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S U M M A R Y

B A C K G R O U N D : There is an urgent need for improved

estimations of the burden of tuberculosis (TB).

O B J E C T I V E : To develop a new quantitative method

based on mathematical modelling, and to demonstrate

its application to TB in India.

D E S I G N : We developed a simple model of TB transmis-

sion dynamics to estimate the annual incidence of TB

disease from the annual risk of tuberculous infection and

prevalence of smear-positive TB. We first compared

model estimates for annual infections per smear-positive

TB case using previous empirical estimates from China,

Korea and the Philippines. We then applied the model to

estimate TB incidence in India, stratified by urban and

rural settings.

R E S U LT S : Study model estimates show agreement with

previous empirical estimates. Applied to India, the

model suggests an annual incidence of smear-positive

TB of 89.8 per 100 000 population (95%CI 56.8–

156.3). Results show differences in urban and rural TB:

while an urban TB case infects more individuals per

year, a rural TB case remains infectious for appreciably

longer, suggesting the need for interventions tailored to

these different settings.

C O N C L U S I O N S : Simple models of TB transmission, in

conjunction with necessary data, can offer approaches to

burden estimation that complement those currently

being used.

K E Y W O R D S : ARTI; prevalence; transmission; dura-

tion

TUBERCULOSIS (TB) is a major global public health
challenge. Of the estimated 10.4 million cases
globally in 2015, only about three fifths were notified
to the public health authorities.1 The ‘missing cases’
pose a serious challenge to TB control. To design
appropriate case-finding interventions and gauge the
efficiency of the public health system in capturing TB
cases, it is imperative to have more precise estimates
of TB incidence, especially in high-burden countries
such as India.2 However, in any given national
setting, estimating annual TB incidence is challeng-
ing. The direct measurement of active TB incidence
requires large study populations to be followed for a
year or longer, while carefully accounting for TB
cases entering or leaving the population during this
time. The resources, personnel and funding needed to
sustain this effort in high-burden, low-income coun-
tries render such direct measurements impractical.3

An alternative approach using the annual risk of
tuberculous infection (ARTI, i.e., the proportion of
non-infected individuals who acquire infection each
year) was proposed by K Styblo in the 1980s.4 Taking
into account the estimates available at the time (each

smear-positive case of TB is infectious for a duration
of 2 years on average before cure or death, and causes
on average 10–12 infections per year during this
time), Styblo estimated that an ARTI of 1%
corresponded to 50 incident smear-positive pulmo-
nary TB cases a year. This allowed a rough estimation
of incidence to be projected from ARTI rates, which
were in turn estimated from prevalence of infection
surveys. This parametric relationship was observed
primarily in the pre-chemotherapy period, and is
becoming increasingly outdated in the present era,
where DOTS implementation has profoundly altered
TB epidemiology. Recent work illustrates how, in
China, the Philippines and the Republic of Korea,
estimates for annual infections per case derived from
the available data range from 2.6 to 5.8, consistently
lower than those used by Styblo.4 Earlier modelling
work reported a range of 3.8 to 7.9 in these
countries,5 with estimates in other countries varying
more widely. In the light of these issues, incidence
estimation today is based increasingly on notifica-
tions of cases from routine surveillance, together with
estimates of the extent of underreporting and under-
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detection. The latter are drawn from expert opinion,

although inventory studies are increasingly being

used to obtain information about underreporting.6

In the present study, we present a complementary

approach for estimating TB incidence. Our approach

relies on a simple dynamic model of TB transmission,

designed to estimate the key transmission parameters

(annual number of infections and duration of

infectiousness) from primary data available from

surveys to measure the prevalence of infection and

active TB disease. From these estimates, the model

projects the annual incidence of TB disease, indepen-

dently of assumptions about the extent of underre-

porting (and underdetection). We apply this

framework to estimate the TB burden in India,

estimated to account for 25% of the global TB

burden. While nationally representative surveys to

estimate the ARTI have been carried out in India,

there are no nationally representative surveys of TB

disease prevalence. However, various recent surveys

at the subnational level suggest marked differences

between urban and rural settings, as discussed below.

We therefore separately applied the model to preva-

lence estimates from rural and urban settings. In

addition to estimating the TB burden, our approach

sheds light on the possible reasons for the differing TB

epidemiology in urban and rural settings in India.

In this paper, we describe the model framework, its

structure and how it relates to data from infection

surveys. We first check consistency between model

findings and independent estimates reported by van

Leth et al. We next apply the study model to estimate

the TB burden in India, and determine the model

inputs that are most important for improving the

precision of incidence estimates. Finally, we discuss

some limitations of the approach, and outline ways in

which the basic model framework can be developed,
refined and validated in future.

