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Due to their unique properties, alginate-based biomaterials have been extensively used to
treat different diseases, and in the regeneration of diverse organs. A lot of research has
been done by the different scientific community to develop biofilms for fulfilling the need for
sustainable human health. The aim of this review is to hit upon a hydrogel enhancing the
scope of utilization in biomedical applications. The presence of active sites in alginate
hydrogels can be manipulated for managing various non-communicable diseases by
encapsulating, with the bioactive component as a potential site for chemicals in developing
drugs, or for delivering macromolecule nutrients. Gels are accepted for cell implantation in
tissue regeneration, as they can transfer cells to the intended site. Thus, this review will
accelerate advanced research avenues in tissue engineering and the potential of alginate
biofilms in the healthcare sector.
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INTRODUCTION

Alginate is a natural polymer, an edible hetero-polysaccharide, abundantly available in brown
seaweed (Phaeophyceae) in nature. Natural polymers can be defined as materials that widely occur in
nature, derived from a wide range of sources, extracted from plants, animals, and micro origins.
Natural polymers include proteins and nucleic acid that occur in the human body, cellulose, natural
rubber, silk, and wool. Modified natural polymeric materials have been used in pharmaceuticals,
tissue regeneration scaffolds, drug delivery, and imaging agents (Draget and Taylor, 2011; ter Horst
et al., 2019). They are essential to daily life, which is widely accepted by researchers due to their
versatile applications. Alginate possesses a great potential in biomedical applications for its
biodegradability and biocompatibility. Especially, in wound care, alginates are used as dressings for
acute or chronic wounds and as regeneration templates. Industrially available alginate is typically
extracted from the brown algae by treating with sodium hydroxide (NaOH), then filtered to accelerate the
formation of alginate. The water-soluble sodium alginate is developed through conversion and
purification (Peteiro, 2017). Alginates consist of linear anionic polysaccharide polymer of β-(1-4)-D-
mannuronic (M-blocks) and α-L-guluronic acid (G-blocks) (Figure 1) (Lee andMooney, 2012). In some
cases, radiation can break down alginates into smaller units of molecules (M-blocks and G-blocks), as
degradation produces low molecular weight substances from natural polymers (Figure 2). Alginate
exhibits gelling properties due to the abundance of GM blocks and their interchain interactions.

Alginate has also some special properties: it is non-toxic, biocompatible, biodegradable, bio-
stable, hydrophilic nature, which are deemed as very promising aspects for biomaterials in various
state-of-the-art applications in the clinical field (Lee andMooney, 2012). The unique criteria can also
form adduct with various metal ions through electrostatic, ionic and, covalent interactions. For

Edited by:
Anindya Ghosh,

University of Arkansas at Little Rock,
United States

Reviewed by:
Kenneth S. Hettie,

Stanford University, United States
Pallavi Shrivastava,

Universidad Católica de Santa
María, Peru

*Correspondence:
M. Z. I. Mollah

zahirul.inst@gmail.com
zahirul1973@yahoo.com

Specialty section:
This article was submitted to

Molecular Diagnostics and
Therapeutics,

a section of the journal
Frontiers in Molecular Biosciences

Received: 13 July 2021
Accepted: 07 September 2021

Published: 06 October 2021

Citation:
Mollah MZI, Zahid HM, Mahal Z,
Faruque MRI and Khandaker MU

(2021) The Usages and Potential Uses
of Alginate for Healthcare Applications.

Front. Mol. Biosci. 8:719972.
doi: 10.3389/fmolb.2021.719972

Frontiers in Molecular Biosciences | www.frontiersin.org October 2021 | Volume 8 | Article 7199721

