisplatin following anthracycline failure in the treatment of metastatic breast 

cancer [17]. The objective of the research investigations was to determine if simultaneous 

selective “targeted” delivery of two covalent gemcitabine immunochemotherapeutics is 

possible at two different endogenous trophic receptor sites over-expressed on the surface 

membrane of a neoplastic cell type and establish the potential for [Se]-methylselenocysteine 

to complement the anti-cancer cytotoxic potency attained with this molecular strategy.

2. Materials and Methods

2.1. Covalent Gemcitabine Immunochemotherapeutic Synthesis

Phase-I Synthesis Scheme for UV-Photoactivated Chemotherapeutic 
Intermediates—The cytosine-like C4-monoamine of gemcitabine (0.738 mg, 2.80 × 10−3 

mmoles) was reacted at a 2.5:1 molar-ratio with the amine-reactive N-hydroxysuccinimide 

ester “leaving” complex of succinimidyl 4,4-azipentanoate (0.252 mg, 1.12 × 10−3 mmoles) 

in the presence of triethylamine (TEA: 50 mM final concentration) utilizing 

dimethylsulfoxide as an anhydrous organic solvent system (Figure 1) [18] [19]. The reaction 

mixture formulated from stock solutions of gemcitabine and succinimidyl 4,4-azipentanoate 

was continually stirred gently at 25°C over a 4-hour incubation period in the dark and 

protected from exposure to light. The relatively long incubation period of 4 hours was 

utilized to maximize degradation of the ester group of any residual succinimidyl 4,4-

azipentanoate that may not of reacted during the first 30 to 60 minutes with the C4 cytadine-

like monoamine group of gemcitabine.

Phase-II Synthesis Scheme for Covalent Gemcitabine 
Immunochemotherapeutics Utilizing a UV-Photoactivated Chemotherapeutic 
Intermediate—Immunoglobulin fractions of anti-HER2/neu or anti-EGFR (1.5 mg, 1.0 × 

10−5 mmoles) in buffer (PBS: phosphate 0.1, NaCl 0.15 M, EDTA 10 mM, pH 7.3) were 

combined at a 1:10 molar-ratio with the UV-photoactivated gemcitabine-(C4-amide) 

intermediate (Phase-1 end product) and allowed to gently mix by constant stirring for 5 

minutes at 25°C in the dark [19]. The photoactivated group of the gemcitabine-(C4-amide) 

intermediate was reacted with groups associated with the side chains of amino acid residues 

within the sequence of anti-EGFR or anti-HER2/neu monoclonal immunoglobulins during a 

15 minute exposure to UV light at 354-nm (reagent activation range 320 – 370 nm) in 

combination with constant gentle stirring (Figure 1). Residual gemcitabine was removed 

from the covalent gemcitabine immunochemotherapeutics by microscale column 
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chromatography following PBS pre-equilibration of media (phosphate 0.1 M, NaCl 0.15 M, 

pH 7.3).

2.2. Molecular Analysis and Characterization of Properties

General Analysis—Quantitation of the amount of non-covalently bound gemcitabine 

contained within covalent gemcitabine-(C4-amide)-[anti-HER2/neu] and gemcitabine-(C4-

amide)-[anti-EGFR] immunochemotherapeutics following separation by column 

chromatography was determined by measuring absorbance at 265 – 268 nm [20] [21] for the 

resulting supernatant following precipitation of covalent gemcitabine-

immunochemotherapeutics with methanol:acetonitrile (1:9 v/v). It is also possible to 

calculate the amount of gemcitabine covalent incorporated into the 

immunochemotherapeutics by measuring residual unbound gemcitabine before and after the 

Phase II reaction [22]–[24].

Determination of the immunoglobulin concentration for covalent gemcitabine-(C4-amide)-

[anti-HER2/neu] and gemcitabine-(C4-amide)-[anti-EGFR] immunochemotherapeutics was 

determined by measuring absorbance at 280 nm in combinations with utilizing a 235 nm-

vs-280 nm standardized reference curve in order to accommodate for any potential 

absorption profile over-lap at 280 nm between immunoglobulin and the gemcitabine moiety.

Mass-Separation Analysis for Detection of Polymerization and Fragmentation
—Covalent gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/

neu] immunochemotherapeutics in addition to reference control anti-EGFR and anti-

HER2/neu immunoglobulin fractions were adjusted to a standardized protein concentration 

of 60 μg/ml and then combined 50/50 v/v with conventional SDS-PAGE sample preparation 

buffer (Tris/glycerol/bromphenyl blue/SDS) formulated without 2-mercaptoethanol or 

boiling. Each covalent immunochemotherapeutic, the reference control immunoglobulin 

fraction (0.9 μg/well) and a mixture of pre-stained reference control molecular weight 

markers were then developed by non-reducing SDS-PAGE (11% acrylamide) performed at 

100 V constant voltage at 3°C for 2.5 hours.

Immunodetection Analyses for Polymerization and Fragmentation Detection—
Covalent gemcitabine-(C4-amide)-[anti-HER2/neu] and gemcitabine-(C4-amide)-[anti-

EGFR] immunochemotherapeutics following mass/size-dependent separation by non-

reducing SDS-PAGE were equilibrated in tank buffer devoid of methanol. Mass/size-

separated gemcitabine-[anti-HER2/neu] immunochemotherapeutics contained within 

acrylamide SDS-PAGE gels were then transferred laterally onto sheets of nitrocellulose 

membrane at 20 volts (constant voltage) for 16 hours at 2°C to 3°C (Note: n = 2 locations) 

with the transfer manifold packed in crushed ice.

Nitrocellulose membranes with laterally-transferred covalent gemcitabine 

immunochemotherapeutics were then equilibrated in Tris buffered saline (TBS: Tris HCl 0.1 

M, NaCl 150 mM, pH 7.5, 40 ml) at 4°C for 15 minutes followed by incubation in TBS 

blocking buffer solution (Tris 0.1 M, pH 7.4, 40 ml) containing bovine serum albumin (5%) 

for 16 hours at 2°C to 3°C applied in combination with gentle horizontal agitation. Prior to 
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further processing, nitrocellulose membranes were vigorously rinsed in Tris buffered saline 

(Tris 0.1 M, pH 7.4, 40 ml, n = 3x).

Rinsed BSA-blocked nitrocellulose membranes developed for Western-blot 

(immunodetection) analyses were incubated with biotinylated goat anti-murine IgG 

(1:10,000 dilution) at 4°C for 18 hours applied in combination with gentle horizontal 

agitation. Nitrocellulose membranes were then vigorously rinsed in TBS (pH 7.4, 4°C, 50 

ml, n = 3) followed by incubation in blocking buffer (Tris 0.1 M, pH 7.4, with BSA 5%, 40 

ml). Blocking buffer was decanted from nitrocellulose membrane blots which were then 

rinsed in TBS (pH 7.4, 4°C, 50 ml, n = 3) before incubation with HRPO-strepavidin 

(1:100,000 dilution) at 4°C for 2 hours applied in combination with gentle horizontal 

agitation. Prior to chemiluminescent development nitrocellulose membranes were 

vigorously rinsed in Tris buffered saline (Tris 0.1 M, pH 7.4, 40 ml, n = 3). Following 

development with conjugated HRPO-strepavidin the nitrocellulose membranes were then 

incubated with HRPO chemiluminescent substrate (25°C; 5-to-10 minutes). 

Chemiluminescent autoradiography images were acquired by exposing radiographic film 

(Kodak BioMax XAR) to nitrocellulose membranes sealed within transparent ultra-clear re-

sealable plastic bags.

2.3. Mammary Adenocarcinoma: Neoplastic Disease ex-Vivo Model

Mammary Adenocarcinoma Tissue Culture Cell Culture—The human mammary 

adenocarcinoma (SKBr-3) was utilized as an ex-vivo model for neoplastic disease. 

Populations of the mammary adenocarcinoma (SKBr-3) were propagated at ≥85% level of 

confluency in 150-cc2 tissue culture flasks containing McCoy’s 5a Modified Medium 

supplemented with fetal bovine serum (10% v/v) and penicillin-streptomycin at a 

temperature of 37°C under a gas atmosphere of air (95%) and carbon dioxide (5% CO2). 

Trypsin or any other biochemically active enzyme fraction were not used to facilitate harvest 

of mammary adenocarcinoma SKBr-3 cell suspensions for seeding of tissue culture flasks or 

multi-well tissue culture plates. Growth media was not supplemented with growth factors, 

growth hormones or any other type of growth stimulant.

Characteristic features and biological properties of the mammary adenocarcinoma (SKBr-3) 

cell line includes chemotherapeutic-resistance, over-expression of epidermal growth factor 

receptor 1 (EGFR, ErbB-1, HER1: at 2.2 × 105/cell), and high over-expression of epidermal 

growth factor receptor 2 (EGFR2, HER2/neu, ErbB-2, CD340, p185: at 1 × 106/cell).

