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ABSTRACT
Metabolism affects the development, progression, and prognosis of various cancers, including 
breast cancer (BC). Our aim was to develop a metabolism-related long non-coding RNA 
(lncRNA) signature to assess the prognosis of BC patients in order to optimize treatment. 
Metabolism-related genes between breast tumors and normal tissues were screened out, and 
Pearson correlation analysis was used to investigate metabolism-related lncRNAs. In total, five 
metabolism-related lncRNAs were enrolled to establish prognostic signatures. Kaplan-Meier 
plots and the receiver operating characteristic (ROC) curves demonstrated good performance 
in both training and validation groups. Further analysis demonstrated that the signature was 
an independent prognostic factor for BC. A nomogram incorporating risk score and tumor 
stage was then constructed to evaluate the 3 – and 5-year recurrence-free survival (RFS) in 
patients with BC. In conclusion, this study identified a metabolism-related lncRNA signature 
that can predict RFS of BC patients and established a prognostic nomogram that helps guide 
the individualized treatment of patients at different risks.
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Introduction

Breast cancer (BC) is the most common malig-
nancy in women and leads to cancer death 
among females worldwide [1]. It is 
a heterogeneous disease which is mainly mani-
fested in biological behavior, gene expression 
profiles, clinical prognosis, and therapeutic 
response, even at the same tumor stage [2]. 
Although the overall survival rate of BC patients 
has greatly improved over the past decades, fre-
quent drug resistance, recurrence, and metastasis 
are still the leading obstacles to current clinical 
treatment [3]. However, currently used biomar-
kers have limited clinical value in predicting 
prognosis and metastatic recurrence. These fea-
tures highlight the urgent need for the develop-
ment and validation of novel prognostic 
signatures to accurately predict clinical outcomes 
of BC patients and provide guidance for perso-
nalized treatment.

Long non-coding RNAs (lncRNAs) represent 
a class of new and potent tumor regulator RNAs, 
with > 200 nucleotides and low protein-coding 
potential [4]. Emerging evidence has suggested 
that lncRNAs can directly combine with DNA, 
RNA, or proteins to regulate gene expression in 
the form of RNA at various levels, thus resulting in 
the alteration of physiological and/or pathological 
processes, including cell cycle, differentiation, pro-
liferation, apoptosis, transcriptional regulation, 
and carcinogenesis by modulating gene expression 
at the post-transcriptional level [5,6]. The compet-
ing endogenous RNA (ceRNA) hypothesis is based 
on a large-scale regulatory network system repre-
senting the complex cross-talk between coding and 
non-coding RNAs, and their interactions can be 
predicted using several tools [7,8]. lncRNAs have 
been proven to be oncogenic factors or tumor 
suppressors in the development of BC. For exam-
ple, lncRNA BCRT1 promotes BC progression by 
targeting the miR-1303/PTBP3 axis [9]. In con-
trast, lncRNA FGF14-AS2 has been identified as 
a tumor suppressor that suppresses BC metastasis 
by regulating the miR-370-3p/FGF14 axis [10].

Energy metabolism reprogramming, which can 
promote rapid cell growth and proliferation, is an 

emerging hallmark of cancer [11]. Several studies 
have reported that oncogenes and tumor suppres-
sor genes such as PI3K [12], MYC [13], K-Ras [14], 
BRCA1 [15], and p53 [16] can regulate metabolic 
pathways at multiple levels in different cellular 
compartments. For example, rewiring of metabo-
lism induced by oncogenic K-Ras in cancer cells 
involves both glucose and glutamine utilization 
and sustains enhanced, unrestricted growth. 
Combination therapy with the glutaminase inhibi-
tor CB-839 and PI3K/aldolase inhibitor NVP- 
BKM120 effectively reduce cell growth in tumor 
xenografts [14]. Metabolic alterations are a feature 
of both treatment-naive and treatment-resistant 
BC. Therefore, understanding the mechanisms 
involved will allow us to identify potential tumor 
vulnerabilities for new therapeutic approaches. 
Accumulating evidence has confirmed the exis-
tence of crosstalk between lncRNAs and cellular 
metabolism in several types of cancer. Liu et al. 
[17] revealed that lncRNA AGPG can regulate 
PFKFB3-mediated tumor glycolytic reprogram-
ming. Another recent study [18] indicated that 
lncRNA GLS-AS impairs GLS-mediated metabo-
lism and inhibits malignant progression in pan-
creatic cancer. However, the actions of lncRNA- 
mediated metabolism in BC are not fully under-
stood. Given the potential influence of lncRNAs 
and metabolism on the occurrence and develop-
ment of BC, we sought to identify novel metabo-
lism-related lncRNAs and construct prognostic 
signatures that are related to recurrence-free sur-
vival (RFS) in BC patients. This risk model will 
assist in understanding the molecular mechanisms 
underpinning BC and provide new ideas for meta-
bolism-targeting therapies. First, metabolism- 
related lncRNAs were identified using Pearson 
correlation analysis. We established a metabolism- 
related lncRNA signature and genomic- 
clinicopathologic nomogram which can accurately 
evaluate individual prognostic markers in patients 
with BC. In summary, the current investigation 
may enable great progress in the exploration of 
prognostic metabolism-related lncRNAs and shed 
new insights into the possible mechanisms 
involved in BC development.
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Materials and methods

