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Abstract: Arthrospira platensis (AP) is a cyanobacterium with a high economic value and is nowadays
one of the most important industrially cultivated microalgae. Knowledge of its growth is essential
for the understanding of its physiology and yield. The growth of AP biomass occurs through two
mechanisms: (1) propagation by fragmentation of trichomes, and (2) the trichomes are extended by
binary fission until they reach their mature status. These phases are visualized by live cell light and
laser scanning microscopy, demonstrating the different phases of AP growth.
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1. Introduction

Arthrospira platensis (AP) is a species of cyanobacterial phylum. Cyanobacteria typi-
cally carry out oxygenic photosynthesis with water as an electron donor and use carbon
dioxide as a carbon source. This cyanobacterium (often called blue-green alga) grows as
filamentous, helicoidal trichomes, performs oxygenic photosynthesis and reproduces by
binary fission [1]. AP has a long history of use as food and gained considerable popularity
in the human health food industry due to its therapeutic properties, including antioxidant,
anti-inflammatory, immune-modulatory and anticancer activities [2–4]. In many countries
of Asia, it is used as a protein supplement, as human health food and as feed for poultry
and aquaculture. Nowadays, the successful commercial exploitation of AP due to its high
nutritional value, chemical composition and the safety of the biomass has made it one of
the most important industrially cultivated microalgae [5].

Knowledge of its physiology is essential for understanding its growth status. The
main factors for the growth of AP are light and CO2 or HCO3¯, respectively [6–8]. The
life cycle of AP (see Figure 1) was first described by Ciferri [9]. Here, we investigated the
morphology of AP (strain: SAG21.99, Göttingen, Germany) during growth in a bioreactor
from the 1st day up to the 7th day via different live cell imaging techniques.
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Figure 1. Life cycle of Arthrospira platensis (modified according to [9]). The asterisk (*) indicates necridia. 

2. Materials and Methods 
AP used for cultivation was obtained from the “The Culture Collection of Algae at 

Goettingen University” (strain: SAG21.99). AP were cultured in a flat-type (2 cm) vertical 
transparent bioreactor consisting of a flexible polyethylene (PE, food safe grade) sleeve 
with a 1.0 L working volume. The PE sleeve was pressed between two adaptable polyme-
thyl-methacrylate plates (see the green reactor in Figure 2). For the experiments, Zarrouk 
medium was used [10]. The growth medium was initially sterilized at 121 °C in a HV-50 
autoclave (SYSMEX VX-95, Sysmex, Norderstedt, Germany) for 15 min. The bioreactor 
was inoculated with AP cells (0.19 g/L) from a light-limited—because of the shading of 
the high cell density—back-up bioreactor in which the AP had already reached the sta-
tionary growth phase. At this stage of development, AP cells were transferred into a bio-
reactor filled with Zarrouk medium, aerated with air supplemented with 2% CO2 and il-
luminated with a blue-red LED lamp (AP673L, Valoya, Helsinki, Finland) set to 250 
µmol/(m2 * s) at the bioreactor surface for up to seven days. Stirring of the culture suspen-
sion was carried out using six tubes so that sufficient mixing of the culture medium was 
achieved. Air was pumped through a membrane filter (Millipore; 0.45 µm pore size, 10 
cm diameter) and moistened by passaging it through distilled water, with a flow rate of 
200 L/h, respectively. Aeration was adjusted using area flow meters. The appropriate air 
volume flow was measured in pretests so that the pH value of the growth medium was 
maintained between pH 9 and pH 10.0 for the duration of the experiment. The filling level 
was kept constant to compensate for evaporation losses. The temperature in the bioreactor 
was maintained at 25 °C. Light intensity was measured using a LI-250 light meter with a 
LI-190SA pyranometer sensor (LI-COR, Inc., Lincoln, NE, USA). The optical density (Ther-
mofisher, Genesys 100 Bio, Waltham, MA, USA), temperature (PT1000, Wernberg, Ger-
many), pH values (EGA 133, Sensortechnik Meinsberg, Meinsberg, Germany) and oxygen 
concentration (FDA120, Hamilton, Bonaduz, Switzerland) of the culture medium were 
monitored during the cultivation time continuously. A sketch of the bioreactor is shown 
in Figure 2 (for details, see [11]). 