Cell-ELISA Total Membrane-Bound Immunoglobulin Assay—Cell suspensions of 

mammary adenocarcinoma (SKBr-3) were seeded into 96-well microtiter plates in aliquots 

of 2 × 105 cells/well and allowed to form a confluent adherent monolayer over a period of 

48 hours. The growth media content in each individual well was removed manually by 

pipette and the cellular monolayers were then serially rinsed (n = 3) with PBS followed by 

their stabilization onto the plastic surface of 96-well plates with paraformaldehyde (4% in 

PBS, 15 minutes). Stabilized cellular monolayers were then incubated with covalent 

gemcitabine-(C4-amide)-[anti-HER2/neu] and gemcitabine-(C4-amide)-[anti-EGFR] 

immunochemotherapeutics formulated at gradient concentrations of 0.1, 0.25, 0.5, 1.0, 5.0 
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and 10 μg/ml in tissue culture growth media (200 μl/well). Direct contact incubation 

between (SKBr-3) cellular monolayers and gemcitabine-(C4-amide)-[anti-HER2/neu] and 

gemcitabine-(C4-amide)-[anti-EGFR] was performed at 37°C during an incubation period of 

3-hours under a gas atmosphere of air (95%) and carbon dioxide (5% CO2). Following serial 

rinsing with PBS (n = 3), development of stabilized mammary adenocarcinoma (SKBr-3) 

monolayers entailed incubation with β-galactosidase conjugated goat anti-mouse IgG (1:500 

dilution) for 2 hours at 25°C with residual unbound immunoglobulin removed by serial 

rinsing with PBS (n = 3). Final cell ELISA development required serial rinsing (n = 3) of 

stabilized (SKBr-3) monolayers with PBS followed by incubation with nitrophenyl-β-D-

galactopyranoside substrate (100 μl/well of ONPG formulated fresh at 0.9 mg/ml in PBS pH 

7.2 containing MgCl2 10 mM, and 2-mercaptoethanol 0.1 M). Absorbance within each 

individual well was measured at 410 nm (630 nm reference wavelength) after incubation at 

37°C for a period of 15 minutes.

Cell Vitality Stain-Based Assay for Measuring Anti-neoplastic cytotoxicity—
Individual preparations of gemcitabine-(C4-amide)-[anti-HER2/neu] and gemcitabine-(C4-

amide)-[anti-EGFR] were formulated in growth media at standardized gemcitabine-

equivalent concentrations of 10−10, 10−9, 10−8, 10−7, and 10−6 M (final concentration). Each 

gemcitabine-equivalent concentration of the covalent immunochemotherapeutics were then 

transferred in triplicate into 96-well microtiter plates containing mammary adenocarcinoma 

(SKBr-3) monolayers and growth media (200 μl/well). Covalent immunochemotherapeutics 

where then incubated in direct contact with monolayer mammary adenocarcinoma (SKBr-3) 

populations for a period of 182-hours (37°C under a gas atmosphere of air (95%) and carbon 

dioxide/CO2 (5%). Following the initial 96-hour incubation period, mammary 

adenocarcinoma (SKBr-3) populations were replenished with fresh tissue culture media with 

or without covalent gemcitabine-immunochemotherapeutics or benzimidazole tubulin/

microtubule inhibitors.

Anti-neoplastic cytotoxicity for gemcitabine-(C4-amide)-[anti-HER2/neu] and gemcitabine-

(C4-amide)-[anti-EGFR] were measured by removing all contents within the 96-well 

microtiter plates manually by pipette followed by serial rinsing of monolayers (n = 3) with 

PBS followed by incubation with 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium 

bromide vitality stain reagent formulated in RPMI-1640 growth media devoid of pH 

indicator or bovine fetal calf serum (MTT: 5 mg/ml). During an incubation period of 3 – 4 

hours at 37°C under a gas atmosphere of air (95%) and carbon dioxide (5% CO2) the 

enzyme mitochondrial succinate dehydrogenase was allowed to convert the MTT vitality 

stain reagent to navy-blue formazone crystals within the cytosol of mammary 

adenocarcinoma (SKBr-3) populations (some reports suggest that NADH/NADPH 

dependent cellular oxidoreductase enzymes may also be involved in the biochemical 

conversion process). Contents were then removed from each of the 96-wells in the microtiter 

plate, followed by serial rinsing with PBS (n = 3). The resulting blue intracellular formazone 

crystals were dissolved with DMSO (300 μl/well) and then spectrophotometric absorbance 

of the resulting blue-colored supernatant measured at 570 nm using a computer-integrated 

microtiter plate reader.
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3. Results

Molar-Incorporation Index—Size-separation of gemcitabine-(C4-amide)-[anti-HER2/

neu] and gemcitabine-(C4-amide)-[anti-EGFR] by microscale desalting/buffer exchange 

column chromatography consistently yields covalent immunochemotherapeutic preparations 

that contained <4.0% of residual chemotherapeutic that was not covalently bound to 

immunoglobulin [16] [18] [19] [24] [25]. Small residual amounts of non-covalently bound 

chemotherapeutic remaining within covalent immunochemotherapeutic preparations is 

generally accepted to not be available for further removal through any additional sequential 

column chromatography separations [26]. The calculated estimate of the molar-

incorporation-index for the covalent gemcitabine-(C4-amide)-[IgG] 

immunochemotherapeutics was 2.78 utilizing the organic chemistry reaction scheme to form 

an amide bond at the C4 cytosine-like monoamine of gemcitabine and synthesis of the UV-

photoactivated gemcitabine-(C4-amide) intermediate (Figure 1). The molar-incorporation-

ration of 2.78-to-1 for gemcitabine-(C4-amide)-[anti-HER2/neu] and gemcitabine-(C4-

amide)-[anti-EGFR] was relatively larger than the 1.1-to-1 gemcitabine molar-

incorporation-index attained during the synthesis of gemcitabine-(C5-methylcarbamate)-

[anti-HER2/neu] [24].

Molecular Weight Profile Analysis—Mass/size separation of covalent gemcitabine-

(C4-amide)-[anti-HER2/neu] and gemcitabine-(C4-amide)-[anti-EGFR] 

immunochemotherapeutics by SDS-PAGE in combination with immunodetection analysis 

(Western blot) and chemiluminescent autoradiography recognized a single primary 

condensed band of 150-kDa between a molecular weight range of 5.0-kDa to 450-kDa 

(Figure 2). Patterns of low-molecular-weight fragmentation (proteolytic/hydrolytic 

degradation) or large-molecular-weight immunoglobulin polymerization were not detected 

(Figure 2). The observed molecular weight of 150-kDa for both gemcitabine-(C4-amide)-

[anti-HER2/neu] and gemcitabine-(C4-amide)-[anti-EGFR] directly corresponds with the 

known molecular weight/mass of reference control anti-HER2/neu monoclonal 

immunoglobulin fractions (Figure 2). Analogous results have been reported for similar 

covalent immunochemotherapeutics [16] [18] [19] [24] [25] [27] [28].

Cell-Binding Analysis—Total bound immunoglobulin in the form of gemcitabine-(C4-

amide)-[anti-HER2/neu] or gemcitabine-(C4-amide)-[anti-EGFR] on the external surface 

membrane of adherent mammary adenocarcinoma (SKBr-3) populations was measured by 

cell-ELISA (Figure 3). Greater total membrane-bound gemcitabine-(C4-amide)-[anti-HER2/

neu] was detected with progressive increases in standardized total immunoglobulin-

equivalent concentrations formulated at 0.010, 0.025, 0.050, 0.250, and 0.500 μg/ml (Figure 

3). In order to detect elevations in total membrane-bound gemcitabine-(C4-amide)-[anti-

HER2/neu] or gemcitabine-(C4-amide)-[anti-EGFR] standardized total immunoglobulin-

equivalent concentrations had to alternatively be formulated at 0.5, 1.0, 5.0 and 10.0 μg/ml 

(Figure 3). Collectively these results for the cell-ELISA analyses serve to validate the 

retained selective binding-avidity of gemcitabine-(C4-amide)-[anti-HER2/neu] and 

gemcitabine-(C4-amide)-[anti-EGFR] for external membrane HER2/neu receptor sites 
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highly over-expressed at 1 × 106/cell on the exterior surface membrane of mammary 

adenocarcinoma (SKBr-3) populations (Figure 3) [24].

Anti-neoplastic Cytotoxic Potency—Gemcitabine chemotherapeutic produced higher 

levels of anti-neoplastic cytotoxicity against chemotherapeutic resistant mammary 

adenocarcinoma during direct contact incubation periods of 182-hours compared to 96-hours 

especially at the gemcitabine-equivalent concentration of 10−6 M (Figure 4). Similarly, 

gemcitabine-(C4-amide)-[anti-EGFR] produced measurably higher levels of canti-neoplastic 

cytotoxicity when incubated with chemotherapeutic-resistant mammary adenocarcinoma 

(SKBr-3) for direct contact periods of 182-hours compared to 96-hours (Figure 5 and Figure 

6).

Anti-neoplastic cytotoxicity of gemcitabine-(C4-amide)-[anti-EGFR] against 

chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) was consistently greater 

with incubation periods of 182-hours compared to 96-hours (Figure 6 and Figure 7). 

Gemcitabine-(C4-amide)-[anti-EGFR] produced progressive anti-neoplastic cytotoxicity that 

increased with elevations in covalent immunochemotherapeutic at and between the 

gemcitabine-equivalent concentrations of 10−10 M and 10−6 M for incubation periods of 96-

hours and 182-hours respectively (Figure 6 and Figure 7). The most rapid increases in anti-

neoplastic cytotoxicity from 10.2% and 48.7% (89.8% and 51.3% residual survival) to 

95.3% and 99.3% (4.7% and 0.7% residual survival) were detected at and between the 

gemcitabine-equivalent concentrations of 10−9 M-to-10−7 M and 10−10 M-to-10−7 M at 96 

hours and 182-hours respectively (Figure 6 and Figure 7). Maximum but only slight higher 

anti-neoplastic cytotoxicity of 95.3% and 99.6% (4.7% and 0.4% residual survival) was 

detected with gemcitabine-(C4-amide)-[anti-EGFR] at 10−6 M for incubation periods of 96-

hours and 182-hours respectively (Figure 6 and Figure 7).