METHODS

We used a deterministic, compartmental model of TB
transmission dynamics (Figure 1). The model pre-
sented here is the simplest possible framework
necessary to fit the available data; for the sake of
simplicity, we ignored age structure, as well as the
acquisition and transmission of multidrug-resistant
TB. While the rate of diagnosis and cure can differ by
health care sector (public vs. private), we assumed
rates that were averaged across these settings.
However, a necessary feature of the model is to
distinguish smear-positive from smear-negative TB,
to reflect the stratification by smear status typically
supplied by survey data.

Briefly, in the model the population is divided into
different categories: uninfected (U), latent infection
(L), active disease (distinguishing smear-negative [IN]
from smear-positive disease [IP]) and cured (R).
Population flows between these states are represented
by the following system of ordinary differential
equations that capture TB transmission dynamics as
well as other factors, including breakdown to active
disease, mortality, cure and relapse.

_U ¼ b� kU � lU

L̇ ¼ ð1� kÞkU � ðlþ rÞL
İP ¼ pðkkU þ rLþmRÞ � ðlP þ rP þ dÞIP

İN ¼ ð1� pÞðkkU þ rLþmRÞ � ðlN þ rN þ dÞIN

_R ¼ ðd þ rPÞIP þ ðd þ rNÞIN � ðlþmÞR; ð1Þ
where b is the per-capita birth rate, k is the proportion
of infections progressing ‘rapidly’ to active disease, r
is the per-capita rate of breakdown to active disease,

Figure 1 Schematic illustration of the model structure. The population is divided into different
compartments, with flows between compartments given by terms on arrows (terms identified in
Table 1). Model equations are given in the Methods; symbols are as follows: p, proportion of cases
smear-positive; k, proportion of infections being ‘rapid’ progressors; k, annual risk of TB infection;
c, infectiousness of smear-negative TB relative to smear-positive; r, rate of progression from remote
infection to active disease per year; m, per-capita rate of relapse to active disease; d, per-capita
rate of initiation on curative therapy; r, per-capita rate of spontaneous cure. Smearþve¼ smear-
positive; smear�ve¼ smear-negative.
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m is the per-capita rate of relapse to active disease, l
is the background mortality rate, lP and lN are the
per-capita mortality rates for smear-positive and
smear-negative cases, respectively, and rP and rN

are the per-capita rates of self-cure.
The force-of-infection k is given by:

k ¼ bðIP þ cINÞ ð2Þ
where c denotes the diminished transmission poten-
tial of smear-negative cases relative to smear-positive
cases.

This leaves two parameters to be estimated: d, the
per-capita rate of diagnosis and cure through
treatment; and b, the average number of infections
arising per year per smear-positive case. We note here
that the average duration of disease D arises from a
combination of mortality, spontaneous cure and cure
through diagnosis and treatment, i.e.:

D ¼ 1

lP þ rP þ d

for smear-positive cases, and likewise for smear-
negative cases. In the Styblo framework, b was
estimated at 10 infections, while D was estimated at
2 years. Here we calibrate these to the available data,
as described below. Although we estimated the rate d,
we present results for the overall duration of disease
D using the equation above, as this is a quantity that
is more readily understood for the purpose of TB
epidemiology. For the sake of simplicity, we assumed
the same rate of diagnosis and treatment for smear-
positive as for smear-negative TB (d)—an assumption
that can be relaxed if there are more quantitative data
to inform these relative rates.

In a given setting, key data inputs for the model are
ARTI (equivalent to k in equation [2]) and the
prevalence of smear-positive TB (equivalent to Ip). We
describe the sources of these parameters: first, ARTI
is a measure of the force of infection, defined as the
probability of acquiring new tuberculous infection or
re-infection over a period of 1 year, and is derived
mathematically from the prevalence of infection
estimated by tuberculin surveys. The ARTI values
used in the present study were derived by pooling the
cluster survey data from four zonal level surveys
conducted among children aged 1–9 years from 2009
to 2010.7

Second, prevalence of TB disease is defined as the
proportion of people suffering from TB disease at a
given point of time. Prevalence values used in the
present study were pooled estimates obtained from
nine subnational disease prevalence cluster surveys
conducted in India during 2006–2012.8–15 In these
surveys, representative samples of individuals (age
715 years) in the respective areas were screened
using interviews for the presence of symptoms
suggestive of pulmonary TB and/or by chest radiog-
raphy (CXR) using mass miniature radiography and

digital radiography at one site. Those found to have
symptoms and/or any radiological abnormality on
CXR underwent smear sputum examination (two
specimens), as well as culture using solid media.
Screening by both interview and CXR was undertak-
en at five of these sites, while screening by interview
only was used at four other sites. Prevalence was
estimated after correcting for the bias introduced due
to incomplete data using logistic regression model
with robust standard error and missing value
imputation. Prevalence estimates for the sites where
screening was conducted by interview only were
corrected for non-screening by radiography using the
correction factor obtained from sites where both
screening tools were used.