Data sources and preprocessing

Data from The Cancer Genome Atlas (TCGA) 
and GTEx of breast cancer were acquired from 
the UCSC Xena Database (http://xena.ucsc.edu/), 
including 1,104 tumor samples and 292 normal 
samples. Samples with incomplete clinical data or 
a follow-up time of < 30 days were excluded. 
After the removal of patients lacking recurrence 
data, only 318 BC patients remained in TCGA 
cohort. Gene expression and clinical data of 
241 BC patient samples from the Gene 
Expression Omnibus (GEO) database 
(GSE21653, https://www.ncbi.nlm.nih.gov/geo/) 
were used as a validation set. Metabolism- 
related gene sets were obtained from the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
pathways database, which included 186 gene 
sets from the GSEA website (http://software. 
broadinstitute.org/gsea/downloads.jsp#msigdb). 
According to the criteria described in previously 
published articles (|Pearson R| > 0.4, p-value < 
0.05), Pearson correlation analysis was used to 
identify metabolism-related lncRNAs [19,20].

Construction and validation of lncRNAs 
prognostic signature

Univariate Cox proportional hazards regression 
analysis was performed to screen metabolism- 
related lncRNAs significantly associated with 
patient RFS in the training set. A p-value < 0.05 
was set as the cutoff criterion. To minimize the 
risk of over-fitting and to remove highly related 
genes, LASSO Cox regression was performed 
using the glmnet and survival package in 
R software [21]. Multivariate Cox analysis was 
subsequently used to construct a prognostic sig-
nature. Risk scores were obtained based on 
a linear combination of the expression levels and 
weighted regression coefficients obtained by mul-
tivariate Cox analysis. Risk score = expression of 
gene1 × β1 + expression of gene2 × β2 +�+ 
expression of genen × βn. where β represents the 
coefficient value. All samples were grouped into 
low – and high-risk groups using the Survminer 
package in R software. Log-rank tests were per-
formed to compare the prognostic outcomes 

between the two subgroups. Furthermore, receiver 
operating characteristic (ROC) analysis was 
applied to evaluate the predictive capability of 
the above signature using the SurvivalROC 
R package [22]. Then, we performed principal 
component analysis (PCA) using the ‘prcomp’ 
function of the ‘stats’ R package.

Validation of metabolic signature

To validate the homogeneity of the established 
metabolism-related lncRNA signature, the 
GSE84437 dataset were used as a validation set. BC 
samples were assigned to low – and low-risk groups 
using the formula described above. Survival analysis 
and log-rank tests were performed to compare RFS 
between the two risk groups. The predictive ability 
of the prognostic signature was assessed using the 
time-dependent ROC curve.

Development and validation of a prognostic 
nomogram

To quantitatively estimate BC prognosis in clinical 
practice, a prognostic nomogram that integrated 
both the metabolism-related lncRNA signature 
and clinicopathological characteristics was gener-
ated based on the multivariate Cox regression 
model. The predictive ability of the nomogram 
was evaluated using calibration plots and the 
ROC curve for 3 – and 5-year RFS.