Gemcitabine-(C4-amide)-[anti-EGFR] produced greater anti-neoplastic cytotoxicity than 

either gemcitabine (C5-methylcarbamate)-[anti-HER2/neu] [24] or gemcitabine-(C4-amide)-

[anti-HER2/neu] against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) 

during an 182-hour incubation period (Figure 6 and Figure 7). Gemcitabine-(C4-amide)-

[anti-HER2/neu] and gemcitabine (C5-methylcarbamate)-[anti-HER2/neu] anti-neoplastic 

cytotoxicity levels of 14.4% and 9.6% (85.9% and 90.4% residual survival) compared to 

63.9% (36.1% residual survival) for gemcitabine-(C4-amide)-[anti-EGFR] at the 

gemcitabine-equivalent concentration of 10−8 M (Figure 6 and Figure 7). Gemcitabine-(C4-

amide)-[anti-HER2/neu] and gemcitabine (C5-methylcarbamate)-[anti-HER2/neu] both 

produced progressive but modest increases in anti-neoplastic cytotoxicity that most rapidly 

increased at and between 10−8 M (85.9% and 90.4% residual survival) and 10−6 M (58.9% 

and 69.2% residual survival). In contrast, gemcitabine-(C4-amide)-[anti-EGFR] produced 

anti-neoplastic cytotoxicity levels of 63.9%, 99.3% and 99.6% (36.1%, 0.7%, 0.4% residual 

survival) at gemcitabine-equivalent concentrations of 10−8 M, 10−7 M and 10−6 M 

respectively (Figure 6 and Figure 7). Maximum cytotoxic anti-neoplastic potencies for 

gemcitabine-(C4-amide)-[anti-EGFR], gemcitabine-(C4-amide)-[anti-HER2/neu] and 

gemcitabine (C5-methylcarbamate)-[anti-HER2/neu] were 99.6%, 41.1% and 30.8% (0.4%, 

59.0% and 69.2% residual survival) at the gemcitabine-equivalent concentration of 10−6 M 

respectively (Figure 6 and Figure 7).
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Gemcitabine-(C4-amide)-[anti-EGFR] compared to gemcitabine alone produced higher 

levels of anti-neoplastic cytotoxicity against chemotherapeutic-resistant mammary 

adenocarcinoma (SKBr-3) at the gemcitabine- equivalent concentrations of 10−10 M 

(51.3%-vs-99.0% residual survival), 10−9 M (34.0%-vs-90.2% residual survival), and 10−8 

M (36.1%-vs-50.6% residual survival) respectively (Figure 6) Nearly identical maximum 

anti-neoplastic cytotoxicity levels of 99.3%-vs-95.3% (0.7% and 4.7% residual survival) and 

99.6%-vs-95.3% (0.4% and 4.7% residual survival) were detected for gemcitabine-(C4-

amide)-[anti-EGFR] and gemcitabine at the gemcitabine-equivalent concentrations of 10−7 

M and 10−6 M respectively (Figure 6). Gemcitabine-(C4-amide)-[anti-HER2/neu] and 

gemcitabine had nearly identical anti-neoplastic cytotoxicity against chemotherapeutic-

resistant mammary adenocarcinoma (SKBr-3) at gemcitabine-equivalent concentrations of 

10−10 M and 10−9 M but gemcitabine was much more potent at 10−8 M (85.9%-vs-50.6% 

residual survival), 10−9 M (4.6%-vs-72.7% residual survival), and 10−6 M (4.7%-vs-58.9% 

residual survival) respectively (Figure 6).

The dual simultaneous combination of gemcitabine-(C4-amide)-[anti-EGFR] with 

gemcitabine-(C4-amide)-[anti-HER2/neu] evaluated as a gemcitabine-standardized 50/50 

molar equivalent formulation in addition to gemcitabine-(C4-amide)-[anti-EGFR] and 

gemcitabine-(C4-amide)-[anti-HER2/neu] all produced progressive increases in anti-

neoplastic cytotoxicity against chemotherapeutic resistant mammary adenocarcinoma 

(SKBr-3) as a function of increases in gemcitabine-equivalent concentration at and between 

10−10 M and 10−6 M (Figure 8). Anti-neoplastic cytotoxicity of gemcitabine-(C4-amide)-

[anti-EGFR] in dual simultaneous combination with gemcitabine-(C4-amide)-[anti-HER2/

neu] was 24.3%, 24.5%, 32.8%, 69.9%. and 83.7% (75.7%, 75.5%, 67.2%, 30.1% and 

16.3% residual survival) at the gemcitabine-equivalent concentrations of 10−10 M, 10−9 M, 

10−8 M, 10−7 M and 10−6 M respectively (Figure 8). Gemcitabine-(C4-amide)-[anti-EGFR] 

in dual simultaneous combination with gemcitabine-(C4-amide)-[anti-HER2/neu] produced 

levels of anti-neoplastic cytotoxicity that were less than for gemcitabine-(C4-amide)-[anti-

EGFR] but consistently greater than levels for gemcitabine-(C4-amide)-[anti-HER2/neu] at 

and between the gemcitabine-equivalent concentrations of 10−10 M and 10−6 M respectively 

(Figure 8). Anti-neoplastic cytotoxicity for gemcitabine-(C4-amide)-[anti-EGFR] in dual 

simultaneous combination with gemcitabine-(C4-amide)-[anti-HER2/neu] compared to 

gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] 

reached maximum or near maximum levels of 83.7%, 99.6%, and 30.8% (16.3%, 0.4%, and 

69.2% residual survival) respectively (Figure 8).

Methylseleninate produced levels of anti-neoplastic cytotoxicity that were substantially 

greater than those detected for [Se]-methylselenocysteine at the selenium-equivalent 

concentrations of 10 μM, and 20 μM but approached similar levels at 30 μM and 40 μM with 

essentially equivalent potency observed at 50 mM respectively (Figure 9). Methylseninate 

had almost equivalent maximal levels of anti-neoplastic cytotoxicity at and between the 

selenium-equivalent concentrations of 10 μM and 50 μM while [Se]-methylselenocysteine 

produced rapid progressive increases in anti-neoplastic cytotoxicity at and between 10 μM 

and 30 μM while levels were near maximum at 30 μM, 20 μM and 10 μM (Figure 9). [Se]-

methylselenocysteine substantially contributed to the anti-neoplastic cytotoxicity of 
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gemcitabine-standardized 50/50 formulations of gemcitabine-(C4-amide)-[anti-EGFR] with 

gemcitabine-(C4-amide)-[anti-HER2/neu] compared to only the dual simultaneous 

combination of the two covalent gemcitabine immunochemotherapeutics (Figure 8 and 

Figure 10). Gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/

neu] produced progressive increases in anti-neoplastic cytotoxicity that were most rapid at 

and between the gemcitabine-equivalent concentrations of 10−9 M and 10−6 M (Figure 8 and 

Figure 10). [Se]-methylselenocysteine (15 μM final concentration) in combination with the 

two covalent gemcitabine immunochemotherapeutics resulted in anti-neoplastic cytotoxicity 

levels of 93.5% at 10−10 M (6.5% residual survival), 93.9% at 10−9 M (6.1% residual 

survival), 94.7% at 10−8 M (5.3% residual survival), 94.2% at 10−7 M (5.8% residual 

survival), and 94.2% at 10−6 M (5.8% residual survival) following a direct-contact 

incubation period (Figure 10).

4. Discussion

Despite their common application in modern clinical oncology, conventional 

chemotherapeutics when given as a monotherapy at dosages that produce safe plasma 

concentrations almost invariably lack sufficient potency or efficacy to completely resolve 

most neoplastic disease states. Even when applied as prescribed chemotherapeutic 

administration is frequently accompanied by some degree of risk for inducing serious 

sequelae especially during periods of long-term utilization. Newer treatment modalities such 

as monoclonal immunoglobulin that inhibit function of trophic membrane receptors 

frequently over-expressed by many neoplastic cell types offer an opportunity to avoid many 

of the common side effects associated with conventional chemotherapeutics. Unfortunately, 

most monoclonal immunoglobulin-based therapies that inhibit function of HER2/neu, 

EGFR, VEGF, IGFR and other uniquely or highly over-expressed trophic receptors are 

usually only capable of promoting declines in proliferation rate and are largely incapable of 

evoking cytotoxic activity sufficient to effectively resolve most aggressive or advanced 

forms of neoplastic disease [7]–[12] [29]–[39]. Inability of most anti-trophic 

immunoglobulins to exert significant cytotoxic efficacy in-vivo is in part associated with the 

detection of increases in cell-cycle G1-arrest, cellular transformation to states of apoptosis-

resistance [30], and selection for resistant sub-populations [31] [35] that can be further 

complicated by frequent reversal of tumor growth inhibition [31] and resumed trophic 

receptor over-expression [29] following discontinuation of immunoglobulin therapy. Greater 

levels of anti-neoplastic cytotoxicity are alternatively attainable when anti-trophic receptor 

immunoglobulin are utilized in dual combination with conventional chemotherapeutics or 

other cancer treatment modalities [13]–[15].

A small collection of semi-synthetic heterobifunctional organic chemistry reactions can be 

used to covalently bond gemcitabine to monoclonal immunoglobulin, receptor ligands (e.g. 