Figure 1. Life cycle of Arthrospira platensis (modified according to [9]). The asterisk (*) indicates necridia.

2. Materials and Methods

AP used for cultivation was obtained from the “The Culture Collection of Algae
at Goettingen University” (strain: SAG21.99). AP were cultured in a flat-type (2 cm)
vertical transparent bioreactor consisting of a flexible polyethylene (PE, food safe grade)
sleeve with a 1.0 L working volume. The PE sleeve was pressed between two adaptable
polymethyl-methacrylate plates (see the green reactor in Figure 2). For the experiments,
Zarrouk medium was used [10]. The growth medium was initially sterilized at 121 ◦C
in a HV-50 autoclave (SYSMEX VX-95, Sysmex, Norderstedt, Germany) for 15 min. The
bioreactor was inoculated with AP cells (0.19 g/L) from a light-limited—because of the
shading of the high cell density—back-up bioreactor in which the AP had already reached
the stationary growth phase. At this stage of development, AP cells were transferred into
a bioreactor filled with Zarrouk medium, aerated with air supplemented with 2% CO2
and illuminated with a blue-red LED lamp (AP673L, Valoya, Helsinki, Finland) set to
250 µmol/(m2 * s) at the bioreactor surface for up to seven days. Stirring of the culture
suspension was carried out using six tubes so that sufficient mixing of the culture medium
was achieved. Air was pumped through a membrane filter (Millipore; 0.45 µm pore size,
10 cm diameter) and moistened by passaging it through distilled water, with a flow rate of
200 L/h, respectively. Aeration was adjusted using area flow meters. The appropriate air
volume flow was measured in pretests so that the pH value of the growth medium was
maintained between pH 9 and pH 10.0 for the duration of the experiment. The filling level
was kept constant to compensate for evaporation losses. The temperature in the bioreactor
was maintained at 25 ◦C. Light intensity was measured using a LI-250 light meter with
a LI-190SA pyranometer sensor (LI-COR, Inc., Lincoln, NE, USA). The optical density
(Thermofisher, Genesys 100 Bio, Waltham, MA, USA), temperature (PT1000, Wernberg,
Germany), pH values (EGA 133, Sensortechnik Meinsberg, Meinsberg, Germany) and
oxygen concentration (FDA120, Hamilton, Bonaduz, Switzerland) of the culture medium
were monitored during the cultivation time continuously. A sketch of the bioreactor is
shown in Figure 2 (for details, see [11]).
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Figure 2. Sketch of the bioreactor for the production of Arthrospira platensis (adapted from [11]). 

On each experimental day, samples were taken from the bioreactor and were exam-
ined via bright field and phase contrast microscopy (Axio Scope, Zeiss Microimaging 
GmbH, Jena, Germany; BZ-X810, Keyence, Japan). Samples were further studied by laser 
scanning microscopy (Axio Observer.Z1/7, Zeiss Microimaging GmbH, Jena Germany). 
Geometry measurements of the trichomes were carried out with ImageJ (National Institute of 
Health, Bethesda, MD, USA) [12]. Figure 3 shows the growth curve of AP over seven days. 
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Figure 3. Growth curve for Arthrospira platensis in the described bioreactor over seven days. For each 
time point, three individual measurements of the optical density (at 760 nm) of the cell solution are 
given as staggered black point symbols. The dashed lines indicate a linear trend between the mean 
values at each time point. The gray vertical bars indicate the measurement time points. 

  

Figure 2. Sketch of the bioreactor for the production of Arthrospira platensis (adapted from [11]).

