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Acute myeloid leukemia (AML) remains a difficult disease to treat disease. In a phase 2

clinical trial in patients with relapsed/refractory AML, combining the hypomethylating

agent, azacitidine, with the PD-1 checkpoint inhibitor, nivolumab, demonstrated

encouraging response rates (33%), median event-free, and overall survival, compared

with a historical cohort of contemporary patients treated with azacitidine-based

therapies, with an acceptable safety profile. Biomarkers of response are yet to be

determined. In this study, we leveraged a multiplexed immune assay to assess the

functional states of CD41 and CD81 cells at a single-cell level in pretherapy bone

marrows in 16 patients with relapsed/refractory AML treated with azacitidine/

nivolumab. Effector CD41 but not CD81 cells had distinct polyfunctional groups and were

associated with responses and better outcomes. Further evaluation of the polyfunctional

strength index composition across cell types revealed that interferon-gamma (IFN-g) and

tumor necrosis factor-alpha (TNF-a) were the major drivers of enhanced

polyfunctionality index of pretherapy CD41 subset, whereas Granzyme B, IFN-g, MIP-1b,

and TNF-a drove the nonsignificantly enhanced pretreatment Polyfunctional Strength

Index of CD81 subset in the responders. Single-cell polyfunctional assays were predictive

of response in AML and may have a potential role as a biomarker in the wider sphere of

immunotherapy.

Introduction

Acute myeloid leukemia (AML) remains a difficult disease to treat with a limited proportion of patients
having long-term cures, despite several recently US Food and Drug Administration–approved therapies.1

T cells can be used to eradicate leukemia as evident by grafted allogeneic T cells vs leukemia effected
seen in postallogeneic stem cell transplantation.2 Harnessing the host T-cell activity against tumors via
T-cell checkpoint inhibition has demonstrated significant success in many solid cancers and some lym-
phomas.3 Checkpoint blockade via PD-1, PD-L1, CTLA-4, and TIM-3 inhibition is being evaluated in sev-
eral ongoing clinical trials in AML and myelodysplastic syndrome.4 In a phase 2 clinical trial in patients
with relapsed/refractory (R/R) AML, combining the hypomethylating agent (HMA), azacitidine, with the
PD-1 checkpoint inhibitor, nivolumab, demonstrated encouraging overall response rates of 33% (58%
and 22% in HMA-naïve and HMA-pretreated patients), median event-free, and overall survival (OS), com-
pared with a historical cohort of contemporary patients treated with azacitidine-based therapies, with an
acceptable safety profile.5 Of note, patients who achieved complete response (CR)/incomplete blood
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Key Points

� Effector polyfunctional
index score of CD4
cells was more
associated with
responses to
combined azacitidine/
nivolumab than CD8
cells.

� Single-cell biomarker
assays can be used in
predicting responses
to immune-based
therapies.
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Figure 1. Pretreatment polyfunctional bone marrow CD41 T cells demonstrate the significant positive correlations with AML patient response to the

anti–PD-1–based therapy and overall survival. Polyfunctionality, defined as single-cells co-secreting at least 2 or more proteins, reveals the varying degrees of polyfunc-

tional single cells from the samples, with the darker the orange, the higher the number of unique cytokine combinations secreted per single-cell. PSI aggregates all single
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count recovery (CRi)/partial response/hematologic improvement/sta-
ble disease had significantly improved OS compared with nonres-
ponders (16.2 vs 4.1 months).5 However, unlike in solid tumors,
long-term responses were rarely seen with AML. Patients with
increased pretherapy bone marrow CD31 or CD31 CD81 T cells
were significantly more likely to achieve a response suggesting that
biomarker-based strategies may further improve outcomes with
checkpoint blockade in AML. However, bone marrow T-cell infiltra-
tion does not take into account the functional status of the T cells.
In this study, we leveraged a multiplexed immune assay to assess
the functional states of CD41 and CD81 cells at a single-cell level
in pretherapy bone marrows in patients with R/R AML treated with
azacitidine/nivolumab in the aforementioned clinical trial.

Methods

Patient population

All patients were treated on protocol with azacitidine/nivolumab, as
previously described (NCT02397720).5 This study was approved
by MD Anderson institutional review board and conducted in accor-
dance with the Declaration of Helsinki. Briefly, 11 nonresponders
and 5 responders to treatment based on ELN2017 response crite-
ria6 had available samples and were analyzed. Bone marrow sam-
ples were collected before and at end of second treatment cycle.
Patient clinical and treatment characteristics are included in supple-
mental Table 1.