EGFR) or other biologically active protein fractions. One potential method involves creation 

of a covalent bond structure at the cytosine 2 monoamine group of gemcitabine [40]–[44] 

either as a direct covalent bond to a ligand or for the purpose of creating a chemically 

reactive gemcitabine intermediate. Similar molecular strategies have been employed to 

synthesize covalent anthracycline immunochemotherapeutics through the creation of a 

covalent bond structure at the α-monoamine (C3-amino) group of the carbohydrate-like 
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moiety of doxorubicin, daunorubicin, epirubicin and other related agents in this class of 

chemotherapeutics [16] [45]–[56]. Generation of a covalent bond at the C5-methylhydroxy 

group of gemcitabine represents an alternative molecular strategy for the synthesis covalent 

gemcitabine-ligand biopharmaceuticals [41] [44] [57]–[61].

Gemcitabine has been covalent bonded to a number of biologically relevant ligands. Most 

prominent in this regard has been poly-L-glutamic acid (polypeptide configuration) [60]; 

cardiolipin [57] [58]; 1-dodecylthio-2-decyloxypropyl-3-phophatidic acid [59] [61]; lipid-

nucleosides [62]; N-(2-hydroxypropyl)methacrylamide polymer (HPMA) [40]; 

benzodiazepine receptor ligand [41] [44]; 4-(N)-valeroyl, 4-(N)-lauroyl, 4-(N)-stearoyl [43], 

and anti-HER2/neu [19] [24]; in addition to 4-fluoro[18F]-benzaldehyde derivative [42] for 

application as a diagnostic positron emitting radionuclide. Few if any reports have described 

the molecular design, synthesis and efficacy evaluation of a covalent gemcitabine 

immunochemotherapeutic produced through the generation of co-valent bond structures at 

either the cytosine-like C4 mono-amine [19] or C5-methylhydroxy groups [24].

Covalent immunochemotherapeutics can be synthesized that promote selective “targeted” 

chemotherapeutic delivery in a manner that evoke greater levels of anti-neoplastic cytotoxic 

potency than the corresponding non-covalent “free” or “parent” form of a chemotherapeutic 

moiety [16] [18] [25] [63]–[68]. Several molecular mechanisms and cellular processes can 

be modulated for the purpose of optimizing and enhancing properties that ultimately 

influence anti-neoplastic cytotoxic potency. Biological activity of the immunoglobulin 

component of gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-

HER2/neu] directly facilitates their binding-avidity for trophic membrane receptor sites (e.g. 

anti-EGFR, anti-HER2/neu) that in turn affords several properties which significantly 

contribute to the total anti-neoplastic cytotoxic potency of these covalent 

immunochemotherapeutics. Monoclonal immunoglobulin selected for the synthesis of 

covalent immunochemotherapeutics should ideally possess several distinct properties that 

include selective binding-avidity for specific antigenic “sites” on the external surface 

membrane of cancer cells that are themselves uniquely or highly over-expressed compared 

to normal, healthy tissues and organ systems. Utilizing immunoglobulin fractions that 

possess these characteristics allows them to effectively function as a molecular platform that 

can facilitate selective “targeted” chemotherapeutic delivery in addition to the potential 

capacity to promote progressive and continual membrane deposition of the 

chemotherapeutic moiety. The chemotherapeutic-resistant mammary adenocarcinoma 

(SKBr-3) cell type over-expresses EGFR (2.2 × 105/cell) and highly over-expresses 

HER2/neu (1 × 106/cell) on its exterior surface membrane which promotes selectively 

“targeted” delivery and progressive membrane deposition of gemcitabine-(C4-amide)-[anti-

EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] at two different endogenous trophic 

membrane receptor sites. Progressive membrane deposition of gemcitabine-(C4-amide)-

[anti-EGFR], gemcitabine-(C4-amide)-[anti-HER2/neu] or any other analogous covalent 

immunochemotherapeutic continues as long as sufficient covalent immunochemotherapeutic 

is present and EGFR and HER2/neu are expressed and re-expressed on the exterior surface 

membrane. Given this perspective, one of the most critically important mathematical 

variables related to cancer cell biology that can significantly determine the anti-neoplastic 

Coyne et al. Page 11

J Cancer Ther. Author manuscript; available in PMC 2015 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cytotoxicity of covalent immunochemotherapeutics like gemcitabine-[anti-HER2/neu], [19] 

[24] gemcitabine-[anti-EGFR], epirubicin-[anti-HER2/neu] [16] [18] [25] or epirubicin-

[anti-EGFR], [16] is the expression density of “sites” on the external surface membrane of 

neoplastic cells utilized to facilitate the selective “targeted” delivery of chemotherapeutic 

moieties.

In direct accord with the inter-dependent relationship between the immunoglobulin 

component of covalent immunochemotherapeutics and the biological characteristics of 

neoplastic cell types, there are other variables in addition to the expression density of 

membrane-associated “target” sites that significantly determine the anti-neoplastic 

cytotoxicity of gemcitabine-[anti-HER2/neu], [19] [24] gemcitabine-[anti-EGFR], 

epirubicin-[anti-HER2/neu], [16] [18] [25] epirubicin-[anti-EGFR], [16] and similar 

covalent immunochemotherapeutics. When uniquely or over-expressed endogenous 

receptors that are actively internalized by processes of receptor-mediated endocytosis [69] 

have been selected as sites to facilitate the selective “targeted” delivery and membrane 

deposition of a chemotherapeutic moieties, it then becomes possible to minimize or avoid 

simple “coating” of the exterior surface membrane with covalent immunochemotherapeutics 

like gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu]. 

Importance of this consideration is based on the realization that in general, it is a 

prerequisite for most classical chemotherapeutic agents like gemcitabine that possess 

mechanisms-of-action that is dependent upon enter into the cytosol or nuclear environments 

in order to create a biological effect. Such processes are assumed to not be a requirement for 

anti-cancer therapeutics that are membrane-active agents or radioimmunopharmaceuticals 

that have mechanisms-of-action that do not require entry into cytosol or nuclear 

environments (e.g. [213Bi or 211At or 224Ra]-anti-TAG-72 for colon carcinoma).

Uniquely or over-expressed endogenous receptor types known to be actively internalized by 

mechanisms of receptor-mediated endocytosis in response to physical binding of 

immunoglobulin or receptor ligands represents one of the more preferred type of sites on 

exterior surface membrane of neoplastic populations that can be utilized to selectively 

“target” chemotherapeutic delivery while also potentially facilitating profound cytosol 

chemotherapeutic moiety accumulation [69] in addition to preventing or minimizing 

distribution into and deposition within populations of non-neoplastic cell types (e.g. normal 

tissues and healthy organ systems). Between different endogenous receptor types and 

different neoplastic cell populations, variations undoubtedly exist in the rate and extent to 

which covalent immunochemotherapeutics are deposited on the external surface membrane 

and are subsequently internalized following the initiation of receptor-mediated-endocytosis 

[69]. Although specific data for EGFR and HER2/neu receptor-mediated endocytosis in 

populations of mammary adenocarcinoma (SKBr-3) is somewhat limited, other neoplastic 

cell types like metastatic multiple myeloma are known to internalize and metabolize 

approximately 8 × 106 molecules of anti-CD74 monoclonal antibody per day [70]. In this 

context, the collective implications of; [i] selective “targeted” delivery and physical binding 

at over-expressed and highly over-expressed endogenous receptor sites (e.g. EGFR, HER2/

neu); [ii] continual and progressive membrane deposition; [iii] initiation of receptor-

mediated endocytosis; and [iv] re-expression/replenishment of uniquely or highly over-
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expressed endogenous receptors is the potential for gemcitabine-(C4-amide)-[anti-EGFR] 

and gem-citabine-(C4-amide)-[anti-HER2/neu] and analogous covalent 

immunochemotherapeutics to promote chemothe-rapeutic moiety accumulation within the 

cytosol. The degree of cytosol accumulation can approach concentrations that are 8.5× [67] 

to 100× [71] fold greater than levels attainable by simple passive diffusion of most 

conventional small molecular weight chemotherapeutics from the extracellular fluid 

compartment following intravenous administration at clinically-relevant (safe) dosages. 

Intracellular accumulation of chemotherapeutic moieties of covalent 

immunochemotherapeutics can therefore continue to occur in neoplastic populations that 

have been sub-lethally injured as long as they retain the capacity to be uniquely or highly 

over-express which can be directly influence by the rate at which endogenous membrane 

receptors are replenished following initial phases of active internalization by mechanisms of 

receptor-mediated endocytosis [69]. The degree to which such phenomenon occur therefore 

directly influences and contributes to the potency of gemcitabine-(C4-amide)-[anti-EGFR], 

gemcitabine-(C4-amide)-[anti-HER2/neu], gemcitabine-EGF and analogous covalent 

biochemotherapeutics. Conservative speculation suggests that dual-combinations of covalent 

immunochemotherapeutics like gemcitabine-(C4-amide)-[anti-EGFR] with gemcitabine-(C4-

amide)-[anti-HER2/neu] promote greater levels of simultaneous selective “targeted” 

gemcitabine delivery/membrane deposition and intracellular gemcitabine internalization at 

both EGFR and HER2/neu endogenous receptors than can be achieved through selective 

“targeted” gemcitabine delivery at only a single endogenous membrane receptor over-

expressed on the exterior surface membrane of chemotherapeutic-resistant mammary 

adenocarcinoma (SKBr-3). The promotion of relatively high cytosol chemotherapeutic 

concentrations within a short confined time period at least in theory decreases the 

opportunity and frequency that neoplastic cell sub-populations can develop certain forms of 

(acquired) chemotherapeutic-resistance.