For the purpose of the present study, we obtained
the national level weighted estimates for prevalence
of smear-positive pulmonary TB by pooling the
estimated prevalence at the nine sites individually,
the weights being equal to the inverse of variance and
corrected for paediatric age group; it was assumed
that 9% of cases occurred among children16 and 30%
of the population belonged to the paediatric age
group.17 While these prevalence estimates represent-
ed the best estimates for the country, they were
limited by the fact that the survey sites had not been
selected to be representative of the country. However,
the ARTI estimates were nationally representative.

Natural history parameter inputs for equation (1)
were drawn from the literature (Table 1). The per-
capita rates of TB mortality and self-cure in equation
(2) were inferred from a recent systematic review
(Appendix).23* Solving the model at equilibrium, we
were able to determine the values of b and d necessary
to yield the correct ARTI and smear-positive preva-
lence. After determining these values, the annual
incidence can be calculated mathematically using the
equation given in the Appendix.

To appropriately propagate the uncertainty from
inputs to incidence estimates, we determined log-
normal distributions for each parameter (as well as
ARTI and prevalence) to capture the uncertainty
ranges (Table 1). Taking the lower bound, point
estimate and upper bound as the 2.5th, 50th and
97.5th percentiles, respectively, we chose the mean
and variance of a log-normal distribution for each
input parameter to capture these percentiles using
least-square estimations. Taking 100 000 indepen-
dent samples for each of these inputs, we then
recorded the estimated incidence for each sample.
From the resulting set of 100 000 outputs, we
calculated the point estimates and 95% credible
intervals as the median, 2.5th and 97.5th percentiles,
respectively. A computationally efficient method for

* The appendix is available in the online version of this article, at

http://www.ingentaconnect.com/content/iuatld/ijtld/2017/
00000021/00000004/art00004
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conducting these 100 000 iterations is described in the
Appendix.

We applied this model in the following way: first,
as a consistency check, we compared our model
findings for b against those derived by van Leth et al.
from successive prevalence surveys in three different
country settings—China, the Republic of Korea and
the Philippines—independently of Styblo’s estimates
of 10–12 infections per prevalent case per year. We
then applied the method for the estimation of TB
incidence in India. Figure 2 shows findings from
subnational prevalence surveys across the country
(see Table 1 for data). It should be noted that
although urban areas indicate higher ARTIs than in
rural areas, the prevalence of smear-positive pulmo-
nary TB is higher in rural areas. We therefore fitted
the model separately to ARTI and prevalence inputs
consistent with ‘urban’ and ‘rural’ TB to reflect the
difference in TB epidemiology in these settings.

While most other parameter values were drawn
from the general literature, here we used India-
specific estimates for the proportion of smear-positive
cases, again drawn by pooling the data from
subnational prevalence surveys (unpublished data).
Finally, to examine the sensitivity of the model to a
given parameter, we explored the effect of fixing the
parameter in question on the precision of model
estimates for smear-positive TB incidence. In partic-
ular, we measured the interpercentile range in smear-
positive incidence as the difference between the 2.5th
and 97.5th percentiles. We first found this range for
the ‘full’ model, where all parameters were allowed to
vary simultaneously, as described above. By holding a
given parameter fixed at its central value, we then re-
estimated the incidence by varying the remaining
parameters to record the resulting reduction in the
interpercentile range. By repeating this for all model
parameters, we were able to identify the most

Table 1 Summary of input parameters for the model

Parameter Symbol Value (range) Source

Per-capita rate of progression
from remote infection to
active disease, L to I

r 0.001 (0.0005–0.002) 18

Proportion of infections being
‘rapid’ progressors, U to I

k 0.14 (0.05–0.25) 19

Proportion of cases
smear-positive

p 0.45 (0.3–0.6) (applied
to China, Philippines,
Korea)

20

0.63 (0.43–0.93)
(India only)