Single-cell 32-plex functional proteomic profiling

Detailed methods can be found in supplemental Material under
“Single-cell 32-plex functional proteomic profiling.” Briefly, polyfunc-
tional T cells co-secreting 21 cytokines were assessed with the
32-plex proteomics (supplemental Table 2). The Polyfunctional
Strength Index (PSI) of single T cells was computed as the percent-
age of polyfunctional cells, multiplied by the sum of the mean fluo-
rescence intensity of the proteins secreted by those cells.7-12

Results and Discussion

A total of 16 patients with R/R AML (75% male), 81% with .1 sal-
vage, median age 65 years (range, 47-90), who received a median
of 3 (range, 2-17) cycles and a median of 6 (range, 3-33) doses of
nivolumab had available samples for this analysis. Five of 16
(31.2%) patients achieved a CR/CRi on azacitidine/nivolumab, with
a median time to CR/CRi of 4.07 (range, 0.9-12.6) months. The
median OS of the 16 patients was 6 (range, 2.4-21.5) months, (res-
ponders vs nonresponders, P , .0001). The median duration of
response was 5.2 (range, 0.5-14.7) months.

To identify predictors of response, we conducted single-cell poly-
functional assessment of CD41 and CD81 T cells in pretreatment
bone marrows. We measured the degree of polyfunctionality and
PSI, representing an aggregate of all single-cell multidimensional
data into a single index, to determine any association with
responses. The pretreatment bone marrow CD41 but not CD81 T
cells had significantly higher frequency of polyfunctional cells (P 5

.04 and .15, respectively) and significantly higher PSI (P 5 .01 and

.18, respectively) in patients who achieved CR/CRi compared with
nonresponders (Figure 1A-B). Also, pretreatment bone marrow PSI
of CD41 (P , .001) but not CD81 (P 5 .14) subsets demon-
strated a significant positive association with OS across all patients,
likely partly driven by response enrichment, suggesting that the
degree of polyfunctional state of CD41 cells may potentially also
predict outcomes in patients with AML treated with azacitidine/nivo-
lumab (Figure 1C). Further evaluation of the PSI composition across
cell types revealed that interferon-gamma (IFN-g) and tumor necro-
sis factor-alpha (TNF-a) were the major drivers of enhanced PSI of
pretherapy CD41 subset, whereas Granzyme B, IFN-g, MIP-1b, and
TNF-a drove the nonsignificantly enhanced pretreatment PSI of
CD81 subset in the responders (Figure 1D). Although we do not
have further subtyping of CD41 cells, the increased IFN-g and TNF-
a pattern is generally distinctive for the CD41 TH1 functional
state.13

Although checkpoint blockade-based responses in solid tumors are
generally thought to be driven by CD81 cells, recent studies sug-
gest that CD41 cells are critical in initiating and sustaining an immu-
notherapy response.14,15 Further, CD41 cells can independently
recognize mutant neoepitopes,16 tumor infiltrating TH1-like CD41 T
cells can acquire antitumor cytotoxic activity,17 and CD41 rather
than CD81 T cells are critical for inducing responses to neoantigen
vaccination in melanoma.18 Collectively, these studies support a sig-
nificant role for CD41 in induction of antitumor immunotherapy-
based responses, which is consistent with our findings in AML.

We next applied 3-dimensional t-distributed stochastic neighbor
embedding19-21 to visualize high-dimensional data in low-
dimensional space to stratify functional cell clustering with distinct
cytokine secretion patterns between patient groups (Figure 2A).
Our findings revealed that CD41 and CD81 cells from responders
and nonresponders had distinct clustering patterns (Figure 2A, left).
However, responders demonstrated a more prominent increase in
polyfunctional cell subsets with antitumor-associated proteins in
CD41 and CD81 subsets (purple circles), compared with nonres-
ponders (Figure 2A, middle and left). When clustered by degree of
polyfunctionality, highly polyfunctional groups clustered together in
both CD41 and CD81 T cells (Figure 2A, middle). Of note, the