Enhanced levels of anti-neoplastic cytotoxicity that are potentially attainable with a dual-

combination of gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-

HER2/neu] chemotherapeutic-resistant neoplastic cell types can be attributed to physical 

properties associated with the relatively large molecular weight of selective delivery 

platforms that chemotherapeutic moieties are often covalently bound to (e.g. IgG MW = 

150,000 vs gemcitabine MW = 263.198). Covalent bonding of chemotherapeutics to 

molecular delivery platforms of relatively large molecular weight effectively prolongs the 

intravascular pharmacokinetic profile of chemotherapeutic moieties in part because they are 

no longer removed as rapidly or as extensively from the plasma compartment by renal 

glomerular filtration (MWCO = 50 – 60 kDa) and excreted into the urine. Furthermore, the 

chemotherapeutic moiety of covalent immunochemotherapeutic agents do not distribute as 

extensively into cell populations residing within normal tissues and healthy organ systems 

because of the large molecular weight of the selective delivery platform (e.g. IgG = 150-

kDa) which prevents simple passive diffusion across intact lipid bilayer membranes. The 

latter consideration is significant because a significantly large percentage of the total dose 

for a conventional small molecular weight chemotherapeutics within the intravascular 

compartment ultimately does passively diffuse across and enter the cytosol environment of 

cell populations in normal tissues and healthy organ systems.
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The large molecular weight of the immunoglobulin component of gemcitabine-(C4-amide)-

[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] or analogous covalent 

immunochemotherapeutics also inhibits through mechanisms of steric hinderance, the 

function of biological entities that can utilize chemotherapeutics moieties as a molecular 

substrate. Enzymes like cytosine deaminase are not as efficient in biochemically degrading 

or inactivate gemcitabine when it is a moiety within a covalent immunochemotherapeutic. 

Presumably, at least some degree steric hinderance phenomenon are also responsible for the 

observation that the non-selective transmembrane efflux “pump”, P-glycoprotein (MDR-1: 

multi-drug resistance protein) [59] commonly responsible for imparting chemotherapeutic-

resistance in many neoplastic cell types [72]–[77] is less effective in promoting resistance 

when chemotherapeutic moieties are formulated as covalent immunochemotherapeutics [51] 

[77]–[80]. Such attributes may in part correlate with the detection of a relatively large 

proportion of anthracyclines (>50%) retained intracellularly 24-hours post selective 

“targeted” delivery [67] where they are found primarily associated with membrane 

structures or it becomes distributed throughout the cytosol environment [69] [81]. 

Alternatively, non-covalently bound or “free” anthracycline following passive diffusion 

across an intact lipid bi-layer membrane is detected primarily within complexes associated 

with nuclear DNA less than 30 minutes after initial exposure [69]. The anthracycline moiety 

liberated from covalent immunochemotherapeutics reportedly distributes preferentially into, 

and accumulates within the nucleus, mitochondria and golgi apparatus [26]. The covalent 

bonding of gemcitabine to monoclonal immunoglobulin similar to gemcitabine-(C4-amide)-

[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] could therefore function as a 

molecular strategy for combating patterns of chemotherapeutic resistance in neoplastic cell 

types. Fortunately, EGFR and HER2/neu trophic membrane receptors are both over-

expressed in several resistant forms of breast cancer [82]–[84] where their refractory 

response to chemotherapy is associated with an over-expression of transmembrane P-

glycoprotein [85]–[90]. Recognition of these inter-relationships between cancer cell biology 

and selective “targeted” chemotherapeutic delivery directly correlates with the frequent 

association between chemotherapeutic-resistance, elevated cancer cell survival parameters, 

and increased proliferation rates (e.g. relevant to local invasiveness and metastatic 

dissemination) [91] [92].

Utilization of endogenous trophic membrane receptors that regulate neoplastic cell 

proliferation and viability as “sites” to facilitate selective “targeted” chemotherapeutic 

delivery on the exterior surface membrane provides an opportunity to potentially exert 

cytotoxic properties that are independent of those associated with the chemotherapeutic 

moiety. Most therapeutic immunoglobulins with binding-avidity for uniquely or highly over-

expressed endogenous trophic membrane receptors competitively “block” binding of 

receptor ligands (e.g. EGF ⇉| IgG::EGFR). Suppression of neoplastic cell growth and 

vitality is therefore achieved by preventing activation, or inhibit the biological function of 

EGFR, HER2/neu, IGFR, VEGFR and similar trophic membrane receptors that directly or 

indirectly regulate proliferation kinetics, metastatic behavior and chemotherapeutic-

resistance. Similarly, internalization of EGFR, HER2/neu, IGFR, VEGFR or analogous 

endogenous trophic membrane receptors by mechanisms of receptor-mediated-endocytosis 

promotes transient down-regulation, or partial to complete depletion of their expression 
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resulting in declines in membrane density that lead to suppression of neoplastic cell viability 

and proliferation rate. In order for this phenomenon to occur trophic membrane receptor 

“sites” must to a variable degree become physically depleted in a manner that is partially 

due to a deficient rate of re-expression and replenishment to original baseline levels. The 

rate and extent at which trophic receptor complexes are internalized by immunoglobulin-

induced receptor-mediated endocytosis is directly determined by the; [i] availability 

(quantity and concentration) of covalent immunochemotherapeutics; [ii] expression density 

of membrane “sites” utilized to facilitate selective “targeted” chemotherapeutic delivery and 

progressive membrane deposition; and the [iii] corresponding rate and extent that uniquely 

or highly over-expressed trophic membrane receptors or similar “sites” are re-expressed and 

replenished on the exterior surface of neoplastic cell populations.

Binding of the immunoglobulin component of gemcitabine-(C4-amide)-[anti-EGFR], 

gemcitabine-(C4-amide)-[anti-HER2/neu] or any other analogous covalent 

immunochemotherapeutics at endogenous trophic membrane receptor sites over-expressed 

on the exterior surface membrane of neoplastic cell types can in an in-vivo environment 

provide additional levels of selective anti-neoplastic cytotoxicity. Such enhancements in 

selective anti-neoplastic cytotoxicity that are difficult to comprehensively detect ex-vivo 

entail and are dependent upon the recruitment of multiple innate immune responses. Given 

this perspective, binding of covalent immunochemotherapeutics on the exterior surface 

membrane of neoplastic cells stimulate or activate; [i] complement C9 mediated cytolysis; 

[ii] opsonization secondary to immunoglobulin binding at endogenous trophic membrane 

receptor sites and subsequent formation of IgG/receptor/complement complexes (e.g. 

induced macrophage phagocytosis); and [iii] antibody-dependent cell-mediated cytotoxicity 

(ADCC: classically requiring recruitment of NK/natural killer lymphocytes or to a lesser 

degree participation of macrophages, neutrophils and eosinophils. Collectively these three 

host immune responses represent the major mechanism of selective anti-neoplastic 

cytotoxicity evoked by anti-CD20, anti-CD52 and similar monoclonal immunoglobulins 

utilized for the therapeutic management of haemopoietic neoplasias (e.g. chronic 

lymphocytic leukemia). Despite the potential for gemcitabine-(C4-amide)-[anti-EGFR] and 

gemcitabine-(C4-amide)-[anti-HER2/neu] to collectively stimulate complement C9 mediated 

lysis, ADCC responses and promote IgG/complement facilitated opsonization of neoplastic 

cells in a manner that attains enhanced levels of selective anti-neoplastic cytotoxicity, it 

continues to be technically difficult to simultaneously simulate and accurately measure each 

of these three immune-dependent responses utilizing ex-vivo models for neoplastic disease 

states.

In clinical scenarios were immunoglobulin fractions are utilized to selectively “target” 

delivery of therapeutic pharmaceuticals or diagnostic imaging agents in nuclear medicine the 

antibody component can be biochemically modified with enzyme preparations like papain in 

order to cleave and remove the Fc segment of the IgG molecule. Biochemical modifications 

of this type minimize non-selective binding of immunochemotherapeutics to Fc receptors 

expressed by cell types that comprise the RE system (mononuclear phagocytic system) that 

anatomically reside within the spleen and liver. Unfortunately, such biochemical 

modifications create a covalent immunochemotherapeutic composed predominantly of only 
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F(ab′)2 or Fab′ that have less of a capacity to activate the complement cascade (e.g. C9 

cytolysis, C3b/C4b opsonization), increase neoplastic cell opsonization (e.g. macrophage Fc 

receptor dependent binding), or promote stimulation of ADCC (e.g. NK lymphocyte Fc 

receptor dependent binding).

Dual selective “targeted” binding of both gemcitabine-(C4-amide)-[anti-EGFR] and 

gemcitabine-(C4-amide)- [anti-HER2/neu] at two different trophic membrane receptors 

over-expressed (e.g. EGFR) or highly over-expressed (e.g. HER2/neu) on a single neoplastic 

cell type provides a range of opportunities for achieving greater levels of anti-neoplastic 

cytotoxicity than is possible with only a single covalent gemcitabine 

immunochemotherapeutic. Gemcitabine-(C4-amide)-[anti-EGFR] in dual-combination with 

gemcitabine-(C4-amide)-[anti-HER2/neu] therefore can provide heightened planes of anti-

neoplastic cytotoxicity through several molecular strategies.

Level-1

Greater concentrations of selectively “targeted” chemotherapeutic concentrations within the 

cytosol of neoplastic cell populations that presents a potential opportunity for resolving 

neoplastic cell types that are partially resistant when the “parent” conventional 

chemotherapeutic is administered intravenously at clinically relevant and safe dosages. Dual 

selective “targeted” chemotherapeutic delivery also represents a strategy for combating 

chemotherapeutic resistance as can occur with alterations in P-glycoprotein expression [82]–

[84].