Gene Set Enrichment Analysis (GSEA)

To explore prognostic biomarkers involved in 
potential biological processes, GSEA was per-
formed on the metabolism-related prognostic sig-
nature in the low – and high-risk groups. The 
classical gene set in the Molecular Signatures 
Database (MSigDB), ‘c2.cp.kegg.v7.0.symbols.gmt 
(curated)’ was considered. FDR < 0.25, and 
p-values < 0.05 were regarded as reference values.

Statistical analyses

All statistical analyses were performed using 
R v.4.0.4. Cox proportional hazard regression ana-
lysis was used to determine whether the metabo-
lism-related lncRNA signature could be an 
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independent prognostic indicator. Stratification 
analysis was conducted to further validate the 
prognostic performance of the metabolism- 
related lncRNA signature. Statistical significance 
was set at p < 0.05, unless otherwise noted. The 
nomogram created by the ‘Survival’ and ‘RMS’ 
packages of R v/3.6.3 was used to provide 
a visual risk prediction.

Results

Following in-depth studies of metabolic repro-
gramming, researchers have gradually realized the 
importance of fatty acid metabolism in BC. 
However, understanding of the association 
between lncRNAs and metabolism in BC is lim-
ited. In this study, we developed and validated 
a novel metabolism-related lncRNA signature 
and a nomogram integrating the signature and 
TNM stage for predicting individual survival 
among BC patients via the integrated analysis of 
TCGA and GEO datasets. Furthermore, using this 
signature and TNM staging, a nomogram was 
constructed to predict the 3 – and 5-year RFS of 

patients with BC. Hence, our study developed 
a metabolism-related lncRNA prognostic signature 
that could facilitate prognostic stratification in 
patients with BC and provide new ideas for meta-
bolism-targeting therapies.

Identification of metabolism-related lncRNAs 
in BC

Figure 1 presents a flowchart of the data analysis 
steps involved in this study. First, we identified 
13,361 lncRNAs and 19,318 mRNAs from the 
TCGA dataset, and obtained 945 metabolism- 
related genes from the gene set database of KEGG 
pathways. Pearson correlation analysis was per-
formed on the expression values of these lncRNAs 
and metabolism-related genes to screen-out highly 
metabolism-related lncRNAs with |Pearson R| > 0.4, 
and p-values < 0.05. As a result, 1,887 metabolism- 
related lncRNAs were identified in the TCGA data-
set. Consequently, 241 metabolism-related lncRNAs 
were selected by taking the intersection of the TCGA 
and GEO datasets (Supplementary Table 1).

Figure 1. Flow chart illustrating development of the metabolism-related lncRNA signature identified in this study.
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Development and validation of lncRNAs 
prognostic signature

We performed univariate Cox regression, LASSO 
regression, and multivariate Cox regression ana-
lyses of 241 metabolism-related lncRNAs. A total 
of 12 prognostic genes related to RFS were selected 
from the metabolism-related lncRNAs using uni-
variate Cox regression analyses (Figure 2a). Next, 
we conducted LASSO regression analysis, which 
identified 10 crucial lncRNAs (Figure 2b and c). 
Then, multivariate Cox regression analysis was 

conducted, and five lncRNAs were finally selected 
to establish a prognostic signature (Table 1). 
Among the five lncRNAs, FOXD2-AS1, C9orf163, 
and GSN-AS1 were risk prognostic genes with HR 
> 1, while A1BG-AS1 and LINC00893 were protec-
tive genes with HR < 1 (Figure 2d). Then, 
a 5-lncRNA metabolic signature was built using 
the adjusted regression coefficients of each gene 
and associated risk scores. Risk scores (RSs) were 
calculated using the following formula: 
RS = (0.40292 × level of FOXD2-AS1) + (1.00278 
× level of C9orf163) + (0.74405 × level of GSN- 
AS1) + (− −0.45489 × level of A1BG-AS1) + 
(−1.38691 × level of LINC00893). After scoring 
each patient’s risk through the signature, we 
divided the BC patients into low – and high-risk 
groups. The risk score distribution and survival 
status of the signature in the training set showed 
that the signature had a significant value for eval-
uating the prognosis of patients with BC 

Table 1. Coefficients and multivariable Cox model results in 
breast cancer.

