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Abstract

Histoplasma capsulatum is a common cause of fungal infection in certain geographic areas, and
although most infections are asymptomatic, it is capable of causing histoplasmosis, a disseminated,
life-threatening disease, especially in immunocompromised individuals. A deeper understanding of
this host-pathogen interaction is needed to develop novel therapeutic strategies to counter lethal
infection. Although several lines of evidence suggest that this fungus is neurotropic in HIV patients,
little is known about the immunobiology of Histoplasma infection in the central nervous system
[CNS]. The goal of the present study was to understand the innate neuroimmune mechanisms that
recognize H. capsulatum during the initial stages of infection. Using a 293T stable cell line expressing
murine Toll-like receptor 2 [TLR2], we show here that TLR2 recognizes H. capsulatum cell wall
protein Yps3p and induces the activation of NF-kB. In further experiments, we tested the ability of
Yps3p to induce signaling from TLR2 in primary microglial cells, the resident brain macrophages of
the CNS. Our data show that H. capsulatum Yps3p induced TLR2 signaling in wild-type microglia,
but not in microglia isolated from TLR2 KO mice, confirming that Yps3p is a ligand for TLR2.
Furthermore, Yps3p-induced TLR2 signaling was suppressed by vaccinia virus-encoded TLR
inhibitors. This is the first demonstration of a fungal protein serving as a TLR ligand and mediating
signaling in primary brain cells.

Background

Inhalation of the human pathogenic fungus Histoplasma
capsulatum may result in histoplasmosis, an important
emerging infectious disease that occurs in immunocom-
promised individuals and transplant patients [1]. Among
the known varieties of this opportunistic fungus, H. capsu-
latum var capsulatum [referred hereafter as H. capsulatum]|
is present mostly in North and Central America, whereas

H. capsulatum var. duboisii is endemic in Africa (reviewed
in [2]). Histoplasmosis has also been reported to occur in
the central nervous system [CNS] [1,3-5]. Current treat-
ments for CNS histoplasmosis with amphotericin B com-
bined with one of two commonly used azoles,
fluoconazole and itraconazole, have not been encourag-
ing [2,6-8] although successful outcomes have been
reported [7,9,10]. In some instances, histoplasmosis may
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manifest either as myelopathy or as brain tumor further
complicating the diagnosis [11,12]. Treatment with fluco-
nazole in the mouse model of intracranial infection has
been proved to be ineffective [6]. Therefore, extensive
efforts are being made to develop novel diagnostic tools
and anti-fungal therapies to diagnose histoplasmosis and
to curtail its progression.

H. capsulatum is a dimorphic fungus that exists as myc-
elium at 25°C and as yeast at 37°C [13]. Conversion of
mycelium to the yeast phase has been demonstrated to be
critical for pathogenicity of the fungus as agents that
inhibit the dimorphic transition, such as p-chloromercu-
riphenylsulfonic acid, render virulent H. capsulatum
strains avirulent [14]. Macrophages provide a protected
environment for H. capsulatum to multiply and dissemi-
nate from the lungs to other organs. Initial studies with
murine macrophages demonstrated that H. capsulatum
could survive in the harsh conditions of phagolysosomal
compartments [15] and modulate the pH of its intracellu-
lar niche [16]. This fungus was later shown to survive in
'modified' lysosomes in human macrophages, as well in
the RAW264.7 cell line [17].

Toll-like receptors [TLRs] are a class of pathogen-recogni-
tion receptors that recognize specific molecular patterns
[PAMPs] on the surface of invading pathogens and gener-
ate innate immune responses to counter infection [18].
Microglia have been shown to express mRNAs for all
known TLRs [19], and recent reports demonstrate that
TLR2 on microglial cells recognizes a number of PAMPs
and triggers immune responses [20-22]. A critical role for
TLRs in recognizing and triggering innate immune
responses against several opportunistic fungal pathogens
such as Candida albicans, Aspergillus fumigatus, and Crypto-
coccus neoformans have been reported [23-32]. In contrast
to these organisms, little is known about the involvement
of TLRs in host responses to dimorphic fungi such as H.
capsulatum, Coccidiodes immitis, Blastomyces dermatitidis
and Paracoccoidioides brasiliensis. To date, fungal cell wall
and capsule components such as phospholipomannan
and zymosan were reported to be ligands for a number of
cellular receptors, including the TLRs, but specific fungal
proteins that could induce signaling from these receptors
have not yet been identified.