Level-2

Dual simultaneous inhibition of the biological functions and properties of multiple both 

endogenous trophic membrane receptors or other sites over-expressed on the exterior surface 

chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3). Synergistic levels of anti-

neoplastic cytotoxicity achieved solely through inhibition of multiple endogenous trophic 

membrane receptors or analogous biological “targets” can only theoretically be achieved if 

each different site has distinctly different biological functions/properties within a given 

neoplastic cell type (e.g. EGFR-vs-HER2/neu or CD20-vs-CD74) [93] [94].

Level-3

Selectively “targeted” gemcitabine delivery in dual and simultaneous combination with 

inhibition of trophic membrane receptor function represents an opportunity for imposing a 

distinct plane of additive or synergistic anti-neoplastic cytotoxicity especially when trophic 

receptor “targets” are over-expressed (e.g. SKBr-3: EGFR) or highly over-expressed (e.g. 

SKBr-3: HER2/neu) [13] [14] [95]–[104]. Additive or synergistic interactions of this type 

have been detected between anti-HER2/neu applied in simultaneous combination with 

cyclophosphamide [14] [95], docetaxel [95], doxorubicin [14] [95], etoposide [95], 

methotrexate [95], paclitaxel [14] [95], or vinblastine [95]. The dual-combination of 

gemcitabine-(C4-amide)-[anti-EGFR] with gemcitabine-(C4-amide)-[anti-HER2/neu] 

therefore provides two potential avenues for achieving additive and synergistic levels of 

cytotoxicity exerted by gemcitabine chemotherapeutic and each anti-trophic receptor 
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immunoglobulin fractions (e.g. gemcitabine with anti-EGFR; gemcitabine with anti-HER2/

neu; gemcitabine with anti-EGFR and anti-HER2/neu).

Level-4

Simultaneous binding of covalent immunochemotherapeutic combinations like gemcitabine-

(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] at two different 

over-expressed trophic receptor types on the exterior surface membrane of a single cancer 

cell population in-vivo offers the potential to attain a third plane of additive and synergistic 

anti-neoplastic cytotoxicity from innate immune response mechanisms. Selectively 

“targeted” additive or synergistic anti-neoplastic cytotoxicity can potentially occur in-vivo 

through the different combined properties of; [i] complement C9 mediated cytolysis; [ii] 

IgG/receptor/complement-facilitated opsonization; and [iii] IgG-dependent cell-mediated 

cytotoxicity (ADCC). Conceptually, at least, the simultaneous binding of gemcitabine-(C4-

amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER 2/neu] at two different 

endogenous trophic receptors on the same cancer cell type offers the probability of evoking 

a greater degree of selectively “targeted” anti-neoplastic cytotoxicity compared to the 

selective binding of just a single covalent gemcitabine immunochemotherapeutic.

Level-5

Dual simultaneous combinations of gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-

(C4-amide)-[anti-HER2/neu] in-vivo presents an opportunity to potentially attain still 

another plane of additive and synergistic anti-neoplastic cytotoxicity that involves; [i] 

gemcitabine in dual-combination with innate immune responses; [ii] trophic receptor 

inhibition in dual-combination with innate immune responses; and/or [iii] gemcitabine, 

trophic receptor inhibition and innate immune responses. In support of this concept, immune 

cell populations that are involved in ADCC phenomenon release cytotoxic components 

known to additively and synergistically enhance the cytotoxic anti-neoplastic activity of 

conventional chemotherapeutic agents [105]. Undoubtedly, other immune responses also 

contribute to the anti-neoplastic properties of many conventional chemotherapeutic agents. 

Recognition of the phenomenon where different immune-dependent responses become a 

significant component of additive and synergistic anti-neoplastic cytotoxicity phenomenon 

in active partnership with chemotherapeutic moieties and trophic receptor inhibition at least 

in part delineates how covalent immunochemotherapeutics frequently evoke greater efficacy 

when implemented in-vivo compared to levels of anti-neoplastic cytotoxicity observed 

utilizing ex-vivo based models for neoplastic disease even when the same identical cancer 

cell types (xenographs) are utilized [106]–[108]. Each of the qualities and properties 

discussed for the selective “targeted” chemotherapeutic delivery and additive or synergistic 

interactions that can be evoked by gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-

(C4-amide)-[anti-HER2/neu] collectively serve to explain how the dual-combination of these 

two covalent immunochemotherapeutics produced additive levels of anti-neoplastic 

cytotoxicity measured in chemotherapeutic-resistant mammary-adenocarcinoma (SKBr-3) 

populations functioning as an ex-vivo model for neoplastic disease (Figure 8). In part, the 

basis for this perception originates from the observation that when gemcitabine-(C4-amide)-

[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] were formulated as a 50:50 

gemcitabine-equivalent combination the levels of anti-neoplastic cytotoxicity detected were 
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intermediate between each of the two individual gemcitabine immunochemotherapeutics 

formulated at gemcitabine-equivalent concentrations (Figure 8).

Several variables related to methods and techniques could be have been modified to increase 

and maximize the anti-neoplastic cytotoxicity of gemcitabine-(C4-amide)-[anti-EGFR] in 

dual simultaneous combination with gemcitabine-(C4-amide)-[anti-HER2/neu].

i. Almost invariably, levels of anti-neoplastic cytotoxicity can be increased by 

prolonging the ex-vivo incubation period during which time neoplastic cell 

populations are challenged in direct and simultaneous contact with each of the two 

covalent gemcitabine immunochemotherapeutics.

ii. A human neoplastic cell type other than chemotherapeutic-resistant mammary 

adenocarcinoma (SKBr-3) could have been applied to access anti-neoplastic 

cytotoxicity of gemcitabine-(C4-amide)-[anti-EGFR] in dual simultaneous 

combination with gemcitabine-(C4-amide)-[anti-HER2/neu]. Similarly, human 

mammary carci-noma (MCF-7/WT-2′) [61] and mammary adenocarcinoma (BG-1) 

[61] are both known to be relatively resistant to gemcitabine and covalent 

gemcitabine-(oxyether phopholipid). The two covalent gemcitabine 

immunochemotherapeutics likely would have evoked greater levels of anti-

neoplastic cytotoxicity if it had been measured utilizing populations of pancreatic 

carcinoma, [109] small-cell lung carcinoma, [110] neuroblastoma, [111] or 

leukemia/lymphoma [61] [112] because of their relatively higher gemcitabine 

sensitivity. Similarly, human promyelocytic leukemia, [59] [61] T-4 

lymphoblastoid clones, [61] glioblastoma; [59] [61] cervical epitheliod carcinoma, 

[61] colon adenocarcinoma, [61] pancreatic adenocarcinoma, [61] pulmonary 

adenocarcinoma, [61] oral squamous cell carcinoma, [61] and prostatic carcinoma 

[40] have been found to be sensitive to gemcitabine and gemcitabine-(oxyether 

phopholipid) covalent chemotherapeutic conjugates.

iii. Analogous to the consideration that gemcitabine-(C4-amide)-[anti-EGFR] in dual 

simultaneous combination with gemcitabine-(C4-amide)-[anti-HER2/neu] would 

have evoked higher levels of anti-neoplastic cytotoxicity in a different neoplastic 

cell type specifically sensitive to gemcitabine, the effectiveness of these two 

covalent gemcitabine immunochemotherapeutics would likely of been higher in 

neoplastic cell types not displaying profiles of general chemotherapeutic resistance. 

Majority of the covalent immunochemotherapeutics described in publications to 

date have measured cytotoxic efficacy utilizing human neoplastic cell populations 

that are not chemotherapeutic-resistant. Rare exceptions have been the application 

of chemotherapeutic-resistant metastatic melanoma M21 (covalent daunorubicin 

immunochemotherapeutics synthesized using anti-chondroitin sulfate proteoglycan 

9.2.27 surface marker); [63] [64] [113] chemotherapeutic-resistant mammary 

carcinoma MCF-7AdrR (covalent anthracycline-ligand chemotherapeutics utilizing 

epidermal growth factor (EGF) or an EDF fragment); [114] and chemotherapeutic-

resistant mammary adenocarcinoma (SKBr-3) populations (epirubicin-anti-HER2/

neu, [16] [18] [25] epirubicin-anti-EGFR, [16] gemcitabine-HER2/neu [19] [24]) 

respectively.
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iv. Assessment of neoplastic cellular proliferation with either [3H]-thymidine, or an 

ATP-based assay method would likely have resulted in recognizing lower degrees 

of early anti-neoplastic cytotoxicity because these analytical modalities reportedly 

are ≥10-fold more sensitive in detecting lower degrees of early sub-lethal anti-

neoplastic cytotoxicity compared to MTT vitality stain based assay methods [115] 

[116]. In spite of this perception, MTT vitality stain based assays continue to be 

extensively applied for the routine assessment of true anti-neoplastic cytotoxicity of 

chemotherapeutics covalently incorporated synthetically into molecular platforms 

that provide properties of selective “targeted” delivery [16] [59]–[61] [117]–[122]. 

One notable and significant advantage of MTT vitality stain based assay and other 

methods applying similar reagents is their ability to indirectly detect and measure 

lethal anti-neoplastic cytotoxic potency. Potency measured ex-vivo In this manner 

is generally considered to be superior to merely detecting early-stage sub-lethal 

cellular injury that could potentially be reversible and be more difficult to 

correlated with in-vivo levels of efficacy and potency.

v. Lastly, as previously eluded to, the anti-neoplastic cytotoxicity of the dual 

simultaneous combination of the covalent gemcitabine immunochemotherapeutics, 

gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/

neu] would likely have been greater if their efficacy had been delineated in an in-

vivo model for cancer such as human neoplastic xenographs in animal hosts. In 

such neoplastic disease models, the added effect of host immune responses in the 

form of selectively “targeted” antibody-dependent cell cytotoxicity (ADCC), 

complement C9 mediated cytolysis, and/or opsonization/phagocytosis would have 

been realized.