LncRNA Coef HR 95% CI P value

FOXD2.AS1 0.402925894 1.496 1.013–2.209 0.042
A1BG.AS1 −0.454896016 0.635 0.390–1.031 0.066
C9orf163 1.002781719 2.726 1.392–5.336 0.003
GSN.AS1 0.744058391 2.104 1.302–3.403 0.002
LINC00893 −1.386910573 0.250 0.097–0.641 0.004

Figure 2. Development and evaluation of metabolism-related lncRNA signature related to RFS in TCGA cohort. (a) Forest plot of 12 
candidate metabolism-related lncRNAs selected by univariate Cox regression analysis. (b) LASSO coefficient profiles of the 10 
candidates. (c) Tenfold cross-validation for tuning parameter selection in the LASSO model. (d) Forest plot of 5 candidate 
metabolism-related lncRNAs selected by multivariate Cox regression analysis. (e) Patient survival status distribution by RS. (f) 
Patient survival status distribution of the low-risk group and the high-risk group. (g) PCA plot. (h) Kaplan-Meier method was used to 
plot the RFS curve for the high RS and low RS groups. (i) ROC curve of 5 lncRNA signatures.
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(Figure 2e and f). PCA analysis indicated discern-
ible dimensions between the low – and high-risk 
patients (Figure 2g). Kaplan-Meier analysis 
demonstrated that patients in the high-risk group 
exhibited significantly poorer RFS than those in 
the low-risk cohort (Figure 2h). To further assess 
the model performance, the time-dependent ROC 
was mapped. The AUC values were approximately 
0.735 for the training set (Figure 2i).

Validation of the metabolism-related signature

The GSE21653 dataset was separately used to 
determine the validity and robustness of the sig-
nature in an independent validation cohort (Figure 
3a-e). We calculated the RS of the metabolism- 
related lncRNA prognostic signature for each 
patient in the validation set using the same for-
mula. As expected, PCA analysis demonstrated 
that patients in the different risk groups were dis-
tributed in two directions (Figure 3c). Survival 
analysis indicated that the results of the Kaplan- 
Meier survival curve analysis were statistically sig-
nificant (p < 0.05, Figure 3d). Additionally, the 
AUC for RFS was 0.695 in the validation cohort, 
suggesting a favorable performance of the signa-
ture (Figure 3e).

Correlation between signature and 
clinicopathological characteristics

All patients were grouped according to their RS 
values to analyze any association between the 
metabolism-related signature and clinicopatholo-
gical characteristics. The results revealed that there 
were distinct differences in the RSs between 
patients involving tumor stage, surgery type, and 
tumor status (p = 0.009, 0.04, < 0.001, respectively; 
Supplementary Figure 1). However, age (p = 0.43) 
and margin status (p = 0.33) were not significantly 
correlated with the RS.

Development of a nomogram for prognostic 
prediction

To determine whether the prognostic significance 
of the signature is dependent on clinicopathologi-
cal parameters, univariate and multivariate Cox 
analyses were performed to analyze the following 
variables: RS, age, surgery type, margin status, and 
tumor stage (Figure 4a and b). As shown in 
Figure 4a, of the univariate analysis, tumor stage 
and RS were significantly correlated with RFS 
of BC patients as well as the results of multivariate 
analysis (Figure 4b). To evaluate whether the 
metabolism-related lncRNA prognostic model 

Figure 3. Validation of metabolism-related lncRNA signature related to RFS in GEO cohort. (a) Patient survival status distribution by 
RS. (b) Patient survival status distribution of the low RS and the high RS. (c) PCA plot. (d) Kaplan-Meier method was used to plot the 
RFS curve for the high RS and low RS groups. (e) ROC curve of 5 lncRNAs signatures.
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could serve as a prognostic indicator for RFS in 
subgroups of patients with different clinical char-
acteristics, we stratified subgroups by age (age ≤ 
60 years and age > 60 years), pathological stage 
(stage I–II and stage III–IV), surgery type (lum-
pectomy, modified radical mastectomy, and 
others), and tumor status (tumor-free and tumor- 
positive). The results indicated that the RFS in 
low-risk patients based on age (p-value = 0.001 
in ≤ 60 and p-value = 0.004 in > 60), pathological 
stage (p = 0.003 in stage I–II and p-value = 0.005 
in stage III–IV), surgery type (p-value = 0.035 in 
lumpectomy, p-value = 0.041 in modified radical 
mastectomy, and p-value = 0.002 in other), and 
tumor status (p-value = 0.020 in tumor-free and 
p-value = 0.032 in with tumor) was significantly 
higher than those of high-risk patients 
(Supplementary Figure 2).