On each experimental day, samples were taken from the bioreactor and were examined
via bright field and phase contrast microscopy (Axio Scope, Zeiss Microimaging GmbH,
Jena, Germany; BZ-X810, Keyence, Japan). Samples were further studied by laser scanning
microscopy (Axio Observer.Z1/7, Zeiss Microimaging GmbH, Jena Germany). Geometry
measurements of the trichomes were carried out with ImageJ (National Institute of Health,
Bethesda, MD, USA) [12]. Figure 3 shows the growth curve of AP over seven days.
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Figure 3. Growth curve for Arthrospira platensis in the described bioreactor over seven days. For each
time point, three individual measurements of the optical density (at 760 nm) of the cell solution are
given as staggered black point symbols. The dashed lines indicate a linear trend between the mean
values at each time point. The gray vertical bars indicate the measurement time points.
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3. Results and Discussion

A flat panel-type bioreactor with a depth of 2 cm (minimizing the cell-induced shading)
was used to avoid self-shading and to achieve many hormogonia. To avoid phototoxicity,
sufficient nutrient concentrations are needed. This was attained by full Zarrouk medium
and an additional 2% CO2 in the aerating gas flow. The high aeration rate of 200 L/h
guaranteed a homogeneous culture and light availability.

Those light-limited AP were mature (see 1. in Figure 1) and started to divide as soon
as the light intensity increased. Basically, the growth of AP biomass occurs through two
mechanisms: (1) propagation occurs by fragmentation of trichomes, and (2) the trichomes
are extended by binary fission [13,14] until they reach their mature status.

Figure 4 shows the development of AP over the cultivation period. At the first day
after the formation of necridia, only very few short trichome fragments of AP cells (see
the arrow in the figure for day 1) were found. Necridia are specialized cells within the
filament formed during the propagation of AP, which is accompanied by cell lysis and
the formation of debris (see Figures 5A–H and 6A–E). Due to the fragmentation of the
trichome at the necridia, short chains of cells (of up to 10 cells), the hormogonia, originate
(see red arrows in Figures 4 and 5I–K). These cell aggregates move away from the parental
filament and give rise to a new trichome. The cells in the hormogonium lose the attached
portions of the necridia with a substantial cell debris formation (see Figure 5A–H). Laser
scanning microscopy revealed (Figure 6E) that the former cytoplasmatic content retained
its fluorescence properties in the extracellular space. However, visualization was possible
only when the sample exhibited a substantially stronger laser excitation, compared to the
other images (compare Figure 6B–E).
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Figure 4. Representative overview images of the morphological characteristics of Arthrospira platensis (strain: SAG21.99)
during the seven days’ cultivation. Red arrows indicate short trichome fragments of Arthrospira platensis. Bright field
microscopy, Axio Scope, Zeiss Microimaging GmbH.
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Figure 5. Representative images of light-induced necridia formation (A,B: intermediate cells, C: terminal cell), (D–H) frag-
mentation and (I–K) hormogonia/trichomes in light-limited AP (strain: SAG21.99). (G–H) Simultaneous multiple frag-
mentation of AP at very high illumination (2000 µmol/(m2 * s)) and sufficient HCO3¯. (A–F,I–K) Bright field microscopy, 
BZ-X810, Keyence, Japan, (H) phase contrast microscopy, Axio Scope, Zeiss Microimaging GmbH, Germany. 