Levels of anti-neoplastic cytotoxicity vary between different organoselenium compounds 

when assessed independently as a single agent or in combination with conventional 

chemotherapeutics [123]–[127]. Various forms of selenium have been reported to additively 

or synergistically complement the anti-neoplastic cytotoxicity of anthracyclines [123]–[126] 

[128], irinotecan [127] [129]–[131], docetaxel/paclitaxel [124] [132], and tamoxifen [133]. 

In the presence of selenium the vulnerability of B-cell lymphoma to the anti-neoplastic 

cytotoxicity of doxorubicin, etoposide, 4-hydroxyperoxycyclophosphamide, melphalan, and 

1-β-D-arabinofuranosyl-cytosine increases approximately 2.5-fold (e.g. methylseleninate 10 

– 100 μM) [134]. Synergism achieved with selenium in dual-combination with conventional 

chemotherapeutics can ultimately become additive during prolonged periods of challenge 

(incubation) or when the duration of clinical administration and treatment is extended [128]. 

Interestingly, selenium exerts greater cytotoxic anti-neoplastic activity compared to 

celecoxib [135]–[139] when analyzed at micromolar equivalent concentrations.

Selenium can potentially bestow therapeutically beneficial properties through induction of a 

number of biological effects or responses in neoplastic cell populations such as its capacity 

to; [i] induce apoptosis in doxorubicin-resistant lung small-cell carcinoma (selenite 10 μM) 

[140]; [ii] promote severe ER stress (leukemia cell types) [141]; and [iii] reduce vitality of 

multidrug-resistant leukemia (selenite-triglycerides 10 μg to 40 μg/ml) [142]. Several 

specific molecular mechanisms explain the anti-neoplastic cytotoxicity induced by selenium. 
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Selenium (selenite) causes cell death through activation of the pro-apoptotic transcription 

factor GADD153 and high concentrations in leukemia cells promote p53 activation [141]. 

Selenium (selenite) independently mediates anti-neoplastic activity through p53 activation 

and increased oxidative stress which collectively precipitate mitochondrial dysfunction and 

caspase activation (leukemia cell types) [141]. Elevated levels of oxidative stress occur at 

relatively high selenium concentrations [141] which is accompanied by, or a direct result of 

reductions in catalase enzyme activity (H2O2 → H2O + O2) [123]. In addition to the 

influence of selenium on caspase activation, it also promotes apoptosis by increasing Fas-

associated death domain (FADD) expression and enhancement of caspase-8 recruitment for 

Fas and FADD (MCF7 breast cancer) [126]. Selenium is believed to trigger apoptosis by 

additionally increasing FOXO3a transcriptional factor activity [125] that occurs in concert 

with Bim [125] and PUMA up-regulation, or alternatively the down-regulation of FLIP anti-

apoptotic protein. Gradient increases in selenium concentrations (1 μM to 10 μM) induce 

dose-dependent elevations in the amount and activity of thioredoxin reductase in non-

resistant neoplastic cells while precipitating declines in thioredoxin reductase (e.g. 

doxorubicin-resistant small cell carcinoma) [140]. Thioredoxin reductase biochemically 

reduces thioredoxin which mediates the final step of the electron-transfer pathway for 

nucleoside diphosphate reduction where in cancer cells is essential for cell growth and 

survival.

In populations of chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3), 

methylseleninate [125] [126] had greater anti-neoplastic cytotoxic potency than [Se]-

methylselenocysteine [129] [133] at selenium-equivalent concentrations of 10 μM and 20 

μM but they were similar at the selenium-equivalent concentrations of 30 μM, 40 μM and 50 

μM (Figure 9). Selenium also can potentially contribute to the efficacy of conventional small 

molecular weight chemotherapeutic agents. In chemotherapeutic-resistant mammary 

adenocarcinoma (MCF-7) selenium increases sensitivity to anthracyclines [125] and in 

combination with doxorubicin it influences Fas signaling [126] at methylseleninate 

concentrations of 2.5 μM and 5 μM respectively. Selenium also increases mitochondrial 

caspase-9 activation which promotes apoptosis and produces synergistic levels of anti-

neoplastic cytotoxicity in combination with anthracyclines (e.g. mammary adenocarcinoma 

MCF7 cell type). [126] Analogous investigations determined that selenium in the form of 

methylseleninate also complements the anti-neoplastic cytotoxic efficacy of selectively 

“targeted” covalent immunochemotherapeutics including epirubicin-(C13-imino)-[anti-

HER2/neu] [25]. The organoselenium agent, [Se]-methylselenocysteine in preference to 

methylseleninate was evaluated to determine if it could complement the anti-neoplastic 

cytotoxicity of the two covalent gemcitabine immunochemotherapeutics applied in dual 

simultaneous combination because it was considered more suitable for in-vivo 

administration (Figure 9 and Figure 10). Total anti-neoplastic cytotoxicity of gemcitabine-

(C4-amide)-[anti-EGFR] in dual simultaneous combination with gemcitabine-(C4-amide)-

[anti-HER2/neu] increased substantially in the presence of [Se]-methylselenocysteine 

formulated at a fixed 15 μM selenium-equivalent concentration (Figure 10). Increases in 

total anti-neoplastic cytotoxicity for gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-

(C4-amide)-[anti-HER2/neu] when utilized in concert with [Se]-methylselenocysteine was 

most prominent at and between the gemcitabine-equivalent concentrations of 10−10 M and 
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10−7 M but was nearly equivalent at 10−6 M (Figure 10). Similar to α-tocopherol, one 

property of selenium that may be particular beneficial for improving the efficacy and 

potency of covalent immunochemotherapeutics or covalent [receptor ligand]-

chemotherapeutics with binding-avidity for over-expressed endogenous membrane receptor 

sites is an ability to potentially improve their internalization by mechanisms of receptor-

mediated-endocytosis [143]. Such claims are however somewhat speculative since they are 

based on the observation that selenium and α-tocopherol deficiencies reduce receptor-

mediated processes possibly associated with greater levels of membrane oxidation and 

alterations in membrane fluidity.

Interpretation of the anti-neoplastic cytotoxicity analysis of organoselenium analogs in the 

form of [Se]-methylselenocysteine and methylseleninate suggests that they could be used to 

achieve specific levels of anti-neoplastic cytotoxicity at lower total gemcitabine-equivalent 

concentrations of gemcitabine-(C4-amide)-[anti-EGFR], gemcitabine-(C4-amide)-[anti-

HER2/neu] or gemcitabine (Figures 9–11). Conservative extrapolation from this observed 

result implies that organoselenium compounds when applied in dual simultaneous 

combination with gemcitabine or covalent gemcitabine immunochemotherapeutics could 

provide an opportunity for achieving more complete and more rapid resolution of neoplastic 

conditions while also lowering total chemotherapeutic dosage requirements in a manner that 

would produce fewer serious side-effects or sequelae.

5. Conclusions

The covalent immunochemotherapeutics, gemcitabine-(C4-amide)-[anti-EGFR] and 

gemcitabine-(C4-amide)-[anti-HER2/neu] each have potent selective “targeted” anti-

neoplastic cytotoxic properties against chemotherapeutic-resistant mammary 

adenocarcinoma (SKBr-3). Applied in dual simultaneous 50/50 combination, gemci-tabine-

(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] collectively evoke 

levels of selective “targeted” anti-neoplastic cytotoxicity that were intermediate between 

chemotherapeutic-equivalent concentrations of gemcitabine-(C4-amide)-[anti-EGFR] and 

gemcitabine-(C4-amide)-[anti-HER2/neu]. Vitality/viability profiles for chemotherapeutic-

resistant mammary adenocarcinoma were compatible with the concept that gemcitabine was 

internalized independently but simultaneously at two separate endogenous trophic 

membrane receptor sites (e.g. EGFR, HER2/neu) by mechanisms of receptor-mediated 

endocytosis. Simultaneous dual selective “targeted” delivery of gemcitabine facilitated by 

gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] 

therefore serves as a prototype molecular strategy for maximizing cytosol chemotherapeutic 

concentrations selectively within a given neoplastic cell type. In this context the anti-EGFR 

and anti-HER2/neu immunoglobulin components of gemcitabine-(C4-amide)-[anti-EGFR] 

and gemcitabine-(C4-amide)-[anti-HER2/neu] promote [i] selective “targeted” gemcitabine 

delivery; [ii] progressive gemcitabine deposition on the exterior surface membrane of 

neoplastic cells; and [iii] accumulation of the gemcitabine moiety within the cytosol to 

concentrations that are far beyond levels attainable by simple passive diffusion following IV 

infusion of clinically relevant and safe dosages. While simultaneous selective “targeted” 

delivery of gemcitabine by gemcitabine-(C4-amide)-[anti-EGFR] applied in dual-

combination with gemcitabine-(C4-amide)-[anti-HER2/neu] can potentially improve the 
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resolution of neoplastic disease states, such benefits would in part be made possible through 

reduction in innocent chemotherapeutic exposure by healthy tissues and normal organ 

systems.