REVIEW
published: 06 October 2021

doi: 10.3389/fmolb.2021.719972

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2021.719972&domain=pdf&date_stamp=2021-10-06
https://www.frontiersin.org/articles/10.3389/fmolb.2021.719972/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.719972/full
http://creativecommons.org/licenses/by/4.0/
mailto:zahirul.inst@gmail.com
mailto:zahirul1973@yahoo.com
https://doi.org/10.3389/fmolb.2021.719972
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2021.719972


instance, the cationic exchanges generate an egg-box model
structure through the interactions of G-blocks of alginate and
electrolytic calcium (Goh et al., 2012). The binding nature to
calcium has been widely used to cross-link as a bulk alginate or
co-polymer in advanced applications of healthcare (Cathell and
Schauer, 2007). Since alginates are promising in the field of tissue
engineering due to their biocompatibility with human tissues,
they are now extensively used in the control and regeneration of
tissues in medical fields (Sun and Tan, 2013). Alginates can be
transformed or converted into biomaterials (such as biofilms,
hydrogels, foams, wafers, and fibers) to sustain a moist
environment to enhance the recovery rate of wound healing.
Additionally, the structure-activity relationships of alginate in
biomaterials have a strong effect on the measured distribution
of different drugs (antibiotic) in wound dressing materials. As a
result, alginate biopolymers are exploited in various types of
biomedical products, including dressing materials for skin
wounds to accelerate healing properties. To establish
sustainable, better quality wound dressing components, in some
cases alginate-based composite materials along with wound-
resistant microbes are to be used.

The focus of polymer scientists is on the progress of high-
performance bio-polymeric materials. New and updated thinking
has led to the demand for the scientific community to build
ecological, bio-inspired, and hybrid materials that work
differently. Since alginates and their derivatives possess a good
water absorption capacity, they can be devoted as low viscosity
emulsifiers, and shear-thinning thickeners in particular
molecular weight distribution. They also hold gels forming
capability due to interactive binding between G-blocks, which

offer a three-dimensional “egg-box model” (Lee and Mooney,
2012; Urtuvia et al., 2017). A cross-linker to alginate, CaCl2 is
frequently used as it has an affinity to form gel, termed as the egg-
box model of cross-linking. Furthermore, CaCl2 salt can be
applied to investigate the gelation of alginate to understand its
gelation properties, morphological characteristics, molecular
interaction and, structural information. Having said that, the
G-enriched sample can form a hard and brittle hydrogel, while
theM-enriched sample creates soft and elastic gels in the presence
of the calcium ions. The protein-based Glucono-δ-lactone (GDL)
is recurrently used by other agents to ionically cross-link alginate.
In cutting-edge technologies, gel preparation is performed
through the direct addition of the gradually hydrolyzing
matrix-like as GDL to the alginate solution. The process of a
sol-gel point is used to observe the power law of dynamic moduli
at the critical gel. Advanced studies on gelling properties have
been performed to understand the structure-function
relationship of alginate blocks (Bjarnsholt, 2011; Larsen et al.,
2015; Urtuvia et al., 2017). Linear polysaccharides (such as
alginate) that possess a high degree of physicochemical
heterogeneity influence their quality and determines potential
applicability. It has a unique formulation, factors responsible for
their viscosity, sol/gel transition, and water uptake ability, and
dissolves in water (Szekalska et al., 2016a). The alginic acid
residues of alginate can be arranged in homogenous (poly-G,
poly-M) or heterogeneous (MG) block-like patterns (Venkata
Prasad et al., 2012). The length of the alginic acid residues, the
ratio of M and G residues, and its properties depend on the
desired functions of the alginate (Vara Prasad et al., 2016). The
M-enriched blocks in alginate are successfully used in the

FIGURE 1 | (A): Chemical structures of alginate, indicating two acid groups, (B): the linkage and bonding of mannuronic and guluronic groups.

Frontiers in Molecular Biosciences | www.frontiersin.org October 2021 | Volume 8 | Article 7199722

Mollah et al. Bio-Material Potentiality: Healthcare Applications

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


treatment of chronic wounds for their cytokine-producing
capability through the human monocytes (Jung Il et al., 2020).

Based on this literature, these reviews aim to describe the
phenomena of irradiated alginate-based biofilms (consisting of
5% CMC � carboxymethylcellulose, 5% PVA � polyvinyl
alcohol) generated using E. coli and S. typhimurium, along with
the application of biofilms in the management of different
conditions like wound healing, bedsores, psoriasis, etc. In this
perspective, the research is to be continued to clarify the
phenomena and the general properties of biofilms. Moreover,
cross-linking will be carried out at the γ-radiation plant in the
Institute of Radiation and Polymer Technology (IRPT), Bangladesh
Atomic Energy Commission. The preparation, characterization,
modification, and degradation properties of the biofilms along
with the microbiological tests were being investigated at the IRPT.