Pooled estimate from recent
subnational prevalence
surveys, India6

Transmission potential of
smear-negative TB relative
to smear-positive TB

c 0.2 (0.1–0.3) 21,22

Per-capita annual rate of
relapse to active disease,
R to I

m 0.002 (0.001–0.004) 18

Per-capita mortality rate,
non-TB

l 1/66 World Bank estimates

Per-capita mortality rate,
smear-positive TB

lP 0.24 (0.23–0.25) Calibrated for consistency
with point estimate and
uncertainty ranges
in Dhanaraj et al.13

(see Appendix for details)

Per-capita mortality rate,
smear-negative TB

lN 0.071 (0.060–0.082)

Per-capita self-cure rate,
smear-positive TB

rP 0.094 (0.086–0.10)

Per-capita self-cure rate,
smear-negative TB

rN 0.26 (0.25–0.27)

Among active TB, per-capita
rate of initiation of curative
treatment

d Calibrated for given ARTI and prevalence of smear-positive TB

Number of infections per
year per smear-positive
case

b Calibrated for given ARTI and prevalence of smear-positive TB

ARTI, % (95%CI) k
India rural 0.9 (0.8–1.1)
India urban 1.7 (1.2–2.1)
India pooled 1.0 (0.8–1.1)

Prevalence of smear-positive
cases across all ages,
/100 000 population
(95%CI)

IP

India rural 203.29 (140.88–265.78)
India urban 122.32 (73.389–171.1)
India pooled 159.38 (122.9–196.59)

TB¼ tuberculosis; CI¼ confidence interval; ARTI¼ annual risk of tuberculous infection.
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sensitive parameters as those associated with the
greatest increase in precision (i.e., the greatest
reduction in interpercentile range). We were thus
able to determine which specific inputs would be
most important to improve the precision of these
incidence estimates.

No ethics approval was required, as the work
presented here involved secondary analysis of data
reported in earlier studies.

RESULTS

Figure 3 compares model findings with results
reported by van Leth et al. for b estimates in China,
the Philippines and Korea.4 Shaded regions illustrate
the parameter space corresponding to Styblo’s rule: as
noted in van Leth et al.,4 the assumption of 10–12
infections per year is consistently higher than
independent estimates by van Leth et al. (points in
grey). However, model estimates for b appear broadly
consistent with these latter points (comparing esti-
mates in grey vs. those in black). Model estimates for
b were exceptionally higher for Korea in 1990;
however, certain aspects of that survey, described
below, may account for this discrepancy.

Applying the model to India, Figure 4 shows the
results for b, D and incidence estimates in urban and
rural settings, along with nationally pooled estimates
(see also Table 2). The figure suggests that the annual
number of infections per smear-positive case tends to
be higher in urban than in rural areas, while the
duration of infectiousness is the opposite. Overall,

rural areas tend to have lower incidence than urban
areas; however, a national-level estimate could
obscure these heterogeneities.

The uncertainty intervals on these incidence
estimates, while relatively wide, reflect a model-based
aggregation of the uncertainty in input parameters.
To address the role of individual parameters and
inputs in model uncertainty, Figure 5 shows the
parameter sensitivity, estimated (as described above)
by keeping a given parameter fixed on the precision of
model estimates for smear-positive incidence. The
figure shows that, while the model is guided by ARTI
and prevalence data, certain natural history param-
eters can nonetheless have greater impact on inci-
dence estimates. The figure highlights three
parameters in particular: the proportion of infections
that are ‘fast’ progressors, the rate of progression
from latent infection to active disease and the
proportion of smear-positive cases. As discussed
below, the relative role of these different inputs
appears to differ according to setting (urban vs.
rural). Appendix Figure A.2 also shows the potential
bias in incidence estimates arising from the assump-
tion of an equilibrium epidemic. In brief, this analysis
shows that our approach tends to underestimate
incidence if the ‘true’ underlying epidemic is a
declining one, and vice versa. Appendix Figure A.3
shows the sensitivity of these results to the choice of
distribution for input uncertainty (employing b
distribution rather than log-normal distributions);
estimates and uncertainty were not substantially
altered.

Figure 2 Results of pooled prevalence surveys, showing contrasting epidemiology between
urban and rural tuberculosis in India. ARTI¼ annual risk of tuberculous infection.