Selenium in the form of [Se]-methylselenocysteine and methylseleninate both demonstrated 

anti-neoplastic cytotoxicity against chemotherapeutic-resistant mammary adenocarcinoma 

(SKBr-3). Applied in concert with the dual simultaneous combination of gemcitabine-(C4-

amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu], the anti-neoplastic 

cytotoxicity attained was substantially greater in the presence of [Se]-methylselenocysteine. 

Collectively, research investigations with gemcitabine-(C4-amide)-[anti-EGFR], 

gemcitabine-(C4-amide)-[anti-HER2/neu] and selenium at least in the form of [Se]-

methylselenocysteine demonstrate therapeutic options that may be more effective in 

resolving chemotherapeutic-resistant neoplastic conditions within a more expedient 

treatment time frame implementing lower total dosage levels.
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Figure 1. 
Molecular design and chemical structure of the covalent immunochemotherapeutics, 

gemcitabine-(C4-amide)-[anti-HER2/neu] and gemcitabine-(C4-amide)-[anti-EGFR] 

synthesized utilizing a 2-stage organic chemistry reaction scheme that initially generates a 

gemcitabine UV-photoactivated intermediate. A synthetic covalent bond formed at the C4 

cytosine-like mononamine group of gemcitabine chemotherapeutic and the side chains of 

amino acid residues within the sequence of immunoglobulin fractions.
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Figure 2. 
Characterization of the molecular weight profile for the covalent immunochemotherapeutics, 

gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] relative 

to reference control anti-EGFR and anti-HER2/neu monoclonal immunoglobulin fractions. 

Legends: (Lane-1) murine anti-human EGFR monoclonal immunoglobulin; (Lane-2) 

gemcitabine-(C4-amide)-[anti-EGFR]; (Lane-3) murine anti-human HER2/neu monoclonal 

immunoglobulin; and (Lane-4) gemcitabine-(C4-amide)-[anti-HER2/neu]. Covalent 

gemcitabine immunochemotherapeutics and monoclonal immunoglobulin fractions were 

size-separated by non-reducing SDS-PAGE followed by lateral transfer onto sheets of 

nitrocellulose membrane to facilitate detection with biotinylated goat anti-mouse IgG 

immunoglobulin. Subsequent analysis entailed incubation of membranes with strepavidin-

HRPO in combination with the use of a HRPO chemiluminescent substrate for acquisition of 

autoradiography images.
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Figure 3. 
Detection of total immunoglobulin in the form of gemcitabine-(C4-amide)-[anti-EGFR] or 

gemcitabine-(C4-amide)-[anti-HER2/neu] selectively bound to the exterior surface 

membrane of mammary adenocarcinoma. Legends: (◆) gemcitabine-(C4-amide)-[anti-

EGFR], and (■) gemcitabine-(C4-amide)-[anti-HER2/neu]. Covalent gemcitabine-(C4-

amide)-[anti-EGFR] or gemcitabine-(C4-amide)-[anti-HER2/neu] immunochemotherapeutic 

formulated at gradient gemcitabine-equivalent concentrations were incubated in direct 

contact with triplicate monolayer populations of chemotherapeutic-resistant human 

mammary adenocarcinoma (SKBr-3) over a 4-hour time period. Total immunoglobulin 

bound to the exterior surface membrane was then detected and measured by cell-ELISA.
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Figure 4. 
Relative gemcitabine anti-neoplastic cytotoxicity against chemotherapeutic-resistant 

mammary adenocarcinoma over challenge (incubation) periods of different duration. 

Legends: (■) gemcitabine following a 96-hour incubation period; and (◆) gemcitabine 

following a 182-hour incubation period. Gemcitabine formulated at gradient gemcitabine-

equivalent concentrations was incubated in direct contact with triplicate monolayer 

populations of chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) for a period 

of either 96-hours or 182-hours. Anti-neoplastic cytotoxicity was measured using a MTT 

cell vitality assay relative to matched negative reference controls.
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Figure 5. 
Relative anti-neoplastic cytotoxicity of gemcitabine-(C4-amide)-[anti-EGFR] against 

chemotherapeutic-resistant human mammary adenocarcinoma as a function of challenge 

(incubation) period duration. Legends: (■) gemcitabine-(C4-amide)-[anti-EGFR] following 

a 96-hour incubation period; and (◆) gemcitabine-(C4-amide)-[anti-EGFR] following a 182-

hour incubation period. Covalent gemcitabine immunochemotherapeutic formulated at 

gradient gemcitabine-equivalent concentrations was incubated in direct contact with in 

triplicate monolayer populations of chemotherapeutic-resistant human mammary 

adenocarcinoma (SKBr-3) for a period of either 96-hours or 182-hours. Anti-neoplastic 

cytotoxicity was measured using an MTT cell vitality assay relative to matched negative 

reference controls.
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Figure 6. 
Relative anti-neoplastic cytotoxicity of covalent gemcitabine immunochemotherapeutics 

against chemotherapeutic-resistant human mammary adenocarcinoma. Legends: (▲) 

gemcitabine- (C4-amide)-[anti-EGFR] (182-hour incubation period); (■) gemcitabine-(C4-

amide)-[anti-HER2/neu] (182-hour incubation period); and (◆) gemcitabine 

chemotherapeutic (96-hour incubation period). Chemotherapeutic-resistant mammary 

adenocarcinoma (SKBr-3) monolayer populations were incubated in direct contact with 

gemcitabine-(C4-amide)-[anti-EGFR], gemcitabine-(C4-amide)-[anti-HER2/neu], or 

gemcitabine formulated in triplicate at gradient gemcitabine-equivalent concentrations. Anti-

neoplastic cytotoxicity was measured using a MTT cell vitality assay relative to matched 

negative reference controls.
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Figure 7. 
Relative anti-neoplastic cytotoxicity of three different covalent gemcitabine 

immunochemotherapeutics against chemotherapeutic-resistant human mammary 

adenocarcinoma. Legends: (◆) gemcitabine-(C4-amide)-[anti-EGFR]; (■) gemcitabine-(C4-

amide)-[anti-HER2/neu] and (▲) gemcitabine-(C5-methylcarbamate)-[anti-HER2/neu]. 

Individual covalent gemcitabine immunochemotherapeutics formulated at gradient 

gemcitabine-equivalent concentrations were incubated in direct contact with triplicate 

monolayer populations of chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) 

for 182-hours. Anti-neoplastic cytotoxicity was measured using a MTT cell vitality assay 

relative to matched negative reference controls.
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Figure 8. 
Relative anti-neoplastic cytotoxicity of individual and dual simultaneous combinations of 

covalent gemcitabine immunochemotherapeutics against chemotherapeutic-resistant human 

mammary adenocarcinoma. Legends: (◆) gemcitabine-(C4-amide)-[anti-EGFR]; (▲) 

gemcitabine-(C4-amide)-[anti-HER2/neu]; and (■) gemcitabine-(C4-amide)-[anti-EGFR] 

with gemcitabine-(C4-amide)-[anti-HER2/neu]. Individual or dual simultaneous 

combinations of covalent gemcitabine immunochemotherapeutics formulated at gradient 

50/50 gemcitabine-equivalent concentrations were incubated in direct contact with triplicate 

monolayer populations of chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) 

for a period of 182-hours. Anti-neoplastic cytotoxicity was measured using a MTT cell 

vitality assay relative to matched negative reference controls.

Coyne et al. Page 40

J Cancer Ther. Author manuscript; available in PMC 2015 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Relative anti-neoplastic cytotoxicity of organoselenium compounds against 

chemotherapeutic-resistant human mammary adenocarcinoma. Legends: (◆) [Se]-

methylselenocysteine; and (■) methylseleninate. Individual organoselenium compounds 

formulated at gradient selenium-equivalent concentrations was incubated in direct contact 

with triplicate populations of chemotherapeutic-resistant mammary adenocarcinoma 

(SKBr-3). Anti-neoplastic cytotoxicity was measured using a MTT cell vitality assay 

relative to matched negative reference controls.
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Figure 10. 
Relative anti-neoplastic cytotoxicity for dual simultaneous combinations of two different 

covalent gemcitabine-immunochemotherapeutics enhanced by [Se]-methylselenocysteine 

against chemotherapeutic-resistant human mammary adenocarcinoma. Legends: (◆) 

gemcitabine-(C4-amide)-[anti-EGFR] with gemcitabine-(C4-amide)-[anti-HER2/neu]; and 

(■) gemcitabine-(C4-amide)-[anti-EGFR] with gemcitabine-(C4-amide)-[anti-HER2/neu] in 

the presence of a fixed concentration of [Se]-methyl- cysteine (15 μM). The dual 

simultaneous combination of covalent gemcitabine-immunochemotherapeutics (+/− [Se]-

methylcysteine) was formulated at gradient 50/50 gemcitabine-equivalent concentrations 

and incubated in direct contact for 96-hours with triplicate monolayer populations of 

chemotherapeutic-resistant human mammary adenocarcinoma (SKBr-3). Anti-neoplastic 

cytotoxicity was measured using a MTT cell vitality assay relative to matched negative 

reference controls.
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Figure 11. 
Relative gemcitabine anti-neoplastic cytotoxicity against chemotherapeutic-resistant 

mammary adenocarcinoma over challenge (incubation) periods of different duration. 

Legends: (◆) gemcitabine following a 96-hour incubation period; and (■) gemcitabine 

following a 182-hour incubation period. Gemcitabine formulated in triplicate at gradient 

gemcitabine-equivalent concentrations was incubated in direct contact with triplicate 

populations of chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) during 

incubation periods of 96-hours or 182-hours. Anti-neoplastic cytotoxicity was measured 

using a MTT cell vitality assay relative to matched negative reference controls.
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