METHODS OF MODIFICATION, THE
ALGINATE-BASED MATERIALS FOR
BIOMEDICAL APPLICATION
Alginate is used as a raw material for preparing the biomaterials
following multiple steps which are discussed below.

Extracellular Film Formation
The formation of biofilm is an intricate multistep system that
secretes a combination of extracellular polymeric substance
(EPS), polysaccharides, proteins and, fatty acids (Fux et al.,
2003; Oppenheimer-Shaanan et al., 2013). Approximately 80%
of EPS in almost all biofilms play a predominant role in
maintaining and developing the biofilm. The EPS is composed
of water channels to serve nutrients and oxygen to protect
bacteria from the host and antibiotics (Lebeaux et al., 2013;
Wei et al., 2015; Chang, 2017). Different proteins (proteases,
nucleases) promote EPS production and the formation of biofilm
in staphylococcal bacteria, binding proteins responsive to glucan
promote EPS growth in streptococcal bacteria, while (Joo and
Otto, 2012; Chao et al., 2014; Büttner et al., 2015; Paharik and
Horswill, 2016) the extracellular DNA is engaged in the
communication from cell to cell in P. aeruginosa,
staphylococcus, and streptococcus at the primary stage of
biofilm formation (Karatan and Watnick, 2009; Grande et al.,
2014). Although the formation of biofilm is almost similar among
bacteria; there could be slight differences between species in rare
cases (Lebeaux et al., 2013; Veerachamy et al., 2014). The process
of biofilm formation (Figures 3, 4) can be categorized into four

FIGURE 2 | Subunits of alginate after irradiation with low and high doses of γ-radiation.
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steps; (i) primary attachment or microorganism enhancing film-
formation, (ii) colony formation, (iii) maturation, and (iv)
dispersion (Sauer et al., 2002; Klausen et al., 2003; Gu et al.,
2013; Speziale and Geoghegan, 2015; Juhlin et al., 2017; Jamal
et al., 2018).

Microorganism Enhancing Biofilm
Formation/Primary Attachment
When the planktonic cells come in contact with a film, the film
adheres to the cells through physical forces or through the pili or
flagella of bacteria (John, 2010; Joo and Otto, 2012; Veerachamy
et al., 2014; Floyd et al., 2017). The attachment marks the initial
interaction between the bacterial cells and film that can be
transient or reversible (in some cases) for weak interactions
(Veerachamy et al., 2014; Büttner et al., 2015; Floyd et al.,
2017). The attachment of biofilms to the surfaces is directed
by various interactions (such as hydrophobic, steric, protein
adhesion, electrostatic), and Van der Waal forces (von Eiff
et al., 2005; Stoica et al., 2017; Khatoon et al., 2018). For
instance, staphylococcal biofilms contain around twenty
adhesive molecules facilitating the first stage of biofilm
formation (initial attachment), and their adhesion to the cell
for maturation (Speziale et al., 2014). Several proteins change the
adherent properties of bacteria to alter the physiochemical
characteristics of bacterial surfaces, e.g., fibronectin, fibrinogen,
and laminin which are responsible for accelerating the adhesion
properties of bacteria to the biomaterials and tissues.

Maturation/Development of the
Biomaterials
During the maturation stage, the cells that adhered to the surfaces
grow and develop by interacting with each other through auto
signals production, resulting in the expression of genes
responsible for the formation of biofilm (Gupta et al., 2016).
At the same time, bacterial cells secrete EPS to stabilize the
biofilm system and to protect themselves from antibacterial