Several H. capsulatum genes have been found to be differ-
entially expressed during phase transition, and one such
gene YPS3 is induced within 2 h following the 25°C-to-
37°C temperature shift [13]. This yeast-phase-specific
gene encodes the Yps3p protein that is localized to its cell
wall and is also expressed as a secretory protein in infected
cells [33,34]. It has been proposed that Yps3p may have a
regulatory role in fungal transition and may correlate with
pathogenicity [13]. Murine T cells recognize components
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from cell wall and cell membrane extracts of H. capsulatum
[35], suggesting that fungal wall components are recog-
nized by immune cells. In this study, we show for the first
time that H. capsulatum cell membrane protein Yps3p trig-
gers TLR2 signaling and leads to the activation of NF-xB in
primary microglial cells.

Methods

Organism and culture conditions

H. capsulatum G217B [ATCC 26032] is a North American
isolate of RFLP class 2 which was termed 'high level' in
thermotolerance and pathogenicity. The fungus was
grown in Histoplasma-macrophage medium (HMM) broth
[36] in a 5% CO,-95% air atmosphere. Experiments were
performed with H. capsulatum grown as yeast cells at
37°C.

Cloning, expression, and purification of recombinant
fungal proteins

Recombinant Yps3p and H proteins was prepared as
described previously [33,37]. For the preparation of crude
cell extract, fractionation was done as follows: log-phase
yeast cells were pelleted by centrifugation, washed, and
resuspended in PBS. They were then disrupted using glass
beads in a Mini-Beadbeater-8 (Biospec Products, Bartles-
ville, OK) at highest setting for three 1 min periods, sepa-
rated by chilling on ice for 1 min. Beads were removed by
low-speed centrifugation and the cell lysate was spun at
15K RPM in a microcentrifuge at 4 C for 30 min. The
supernatant was removed as the cytoplasmic fraction. The
pellet was resuspended in PBS as the cell wall/membrane
fraction.

Preparation of microglial cultures

Microglial cell cultures were purified from wild-type
C57BL/6 and TLR2 KO mice (Jackson Laboratories, Bar
Harbor, ME) using a method described previously with
minor modifications [38]. Briefly, cerebral cortical cells
from 1-d-old mice were dissociated after a 30 min
trypsinization [0.25%] and plated in 75-cm? Falcon cul-
ture flask in DMEM (Sigma-Aldrich, St. Louis, MO) con-
taining 10% heat-inactivated FBS (Hyclone Laboratories,
Logan, UT)and penicillin/streptomycin (Sigma-Aldrich).
The medium was replenished 1 and 4 d after plating. On
d 8 of culture, flasks were shaken for 20 min at a speed of
180 rpm in an orbital shaker to remove unattached cells.
On d 12 of culture, microglia floating in the media were
collected by aspiration, pooled, centrifuged and seeded at
appropriate densities after counting. The cells were
washed twice with fresh medium 1 h after seeding to
remove non-adherent cells. Microglia prepared this way
stain 95-98% positive with Mac-1 antibody (Roche
Applied Science, Indianapolis, IN).
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Cloning of VV TLR inhibitors

DNA obtained from the VV Western Reserve strain was
used to clone four viral gene products: A46R, A52R, N1L
and K1L using PCR. Primers used for amplification were:
A46R: Forward: 5'-CAT GCC ATG GCG TIT GAT ATC
AGT-3" and Reverse: 5'-CAT GCC ATG GAT GGC GTT TGA
TAT-3'; A52R: Forward: 5'-CAT GCC ATG GAC ATA AAG
ATA GAT-3' and Reverse: 5'-GTG GAA ATG TCA TAG GCT
AGC TAG-3'; N1L: Forward: 5'-CAG GTC ATG AGG ACT
CTA CTT ATT-3' and Reverse: 5'-CTA GCT AGC TTA TTT
TTC ACC ATA-3'; K1L: Forward: 5'-CAG GAT ATC ATG
GAT CTG TCA CGA-3' and Reverse: 5'-CTA GCT AGC TTA
GITTTT CTT TAC AC-3'. PCR was performed on a Gradi-
ent 40 Robocycler (Stratagene, La Jolla, CA) using Pfu
polymerase (Stratagene) with the following conditions:
initial denaturation at 95°C for 2 min 30 sec, followed by
30 cycles of 95°C for 1 min, annealing at 60°C for 1 min
and elongation at 72°C for 3 min. Following PCR ampli-
fication, viral gene products were purified using a 0.8%
agarose gel and were cloned into pORF5-mIL10 (Invivo-
Gen) by replacing the mIL-10 ORF with each VV ORF as
described previously [39]. This vector carries the murine
IL-10 ORF under the control of a composite binary pro-
moter comprised of the elongation factor 1a (EF-1a) and
the 5' untranslated region of the human eukaryotic initia-
tion factor 4 g (elF-4 g). The expression vectors thus gen-
erated were termed pORF5-A46R, pORF5-A52R, pORF5-
N1L and pORF5-K1L. Expression of these viral proteins
was confirmed using Western blot analysis [39].