To provide surgeons with a quantitative tool for 
prognostic prediction in BC patients, we con-
structed a nomogram that integrated the RS based 
on the expression levels of five metabolism-related 
lncRNAs and tumor staging (Figure 4c). With the 
help of the nomogram, prognosis can be effectively 
predicted based on the individual characteristics of 
the patient. The nomogram was validated using 
ROC and calibration plots. The 3 – and 5-year 
AUC values of the nomogram for RFS were 0.774 

and 0.745, respectively (Figure 4d). In addition, the 
calibration plots for the 3 – and 5-year RFS showed 
strong consistency between nomogram predictions 
and actual observations (Figure 4e and f).

GSEA

According to the criteria of FDR < 0.25, and 
p < 0.05, 18 significantly altered pathways were 
enriched in the high-risk group of the signature, 
including the P53 signaling pathway, DNA repli-
cation, galactose metabolism, fructose and man-
nose metabolism, amino sugar and nucleotide 
sugar metabolism, pyrimidine metabolism, and 
other pathways (Figure 5).

Discussion

Accurate prognostic prediction and individualized 
clinical treatment strategies are the basis of preci-
sion medicine [23]. Most of the established clinical 
markers for treatment response and prognosis 
in BC are based on clinical features, and their 
accuracy and specificity are limited. Traditionally, 
AJCC TNM staging is mainly based on anatomical 
information and cannot adequately assess recur-
rence in patients with BC. Thus, it is of great 
urgency to explore the molecular mechanisms 

Figure 4. Identification of RFs and development of prognostic nomogram. (a) Univariate Cox regression analysis. (b) Multivariate Cox 
regression analysis. (c) Prognostic nomogram incorporating RFs for predicting the probability of 3 – and 5-year RFS in BC patients. 
(d) Time-dependent ROC for 3 – and 5-year RFS predictions of the nomogram. (e, f) Calibration curves for predicting 3 – and 5-year 
RFS. The nomogram-predicted probability of survival is plotted on the x-axis; actual survival is plotted on the y-axis.
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and to screen specific cancer-related biomarkers 
for risk evaluation that can be employed to predict 
the survival of BC patients and promote the devel-
opment of effective therapies for BC. Following in- 
depth studies of metabolic reprogramming, 
researchers have gradually realized the importance 
of metabolism in BC [24,25]. However, metabo-
lism-associated lncRNAs for predicting persona-
lized survival are lacking. Given the potential 
influence of lncRNAs and metabolism on the 
occurrence and development of BC, the identifica-
tion of novel metabolism-associated biomarkers 
might provide important prognostic information 
and novel therapeutic targets.

A recent study based on public databases estab-
lished a tumor microenvironment-related signa-
ture model to predict the prognostic features 
of BC [26]. However, metabolism-associated 
lncRNA signatures are lacking. In this study, we 
constructed and validated a novel metabolism- 
related lncRNA signature and a prognostic nomo-
gram incorporating RSs and TNM staging for pre-
dicting individual survival among BC patients via 
the integrated analysis of TCGA and GEO data-
sets. First, we identified metabolism-related 

lncRNAs using Pearson’s correlation analysis. 
Univariate, LASSO, and multivariate Cox regres-
sion analyses were used to build a metabolism- 
related prognostic signature, which could be an 
independent prognostic factor for BC patients. 
This metabolism-related lncRNA prognostic 
model could serve as a prognostic indicator for 
RFS in subgroups of patients with different clinical 
characteristics. Patients with a low RS had superior 
RFS than those with a high RS. The predictability 
of the signature was confirmed by the tdROC 
curve, PCA analysis, and an independent GEO 
dataset. The GSEA results revealed that these 
metabolism-related lncRNAs are involved in 
many key biological functions related to tumor 
metabolic pathways. Furthermore, using this sig-
nature and TNM stage, we established 
a nomogram for predicting the 3 – and 5-year 
RFS of BC patients. The predictive ability of the 
model was validated by the discrimination and 
calibration curves. Hence, this study developed 
a metabolism-related lncRNA prognostic signature 
that could facilitate prognosis stratification in 
patients with BC and provide new ideas for meta-
bolism-targeting therapies.