Figure 1. (continued) cell multidimensional data into a single index, defined as the percentage of polyfunctional cells, multiplied by the sum of the mean fluorescence inten-

sity of the proteins secreted by those cells.7–10,19,21,22 The displayed index is color-coded to show the contribution from different categories of cytokines (eg, effector, stimu-

latory, chemoattractive, regulatory cytokines). (A) Polyfunctional CD41 subset can significantly distinguish responding patients to the therapy from nonresponding patients

compared with CD81 subset. (B) PSI of CD41 subset can significantly segregate responding patients to the therapy from nonresponding patients compared with CD81

subset, with greater increases of antitumor-associated protein secretions in both CD41 and CD81 subsets from responders relative to nonresponders. (C) PSI of CD41

subset shows a significant positive association with OS (overall survival in months) compared with CD81 PSI, suggesting the impact of polyfunctional bone marrow CD41

T-cell subsets on predicting AML patient responses to anti–PD-1 therapy. (D) The PSI composition further uncovers IFN-g and TNF-a are the major drivers for enhanced PSI

of CD41 subset dissecting the response differences to the therapy between responding and nonresponding patients, whereas Granzyme B, IFN-g, MIP-1b, and TNF-a seem

to mainly drive enhanced PSI of CD81 subset in the responders. PSI profiles were broken down per cytokine, between response groups, to reveal the specific proteins driv-

ing the PSI. The statistical P values were computed using Mann-Whitney U test or Pearson's correlations.
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most dominant functional group across CD41 and CD81 cells was
the effector protein pattern, which was more notable in the pretreat-
ment bone marrows of responders compared with nonresponders
(Figure 2A, left and right) and also corresponded to the highly poly-
functional group. These findings suggest that an effector functional

phenotype is the predominant CD41 and CD81 T-cell phenotype in
pretreatment bone marrows of patients with AML who responded to
azacitidine/nivolumab. In addition, we used a functional heatmap to
compare the frequency of various expressed monofunctional and
polyfunctional groups.7,19,21,22 Compared with nonresponders,
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Figure 2. Three-dimensional t-distributed stochastic neighbor embedding (t-SNE) and heatmap visualizations reveal distinct cell clusters with cytokine

signatures in pretreatment bone marrow CD41 and CD81 cell subsets between nonresponding and responding patients to the anti–PD-1–based therapy.

(A) Three-dimensional t-SNE functional graphs plot single cells by differentiating them based on their greatest cytokine-based functional differences. The responders show

more prominent increases of polyfunctional cell subsets with antitumor-associated protein secretions in CD41 and CD81 subsets than nonresponders (highlighted in purple

circles). Donor group cell mapping stratifies data points from samples by responders (orange) and nonresponders (blue). Polyfunctionality cell mapping visualizes the data

points based on the degree of polyfunctionality from the sample, with the darker the orange, the higher number of unique cytokines secreted per single cell. Dominant func-

tional group mapping displays a color-coded visualization of data points based on the dominant cytokine profile being secreted, revealing biological drivers. (B) Functional

heatmap compares the frequency at which various monofunctional and polyfunctional groups are secreted by the samples. The heatmap reveals the greater upregulation of

polyfunctional subpopulations with unique cytokine signatures in both CD41 and CD81 subsets from responding patients compared with nonresponders (highlighted in

green rectangles).

4572 ABBAS et al 23 NOVEMBER 2021 • VOLUME 5, NUMBER 22



the pretherapy CD41 T cells of responders had more distinct and
unique polyfunctional groups (green rectangles) such as coex-
pression of TNF-a/IFN-g/interleukin-8, TNF-a/IFN-g/Granzyme B
or TNF-a/IFN-g/Perforin/interleukin-8 proteins (Figure 2B). How-
ever, CD81 T cells did not show such distinct patterns between
responders and nonresponders. These observations are consis-
tent with the pretherapy PSI patterns noted in CD41 T cells but
not CD81 T cells of responders, further highlighting the associa-
tion of bone marrow polyfunctional CD41 subset with response
to azacitidine/nivolumab therapy.

The single-cell multiplexed functional proteomics precision profiling
demonstrated that the pretreatment PSI of CD41 cells was signifi-
cantly associated with response and OS in relapsed patients
treated with azacitidine/nivolumab and should be evaluated prospec-
tively to ascertain whether this could be an effective biomarker to
select AML patients for PD-1–based therapies. Pretreatment PSI
should be evaluated in association with treatment outcomes with
CTLA4, PD-L1, TIM3, and other T-cell based strategies in clinical tri-
als in AML and may have a potential role as a biomarker in the wider
sphere of immunotherapy in AML. Such analyses are warranted and
encouraged.
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