Luciferase assay

HEK293T cells, as well as wild-type and TLR2 KO micro-
glia, were transfected with 1 pg pNiFty2-Luc plasmid
(InvivoGen) expressing an NF-«kB-driven firefly luciferase
reporter gene. FuGene 6 was used for transfection of the
293T-mTLR2 cells. Primary microglia are post-mitotic
cells which are extremely difficult to transfect using stand-
ard methods. In this study, they were successfully trans-
fected using the mouse macrophage nucleofection kit
(Amaxa Biosystems, Gaithersburg, MD) and the program
Y-01 on the nucleofector I device (Amaxa). Although the
transfection efficiency using nucleofection was still low
(<10%), luciferase expression occured only in cells that
took up the pNiFty2-Luc plasmid. Following nucleofec-
tion, the cells were plated in 12-well plates and incubated
overnight at 37°C. To stimulate TLR2 signaling, 0.01%
heat-killed L. monocytogenes (InvivoGen) was added to the
culture medium for 5 h. The cells were then lysed and luci-
ferase activity was measured using Bright-Glo luciferase
assay substrate (Promega, Madison, WI) on the IVIS®
Imaging System (Xenogen Corporation, Alameda, CA).
Expression levels of the luciferase reported gene were
quantified using Living Image® software (Xenogen). Tran-
fection efficiencies were tested using a control plasmid
expressing green fluorescent protein under the control of
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CMYV IE promoter and the values were normalized to the
transfection efficiencies obtained.

ELISA assay

A sandwich ELISA-based system was used to quantify
CCL2 levels from WT and TLR2 KO murine microglial cell
culture supernatants. ELISA plates were coated with rat-
anti-mouse CCL2 capture antibodies (R&D Systems, Min-
neapolis, MN) at 1-2 pg/ml overnight at 4°C. The plates
were washed (0.05% Tween-20 in phosphate-buffered
saline, PBS) and blocked with 1% BSA in PBS for 1 h at
37°C. Detection antibodies (biotinylated goat anti-
mouse CCL2 antibodies, 1-2 pg/ml; R&D Systems) were
added for 90 min at room temperature followed by perox-
idase conjugated strepavidin (1:3000; Jackson Immunore-
search) for 45 min. A chromogenic substrate (K-blue;
Neogen Corporation, Lexington, KY) was then added and
color development was stopped with 1 M H,SO,. Absorb-
ance values at 450 nm were used to quantify chemokine
levels based on the standard concentration curve gener-
ated from serial dilutions.

Results

Histoplasma capsulatum protein Yps3p is a ligand for
Toll-like receptor 2

TLRs recognize PAMPs on the surface of pathogens and
activate the host's innate immune responses. A number of
fungal cell wall components such as mannan, phosphol-
ipomannan, and zymosan have previously been shown to
be recognized by TLR2 and TLR4 [18,19,29,40]. In order
to determine which component of the H. capsulatum cell
wall/membrane activated the TLR2 signaling pathway, we
have used a stable cell line that expresses murine TLR2
under the control of a composite promoter comprised of
the eukaryotic elongation factor-l1a (EF-1a) core pro-
moter and the R segment, as well as part of the U5
sequence, of the human T-cell leukemia virus type 1 long
terminal repeat [39]. These 293T-mTLR2 cells were trans-
fected with the plasmid pNiFty2-Luc, containing the
open-reading frame for luciferase under the regulation of
five NF-xB binding sites. Using this experimental design,
signaling from TLR2 results in the activation of NF-xB
which, in turn, activates luciferase expression. Thus, luci-
ferase expression does not occur in the absence of TLR2
signaling. (Fig. 1).