Table 2 Summary of model output results: for rural, urban and pooled (ruralþ urban) settings in India

Setting
Incidence (all ages)
/100 000 (95%CI)

Incidence of smear-positive
TB cases (all ages)
/100 000 (95%CI)

Number of infections per year
per smear-positive case

n (range)

Average duration of disease
before cure or mortality

years (range)

Rural 139.1 (97.7–209.2) 91.0 (62.6–150.0) 4.1 (3.2–5.6) 2.2 (1.3–2.9)
Urban 188.6 (125.1–290.6) 118.7 (67.7–207.8) 12.4 (8.2–18.8) 1.0 (0.5–1.9)
Pooled 141.9 (97.5–217.9) 89.8 (56.8–156.3) 5.6(4.4–7.4) 1.8 (0.97–2.8)

TB¼ tuberculosis.
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DISCUSSION

The estimation of TB incidence in high-burden

settings is an important but difficult task. Even if

incidence cannot be measured directly, it may

nonetheless be reflected in other data that are more

readily measured, for example through prevalence

surveys. In this context, models of TB transmission

can help us estimate the underlying incidence that

best explains a given set of data. By circumventing the

need to make a priori assumptions regarding the ratio

of incidence to notifications or the duration of
infectiousness, the model presented here comple-
ments methods currently used by the World Health
Organization for estimating TB incidence.

This framework serves to show the potential value
of ARTI and prevalence in estimating TB burden:
these estimates should be regarded as a first step that
can be refined and improved in future. For example, it
is of note that certain natural history parameters can
be more important in increasing the precision of
incidence estimates than epidemiological inputs for

Figure 4 Application of the model to prevalence survey data from India. Owing to different TB epidemics in urban and rural settings,
estimates for these settings are shown separately. TB¼ tuberculosis.

Figure 3 Comparison of estimates for the number of infections per smear-positive TB case per year. Estimates from Styblo (shaded
bar), those derived from successive prevalence surveys in van Leth et al. (grey points), and those derived by the present model (black
points) are shown. TB¼ tuberculosis.
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ARTI and prevalence (Figure 5). This may be partially
due to the relatively wide uncertainty intervals that
we assumed for natural history parameters (Table 1).
It should be noted, however, that two of these key
parameters govern the lifetime risk of developing
active disease from tuberculous infection—the pro-
portion of ‘fast’ progressors and the rate of break-
down to active disease. These have previously been
recognised as critical underlying parameters in the
context of TB transmission dynamics.24 The third key
parameter, the proportion of incident cases that are
smear-positive, is clearly important in estimating the
incidence of smear-positive TB. More setting-specific
and precise estimates of these parameters would
contribute to improved incidence estimates. Informa-
tion on disease progression may require dedicated
cohort studies, while data on smear-positive propor-
tions would be more directly available from preva-
lence surveys (as we have used, for example, for
India). In the future, more developed models incor-
porating additional sources of data such as TB
mortality and patient care-seeking pathways, togeth-
er with public sector notifications, could yield
improved incidence estimates that are more compre-
hensively sourced from the available data.

It is also of note that the relative importance of
ARTI and prevalence appears to vary according to
setting, with prevalence being substantially more
important than ARTI in determining the precision of
incidence estimates in rural settings (Figure 5A), but
with negligible impact in urban settings (Figure 5B),
particularly if there is uncertainty regarding natural
history parameters. These patterns could be under-
stood in terms of our parameter estimates, which

indicate that in rural settings, where b is generally
lower (Figure 4B), transmission is driven by a large
prevalent pool (Figure 2B), rather than by high
infectiousness per case. In urban settings, the con-
verse is true.

Where independent estimates for b are available,
these are mostly consistent with model-based esti-
mates calculated on the basis of prevalence and ARTI
inputs (Figure 2). In the case of Korea in 1990,
however, the model appears to show significantly
higher estimates for b than those estimated indepen-
dently. It is to be noted that ARTI estimates in that
case were not as robust as in other years due to non-
ascertainment of the mode of tuberculin reaction sizes
that would represent true tuberculous infection.25

Moreover, TB control activities in the period shown
may have led to a marked change in the proportion of
TB cases that were smear-positive. While offering a
possible reason for the difference between model-
based and independent estimates of b, this also
underscores the importance of the inputs used in
ensuring the robustness of the model estimates.