Figure 5. GSEA analysis of differentially expressed genes in high – and low-risk groups. GSEA implied remarkable enrichment of 
metabolism-related phenotypes in the high-risk group.
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Accumulating evidence shows that lncRNAs 
also play irreplaceable roles in regulating metabo-
lism in BC through different mechanisms. Ma 
et al. [27] found that lncRNA FGF13-AS1 can 
inhibit glycolysis and the ‘stemness’ properties 
of BC cells. Mechanistically, FGF13-AS1 can 
reduce the half-life of MYC mRNA by binding to 
IGF2BPS and disrupting the interaction between 
IGF2BPS and MYC mRNA. In addition, MYC 
transcriptionally inhibits FGF13-AS1, forming an 
FGF13-AS1/IGF2BPs/Myc feedback loop in this 
signaling pathway. Du et al. [28] revealed that 
lncRNA MIR210HG can promote the Warburg 
effect and tumor growth by enhancing HIF-1α 
translation in triple-negative BC. Li et al. [29] 
demonstrated that lncRNA SNHG3 actively regu-
lates PKM expression by acting as a miR-330-5p 
sponge, inhibiting mitochondrial oxidative phos-
phorylation, increasing glycolytic carboxylation, 
and enhancing the proliferation of BC cells. 
Surprisingly, in addition to FGF13-AS1, 
MIR210HG, and SNHG3 mentioned above, many 
of these lncRNAs have been shown to play impor-
tant roles in metabolism [30,31].

Among the 5 lncRNA signatures identified in 
this study, 4 lncRNAs have been previously 
reported. A1BG-AS1 and C9orf163 have been 
shown to be immune-related lncRNAs and are 
associated with prognosis in patients with BC and 
pancreatic cancer, respectively, [32,33]. Robust evi-
dence has shown that there is an intimate relation-
ship between immunity and metabolism in cancer 
[34,35]. We speculate that A1BG-AS1 and C9orf163 
may affect immunity in BC by regulating metabo-
lism, although further experiments are required to 
verify such speculation. In addition, Bai et al. [36] 
revealed that A1BG-AS1 functions as a tumor sup-
pressor in hepatocellular carcinoma (HCC) and 
may promote tumorigenesis and progression 
through ceRNA-related mechanisms in HCC cells. 
Metabolic pathways such as glycolysis have distinct, 
essential roles in tumorigenicity and cancer pro-
gression [14]. Wang et al. [37] indicated by 
Pearson’s correlation analysis that FOXD2-AS1 is 
associated with glycolysis-related lncRNAs. 
However, the authors did not explore how FOXD2- 
AS1 affects the development and progression of BC 
by regulating metabolism. FOXD2-AS1 is also 
reported to be upregulated in tumor tissues and 

associated with poor prognosis in BC cases 
[38,39]. Knockdown of FOXD2-AS1 can inhibit 
the proliferation, migration, and invasiveness 
of BC cells and decrease the growth of transplanted 
tumors in vivo. FOXD2-AS1 promotes malignancy 
and tumorigenesis through different mechanisms, 
including the S100 calcium binding protein A1/ 
Hippo signaling pathway and FOXD2-AS1/miR- 
150-5p/PFN2 axis [38,39]. Similarly, LINC00893 
has been demonstrated to be expressed at low levels 
in thyroid cancer cells, which is consistent with our 
results. Overexpression of LINC00893 can inhibit 
the proliferation and migration of thyroid cancer 
cells by blocking the AKT pathway through PTEN 
upregulation [40].

Study limitations

Certain limitations of the present study should 
be considered. First, due to the lack of standar-
dized treatment strategies in the TCGA and 
GEO databases, the predictive accuracy of the 
model needs to be further confirmed using pro-
spective multicenter randomized controlled 
trials. Second, the information from the TCGA 
database is limited and incomplete, which may 
reduce predictive accuracy of the model. 
Furthermore, the prognostic model in this 
study was constructed using bioinformatics ana-
lysis. Therefore, validation using cellular experi-
ments and animal and tissue models warrants 
further investigation.

Conclusions

We identified a metabolism-related lncRNA signa-
ture that might act as an independent prognostic 
variable in patients with BC. Moreover, we estab-
lished a prognostic nomogram incorporating the 
gene signature and tumor staging to predict the 
RFS of BC patients. This novel model may serve as 
a reliable and reproducible tool for prognostic 
prediction in individual BC cases.
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