The fungal cell wall fraction was isolated and used to treat
293-mTLR2 cells. Two other fungal proteins Yps3p and H,
purified following expression in E. coli, were also tested. H
protein serves as a negative control and heat-killed Listeria
monocytogenes, a strong inducer of TLR2 signaling, was
used as a positive control. As shown in Fig. 2, neither the
cell wall fraction (CW) nor the recombinant H protein
activated signaling through TLR2. There was no significant
luciferase production above the background levels in
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Experimental design. Induction of TLR signaling by H. capsula-
tum Yps3p protein leads to the activation of IRAK2 and NF-
kB. NF-kB is then released from its inhibitor IxB and translo-
cates into the nucleus, where it binds to one of five NF-xB
binding sites on the pNiFty2-Luc plasmid, and subsequently
activates transcription to produce luciferase. Vaccinia virus
[VV] protein A46R targets multiple TLR adaptors including
MyD88, and A52R associates with IRAK-1 and TRAF6 to dis-
rupt downstream signaling. VV NIL and KIL proteins pre-
vent the release of NF-xB from IxB. Expression of these
proteins from their corresponding pORF5-VV plasmid leads
to the inhibition of NF-kB activation and decreased luciferase
expression from pNiFty2-Luc.

these samples. On the other hand, the recombinant pro-
tein Yps3p induced TLR2 activation that resulted in a
marked increase in luciferase production, demonstrating
that Yps3p protein is a ligand for TLR2.

Vaccinia virus proteins inhibitors of TLR signaling blunt
Yps3p-induced luciferase expression

To further confirm the role of TLR2 in responding to H.
capsulatum, we next attempted to inhibit this signaling
pathway using four vaccinia virus([VV) proteins. Among
these viral proteins, A46R inhibits signaling from MyD88,
the cytoplasmic adaptor of TLR2 [41], and A52R interacts
with and blocks the activity of two downstream molecules
IRAK2 and TRAF6 along the TLR2 pathway [41,42];
whereas N1L and K1L prevent the release of NF-xB from
its inhibitor IkBoa [43,44] (Fig. 1). ORFs of each of these
VV proteins were cloned into the pORF5 vector under the
control of a composite binary promoter comprised of the
elongation factor 1a (EF-1a) and the eukaryotic initiation
factor 4g (elF-4g). 1 ug of each pORF5-VV plasmid was co-
transfected into 293T-mTLR2 cells together with 1 ug of
pNiFty2-Luc. Following overnight incubation at 37°C,
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Identification of Yps3p as a TLR2 ligand in 293T cells.
pNiFty2-Luc transfected 293T-mTLR2 cells were treated
with H. capsulatum cell wall/membrane fraction [CW],
recombinant Yps3p [Yps3p], and recombinant protein H [H].
Untreated cells were used as a control for background luci-
ferase expression [pNIFty] and heat-killed Listeria monocy-
togenes [HKLM] was added to cells as a positive control for
TLR2 signaling. Data are presented as mean + SD of triplicate
samples and are representative of three independent experi-
ments. Statistical analysis was performed by student's t test.
*P < 0.05; **P < 0.01.

the cells were treated with Yps3p for 6 h, harvested and
the expression levels of luciferase in the transfected cells
were measured using a luciferase assay. The data show that
NF-kB activation was severely impaired in cells expressing
each of these viral proteins when compared to cells
expressing pNiFty2-Luc alone, a result which demon-
strates that all four viral proteins were able to inhibit
Yps3p-induced TLR2 signaling in 293T-mTLR2 cells (Fig.
3). This result not only confirmed Yps3p mediation of
TLR2 signaling but also showed that it can be inhibited at
different levels (at the receptor as well as downstream)
along the TLR2 signaling pathway.

TLR2 is required for Yps3p-induced activation of NF-xB in
primary murine microglia

Having determined that H. capsulatum protein Yps3p
engages TLR2 signaling pathway and causes NF-kB activa-
tion in our 293T-mTLR2 cell line, we went on to deter-
mine whether Yps3p protein also induced NF-kB
activation in primary brain cells. For this experiment,
microglial cells from wild-type C57BL/6 mice as well as
TLR2 KO mice were isolated and transfected with
pNiFty2-Luc plasmid using nucleofection. After overnight
incubation at 37°C, the microglia were exposed to the
recombinant fungal protein for 6 h. The cells were then
harvested and a luciferase assay was performed. In these
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Inhibition of TLR2-mediated, Yps3p-induced NF-kB activa-
tion in 293T-mTLR2 cells by VV proteins. Plasmids carrying
the open-reading frames of A46R, A52R, KIL, or NIL were
co-transfected along with pNiFty2-Luc, cells were incubated
overnight at 37°C and treated with Yps3p for 5 h. Cells were
then harvested and the amount of luciferase produced was
quantified using bright glow substrate. Data are presented as
mean + SD of triplicate samples and are representative of
three independent experiments. Statistical analysis was per-
formed by student's t test. *P < 0.05; **P < 0.01.

experiments, Yps3p-induced TLR2 signaling in wild-type
microglial cells resulted in high levels of luciferase expres-
sion, demonstrating an increased level of NF-xB activa-
tion (Fig. 4). In contrast, a significant reduction in
luciferase expression occurred following the identical
treatment using TLR2 KO microglia. This result further
demonstrates that Yps3p triggered signaling through
TLR2.