Given the strikingly different nature of the TB
epidemic in urban and rural settings in India (Figure
2), our approach has the added benefit of shedding
light on potential reasons for such heterogeneity. A
TB patient tends to transmit to more individuals in
urban settings, but tends to have a longer duration of
disease in rural settings (Figure 4). To our knowledge,
this is the first time such potential drivers have been
quantified. A higher population density in urban
areas is consistent with the higher number of
infections per year per smear-positive TB case, while
limited access to health care could be one explanation

Figure 5 Sensitivity analysis with respect to smear-positive TB incidence. Bars show the reduction in the interpercentile range in
Figure 4C (i.e., between the 2.5th and 97.5th percentiles of incidence estimates) when each parameter is, in turn, kept fixed at its
central value (Table 1). Of all the model inputs, these results suggest that the precision of incidence estimates would be most improved
by improved precision in k, the proportion of infections progressing ‘rapidly’ to active disease (within 2 years of infection), and p, the
proportion of cases that are smear-positive. The remaining parameters are as shown in Table 1. ARTI ¼ annual risk of tuberculous
infection; TB¼ tuberculosis; Smþ¼ smear-positive; Sm–¼ smear-negative.
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for the longer duration of untreated TB in rural areas,
which in turn could lead to the relatively high
prevalence in these settings. Nonetheless, our results
suggest that a TB case in an urban setting tends to
cause more cumulative TB infections over the
duration of an infectious period than an individual
in a rural setting (Appendix Figure A.4).

Further work is needed to explore the mechanisms
behind these findings. Nonetheless, the data (as well
as our analysis) suggest the need for more urban- and
rural-specific TB interventions in India. In particular,
airborne infection control, including reduced crowd-
ing and improved ventilation, could play a more
important role in urban TB control than in rural
settings. Conversely, while timely diagnosis and
treatment is crucial for controlling both urban and
rural TB, our duration estimates suggest that they
could have an especially pronounced impact in rural
settings.

The methodology that we propose has some
limitations. First, this approach neglects the role of
human immunodeficiency virus (HIV) infection in
TB transmission and is thus best suited in settings, as
in much of India, where HIV-TB coinfection is low.
Second, we have adopted an equilibrium model for
simplicity. Such an approach is helpful in settings
where prevalence data are only available for one
point in time. Appendix Figure A.2 suggests that,
where the underlying epidemic is slowly varying in
time, any bias introduced by an equilibrium model is
likely to be small. Nonetheless, the potential for
repeat prevalence surveys to inform a non-equilib-
rium model is an important topic for future work.
Third, caution should be used when assuming our
‘pooled’ estimates to represent national TB inci-
dence in India: unlike ARTI data, the prevalence
data used here are not necessarily nationally
representative. Further research should address the
validity—when seeking nationally representative
estimates—of aggregating urban and rural data at
the input stage, rather than modelling them sepa-
rately and aggregating the model outputs. In this
study, the former approach simply serves as a helpful
indication of the ‘average’ epidemiological condi-
tions nationwide.

A fourth limitation is in implementation: our work
draws on data on both latent infection and disease. In
practice, however, there has been a decreasing
emphasis on tuberculin surveys to measure the
prevalence of latent tuberculous infection due to the
challenges in interpreting survey data, in particular,
with declining rates of infection increasingly causing
difficulties in distinguishing true tuberculous infec-
tions from cross-reactions. In future, newer tubercu-
lins more specific to infection with Mycobacterium
tuberculosis, or a more practicable method of
collecting blood specimens among children in field
conditions for interferon-gamma release assays, may

help overcome this problem. Another justification for
recent shifts away from infection surveys is that the
identification and treatment of TB disease offer more
immediate health gains than the diagnosis of individ-
uals with latent infection, the majority of whom may
not progress to active disease. Nonetheless, our work
emphasizes the potential value of measuring latent
infection for estimating the incidence of active
disease.

Overall, our work highlights the need for improved
estimates for TB burden at the subnational levels (for
example, precise estimates by state, and by rural,
urban, slum and tribal areas), as attention turns
towards the millions of cases going undetected
worldwide each year. Alongside the potential for
future diagnostic tools and improved prevalence
surveys, new analytical methods can offer informa-
tive and complementary approaches for the benefit of
public health.
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APPENDIX

The model, specified in equation (1) in the main text

and illustrated in Figure 1, was used to calculate the

equilibrium state; model-simulated annual risk of

tuberculous infection (ARTI) and prevalence were

determined as follows:

ARTI ¼ k 3 100;

smear-positive prevalence ¼ Ip 3 100 000:

The incidence of smear-positive TB at equilibrium
is thus given by

smear-positive incidence

¼ p kbUðIP þ cINÞ þ rLþmR½ �
that is, an integral over a unit time interval (1 year) of
all influx terms into the state Ip in Figure 1.

An efficient method for solving the system at
equilibrium

For given values of b and d, equation (1) in the main

text is solved to find the solution at equilibrium.