Figure 5. Representative images of light-induced necridia formation (A,B: intermediate cells, C: terminal cell), (D–H)
fragmentation and (I–K) hormogonia/trichomes in light-limited AP (strain: SAG21.99). (G–H) Simultaneous multiple
fragmentation of AP at very high illumination (2000 µmol/(m2 * s)) and sufficient HCO3¯. (A–F,I–K) Bright field microscopy,
BZ-X810, Keyence, Japan, (H) phase contrast microscopy, Axio Scope, Zeiss Microimaging GmbH, Germany.
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Figure 6. Representative images of the fragmentation and release of the cytoplasm content into the extra cellular space. 
(A) bright field microscopy at a 40-fold primary magnification (BZ-X810, Keyence, Japan). (B–E) Label-free laser scanning 
microscopy of unfixed AP cells. Samples were exited at a 555 nm wavelength. Emissions were detected between 650 nm 
and 700 nm. (B) represents a transmitted mode image. (C,D) show images from different z-levels of the same x-y position. (E) 
shows an image with enhanced fluorescence intensities to show the fluorescence properties of the former cytoplasmatic content. 
Scale bar represents 10 µm. Images were taken with an Axio Observer.Z1/7, Zeiss Microimaging GmbH, Germany. 
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brane or the sheath, which can lead to the breakage of the spiral structure. It seems con-
ceivable that the conditions applied in this study might induce similar processes, leading 
to the formation of necridia and the release of the intracellular content. However, shear 
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after seven days, the cells almost reached the diameters of those from the initial back-up 
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Figure 6. Representative images of the fragmentation and release of the cytoplasm content into the extra cellular space.
(A) bright field microscopy at a 40-fold primary magnification (BZ-X810, Keyence, Japan). (B–E) Label-free laser scanning
microscopy of unfixed AP cells. Samples were exited at a 555 nm wavelength. Emissions were detected between 650 nm
and 700 nm. (B) represents a transmitted mode image. (C,D) show images from different z-levels of the same x-y position.
(E) shows an image with enhanced fluorescence intensities to show the fluorescence properties of the former cytoplasmatic
content. Scale bar represents 10 µm. Images were taken with an Axio Observer.Z1/7, Zeiss Microimaging GmbH, Germany.

The number of hormogonia increased significantly up to day 3 (see red arrows in
Figure 4). At the same time, the divided cells started to grow immediately due to the
abundant light and HCO3¯ availability, the main factors inducing AP to grow [15]. During
this process, the trichomes increased in length and reached the typical helicoidal shape.
This trichome elongation occurs through multiple intercalary cell division by binary fission
at right angles to the long axis of the trichome [16].

Simultaneous multiple fragmentations of trichomes were observed only when AP
from the stationary growth phase were illuminated with a high photon flux density and
sufficient HCO3¯. Such an event is shown in Figure 5G,H. Under such conditions, necridia
are formed and the highest growth rates occur. Ma et al. have confirmed earlier studies
showing that upon exposure of AP to photosynthetic active radiation (e.g., solar, ultra-
violet), reactive oxygen species are generated [17]. These can oxidize lipids of the cell
membrane or the sheath, which can lead to the breakage of the spiral structure. It seems
conceivable that the conditions applied in this study might induce similar processes, lead-
ing to the formation of necridia and the release of the intracellular content. However, shear
stresses or cell-cell contact processes have also been discussed as reasons for AP breakage
in bioreactors and should be considered as well.

After seven days, the trichomes had lengths between 100 µm and 500 µm (only very
few short spin-offs were still visible at that time) with an outer helix diameter between
20 µm and 60 µm. This corresponds well with former data by Ciferri for AP [9]. However,
it is worth noting that the helix geometry of AP strains can be influenced by certain environ-
mental variables such as light, temperature, pH, salinity and nutrient availability [18–20],
so that different morphologies can also result.

The AP diameters decreased from 7.5 ± 2.9 µm on day 1, to 6.5 ± 1.7 µm on day 2, to
5.75 ± 1.46 µm on day 3, to 5.25 ± 1.26 µm on day 6, and to 6.75 ± 1.7 µm on day 7. Thus,
after seven days, the cells almost reached the diameters of those from the initial back-up
bioreactor culture.
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4. Conclusions

Live cell microscopical observations over the cultivation time demonstrated the
growth process of AP in a bioreactor setup. The division of mature spirals is a physi-
ological reaction—not a pathological sign—as soon as they are exposed to a high photon
flux density and sufficient nutrients. Beyond the classically applied bright field and phase
contrast light microscopy, high-resolution laser scanning microscopy can also be utilized
for studying nonfixed AP samples. The image-based techniques can be used for funda-
mental scientific studies. But also—in addition to recording the optical density—to find
the adequate time for harvesting large mature AP spirals with size-adapted meshes and to
lead back the filtrate—small cell aggregates or single cells—to the next growth cycle.
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