To further test the role of Yps3p in triggering TLR2 signal-
ing, we performed an ELISA for the proinflammatory
immune mediator Chemokine (C-C motif) ligand 2
(CCL2) in wild-type and TLR2 KO microglial cells. The
amount to CCL2 secreted into the culture supernatants of
microglial cells was quantified using an ELISA assay.
While there was no difference in the expression of CCL2
between untreated samples, the expression of CCL2 was
elevated in the both wild-type and TLR2 KO microglia fol-
lowing the treatment with Yps3p (Fig. 5). However, the
expression levels obtained for TLR2KO microglia were sig-
nificantly lower than those obtained for wild-type micro-
glia, suggesting that the activation of TLR2 by Yps3p
results in the production of CCL2 in these cells.

Discussion
Airborne invasive fungal pathogens can cause morbidity
and mortality in immunocompromised individuals,
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Figure 4

Activation of NF-xB in primary murine microglia following
treatment with Yps3p. Purified microglial cells [I x 10¢] from
wild-type and TLR2 knockout mice were transiently trans-
fected with pNiFty2-Luc plasmid by electroporation using the
mouse macrophage nucleofector kit. The cells were incu-
bated overnight at 37°C and 1.5 pg Yps3p was added to the
cell culture medium. The microglia were harvested after 5 h
and the amount of luciferase produced as a result of NF-xB
activation was quantified using the bright glow substrate.
Data are presented as mean * SD of triplicate samples and
are representative of three independent experiments. Statis-
tical analysis was performed by student's t test. **P < 0.01.

including those with HIV/AIDS. H. capsulatum is a major
cause of respiratory infections worldwide and is the etio-
logic agent of histoplasmosis. In addition to respiratory
infections, histoplasmosis has been reported to occur in
the brain [1,3-5]. In the present study, we showed that the
interaction of H. capsulatum Yps3p with microglial cells
leads to NF-«B activation via the TLR2 pathway, in both a
stable cell line expressing murine TLR2 as well as in pri-
mary microglia.

Studies aimed at understanding the role of TLRs in fungal
recognition have been controversial. While TLR2 has been
shown to be essential for immune responses in macro-
phages [28], TLR2 KO mice were found to be resistant to
candidiasis. It has been reported that both TLR2 and TLR4
are key cellular receptors that recognize opportunistic fun-
gal pathogens such as C. albicans, A. fumigatus and C. neo-
formans. Phosholipomannan, a unique glycoprotein in
the cell wall of C. albicans, is a ligand of TLR2, and when
mouse macrophages are infected with C. albicans they acti-
vate NF-xB and produce TNF-a. [28,40]. While TLR2 has
been shown to be essential for defense against C. albicans
[38], contrasting results were reported with TLR2 KO mice
being resistant to candidiasis whereas TLR4 KO mice were
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TLR2-mediated expression of CCL2 in response to Yps3p.
ELISA assay was performed with purified microglial cells from
wild-type and TLR2 knockout mice following exposure with
3 pg/ml Yps3p. Data are presented as relative induction of
CCL2 and bars represent the mean + SD of triplicate sam-
ples, which are representative of at least three independent
experiments. Statistical analysis was performed by student's t
test. *P < 0.01.

susceptible [26,27]. Both in vitro experiments using mac-
rophages and transfected cell lines, as well as in vivo exper-
iments with experiments using TLR-deficient mice
infected with A. fumigatus, have suggested a role for TLR2
and TLR4 [23,25,31,45]. Similarly, one study showed that
TLR2 signaling was necessary for host defense against C.
neoformans [24], while another reported limited involve-
ment of TLR2 and TLR4 in response to C. neoformans
infection [32].

Conclusion

In this study, we report for the first time that H. capsulatum
triggers TLR2 signaling leading to NF-kB activation in
microglial cells and that Yps3p protein is an important
fungal component that induces TLR2 signaling. A deeper
understanding of host-pathogen interactions will enable
us to tackle new challenges posed by fungal pathogens
and develop improved therapeutic measures to treat his-
toplasmosis as well as other deadly mycological diseases.
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