Simulated values for ARTI and smear-positive prev-

alence are thus given by respectively k and IP. Given

data for ARTI and prevalence, we choose b and d to

minimise the sum of least-squares between model-

simulated and data values.

The simplest, most direct way to do this for a given

b and d is to simulate an epidemic to equilibrium,

determine ARTI and prevalence, and repeat to adjust

b and d using a simplex algorithm. However, when

incorporating uncertainty into the calculation, the

process has to be repeated over 10 000 samples, and

thus becomes very time-consuming. A more efficient

approach is as follows.

At equilibrium, the derivatives in equation (1) are

set to zero. Rather than calculating k using (2), we

treat k and IP as known (and given by the data),

substituting this into the system of equation (1) to

obtain a system of simultaneous equations in the four

unknowns U, L, IN and d. Owing to the product of d

and IN in the fourth equation in (1), this remains a

nonlinear system. Nonetheless, together with the

constraint that UþLþIPþINþR¼1, this system can

be easily and efficiently solved using the Newton-

Raphson method.

Estimating mortality and spontaneous cure rates

We draw from Dhanaraj et al.,13 a systematic review

of tuberculosis (TB) outcomes in the pre-chemother-

apy era. In brief, this study suggested that the mean

duration of untreated TB is around three years.

Smear-positive TB has a case-fatality rate of roughly

70%, while smear-negative TB has a case-fatality rate

of roughly 20%. To capture the relationship between

these outcomes and the per-capita hazard rates used

in the present study, we used a simple ‘cohort’ model

(Figure A.1).
Solving this simple model in the case of smear-

positive TB with the initial conditions
IP¼1, CP¼MP¼0, it is clear that, as a function of

time:

MP ¼
lP

lP þ rP
1� exp �ðlP þ rPÞt½ �f g;

CP ¼
rP

lP þ rP
1� exp �ðlP þ rPÞt½ �f g

A mean duration of 3 years thus implies that 1/(lPþ
rP)¼ 3, and a case fatality rate of 70% suggests that

lP/(lP þ rP) ¼ 0.7. Together, these imply that lP ¼
0.23, rP ¼ 0.1. Similarly, for smear-negative TB, we

have lN ¼0.067, rN ¼ 0.27. We obtain uncertainty

intervals for these rates by applying this procedure to

the upper and lower bounds for the outcome

estimates provided in Dhanaraj et al.13

Assessing potential bias when applying an equilibrium
model to a changing epidemic

We examined the potential bias arising from the

simplifying assumption of an equilibrium epidemic

by applying the model to simulated data, where

incidence is changing at a given rate. In particular,

the current World Health Organization approach to

the TB burden in India assumes an epidemic that was

at equilibrium until 2001, with a 1.5% decline in

incidence thereafter arising from improving socio-

economic conditions.1 We simulated an epidemic at

equilibrium until 2001, and in subsequent years

subject to a given, annual change in b. Recording

simulated data for ARTI and prevalence as of 2015

from this epidemic, we estimated the incidence in

2015 using the equilibrium model approach, ulti-

mately to find the error in the incidence estimate.

Figure A.2 shows the results of this analysis. For the

purpose of exploration, we did not limit the trend in

the simulated ‘true’ epidemic to declining b, but

incorporated a range of scenarios from a 3% annual

decline to a 3% annual increase. The figure suggests

that, for a declining TB epidemic, the model tends to

Figure A.1 Schematic illustration of a simple cohort model
(without transmission dynamics), tracking mortality and self-
cure in smear-positive and smear-negative TB cases. TB ¼
tuberculosis.
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underestimate incidence, and the opposite is true in
the case of a growing TB epidemic. Nonetheless,
there remains good quantitative agreement between
estimated and underlying TB incidence.

It is assumed that ‘true’ incidence (simulated, for
the purpose of comparison) has been changing at a
steady rate since 2001, the rate indicated by the x-
axis. Given ARTI and prevalence in 2015, we then
apply the incidence estimation method to estimate
incidence in 2015, to compare this with the ‘true’
(simulated) incidence. Results illustrate that the
model tends to underestimate incidence in the event
of a steadily declining epidemic, and vice versa for a
growing epidemic.

Sensitivity of model outputs to underlying

distributions

For the results presented in the main text, we used

log-normal distributions to capture the uncertainty in

each of the model inputs. Figure 5 shows the

sensitivity of the model output to individual param-

eters: Figure A.3 extends this analysis, repeating the

parameter estimation using b distributions for all

model inputs, as an alternative to log-normal

distributions. The figure illustrates that this alterna-

tive choice of distribution does not substantially alter

the model outputs, whether point or uncertainty

estimates.

Figure A.2 Bias in incidence estimates when an equilibrium model is applied to a changing epidemic.

Figure A.3 Comparison of model outputs when using b distributions for all input parameters (black) rather than log-normal
distributions (grey). TB¼ tuberculosis.

ii The International Journal of Tuberculosis and Lung Disease



Comparing infections from urban and rural
tuberculosis cases

With the mean number of infections per year given as
b and the mean duration of an infectious episode
given by D, the number of infections arising from a
single TB case (cumulated over the course of their

disease) is the product bD. Figure A.4 gives bD values
for rural, urban and national-level settings, showing
that, although TB in rural settings can have a long
duration, overall the cumulative number of secondary
infections in urban settings tend to be higher than in
rural settings.

Figure A.4 Total number of infections per TB case in each of the different settings presented in the main text. TB¼ tuberculosis.
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R E S U M E

C A D R E : Il y a un besoin pressant d’améliorer

l’estimation du poids de la tuberculose (TB).

O B J E C T I F : Elaborer une nouvelle méthode quantitative

basée sur un modèle mathématique et de démontrer son

application à la TB en Inde.

S C H E M A : Nous avons élaboré une modèle simple de la

dynamique de transmission de la TB, afin d’estimer

l’incidence annuelle de la TB maladie à partir du risque

annuel d’infection tuberculeuse et de la prévalence de TB

à frottis positif. Nous avons d’abord comparé les

estimations des modèles pour les infections annuelles

par cas de TB à frottis positif, en utilisant des

estimations empiriques préalables venant de Chine, de

Corée et des Philippines. Nous avons ensuite appliqué le

modèle afin d’estimer l’incidence de la TB en Inde,

stratifiée par zone urbaine et rurale.

R É S U LTAT S : Les estimations des modèles sont en

accord avec les estimations empiriques préalables.

Appliqué à l’Inde, le modèle suggère une incidence

annuelle de TB à frottis positif de 89,8 par 100 000

habitants (IC95% 56,8–156,3). Les résultats mettent

également en évidence un contraste entre TB en zone

urbaine et rurale : si un cas de TB en zone urbaine infecte

davantage d’individus par année, un cas de TB en zone

rurale reste contagieux nettement plus longtemps, ce qui

suggère un besoin d’interventions spécifiques aux

différents contextes.

C O N C L U S I O N : Des modèles simples de transmission de

la TB, en conjonction avec les données nécessaires,

peuvent offrir des approches à l’estimation du fardeau

qui sont complémentaires à celles actuellement en usage.

R E S U M E N

M A R C O D E R E F E R E N C I A: Existe una necesidad urgente

de mejorar las estimaciones de la carga de morbilidad

por tuberculosis (TB).

O B J E T I V O: Elaborar nuevos métodos cuantitativos

fundamentados en la modelización matemática y

describir su aplicación a la TB en la India.

M E T O D O S: Se construyó un modelo sencillo de la

dinámica de transmisión de la TB, con el objeto de

calcular la incidencia anual de la enfermedad, a partir

del riesgo anual de contraer la infección tuberculosa y la

prevalencia de TB con baciloscopia positiva. En primer

lugar, se compararon las estimaciones del modelo de las

infecciones anuales por casos de TB con baciloscopia

positiva, aplicando estimaciones empı́ricas anteriores de

la China, Corea y las Filipinas. Luego, se aplicó el

modelo con el fin de estimar la incidencia de TB en la

India, estratificada por los entornos urbano y rural.

R E S U LTA D O S: Las estimaciones del modelo fueron

concordantes con las estimaciones empı́ricas

anteriores. Al aplicarlo a la India, el modelo indicó

una incidencia anual de TB con baciloscopia positiva de

89,8 por 100 000 habitantes (IC95% de 56,8 a 156,3).

Los datos también pusieron en evidencia diferencias en

la TB urbana y rural, pues un caso de TB en medio

urbano contagia más personas por año, pero un caso en

entorno rural permanece contagioso durante un perı́odo

más prolongado. Estos resultados destacan la necesidad

de intervenciones especı́ficas en cada entorno.

C O N C L U S I O N: Los modelos sencillos de transmisión de

la TB, aunados a los datos necesarios, ofrecen

estrategias de estimación de la carga de morbilidad que

son complementarias de los enfoques utilizados en la

actualidad.

iv The International Journal of Tuberculosis and Lung Disease


	t01
	t02