agents. Three polysaccharides; alginate, pellicle (Pel), and
polysaccharide synthesis locus (Psl) are released at this stage
by P. aeruginosa to generate the strength required for the
formation of the biofilm. Meanwhile, at the accumulation and
combination stages, the different layers of cell clusters are formed
on the surface. The conversion of micro-colonies into macro-
colonies also involved EPS where cell to cell signaling and
quorum sensing (QS) are observed (Veerachamy et al., 2014;
Gupta et al., 2016). In general, the maturation stage includes two
steps, namely (i) intercellular communication and the production
of auto-inducer signaling molecules, together with (ii) the
enlargement of the microcolonies. Bacteria can observe the
dimension and position of the adjacent clusters during the
maturation stage to help them generate clusters and facilitate
the binding with the adjacent cells (Gu et al., 2013). The whole
biofilm regulates the expression of genes and proteins, apart from
the individuality of each cell (Drury et al., 2004). In other words,
this stage includes the production of EPS, cell accumulation,
chemical interactions, and QS.

Dispersal
During dispersion, bacteria propagate, move from one region of
the body to another, and spread their infections to the
surroundings. This stage is mainly responsible for chronic
infection and other difficult problems (Veerachamy et al.,
2014). Thus, this stage is also known as metastatic spreading
(von Eiff et al., 2005; Gupta et al., 2016). Due to limited resources
and the accumulation of toxic pollutants, bacteria search for
nutrition to survive and the cells disperse to other regions of the
host’s cells to the stressed environment (Oppenheimer-Shaanan
et al., 2013; Gupta et al., 2016). Small molecules (e.g., cis-11-
methyl-2-dodecenoic acid, DSF) can be encouraged through
dispersal, to stimulate auto-phosphorylation, followed by the
stimulation of c-di-GMP-phospho-diesterase (c � cyclic; di-
GMP � diguanylate monophosphate) and consequently the
degradation of c-di-GMP. The dissolution of EPS is another

FIGURE 3 | A systematic process of biofilm formation.
FIGURE 4 | The simple steps of Alginate biofilms preparation (CMC- and
PVA-based) with the target group and their proposed application in a field of
healthcare.
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important part of the dispersion, whereby the bacteria in the
biofilm produce an enzyme to break the biofilm to stabilize
polysaccharides and release the surface bacteria. Next, the
bacterial cells usually follow two basic options, they either (i)
establish more biofilms, or (ii) do not accumulate at the cell
surface (Veerachamy et al., 2014; Gupta et al., 2016).

Quorum Sensing
Quorum sensing is a specific process of the cell to control gene
expression in a density-dependent manner. In QS, the envelope of
bacterial cells has an important role in intercellular signaling and
communication between neighboring cells to integrate the
decision-making processes (Oppenheimer-Shaanan et al., 2013;
Wei et al., 2015; Gupta et al., 2016). When QS occurs in a precise
volume; there is a much lower number of bacteria that must be
accumulated. Through sensing, the local density can be
determined by the bacterial cells while the signaling molecules
reach an extreme threshold value. However, the growth of
bacteria in the EPS may be largely disrupted (Puiu et al.,
2017). Unlike QS, quorum quenching (QQ) is the process by
which bacterial communication can be disturbed. QQ is known to
disassemble and improve the susceptibility of biofilm to
antibiotics (Brackman et al., 2011).

DISCUSSIONS

Cellulose-Based Materials
To establish their role in healthcare applications, the preparation
of biofilms using alginate with other chemicals, such as 5% CMC
or 5% PVA, is performed, and subsequently encapsulated with
beneficial agents. Alginate is classically utilized as a form of
hydrogel for biomedical purposes for treating a wide variety of
diseases together with wound healing, drug release, and
biotechnology (Table 1). Cross-linked polymeric hydrogels are
biocompatible for their structural similarities to certain
components in the body. Moreover, hydrophilic cross-linking
of polymers has been demonstrated to be obligatory to form
hydrogels, whereby the cross-linking agents are vastly responsible
for their physicochemical properties (Oppenheimer-Shaanan
et al., 2013; Turky et al., 2021). Alginate hydrogels are
prepared and modified using degradable materials at the IRPT
laboratory (Figure 5). In this review, we described multiple
approaches to alginate materials and their potential
applications in the medical field. Table 1 describes the

potential applications of hydrogels in healthcare, such as
CMC, and alginate has a potential application in killing
microorganisms, to be used in various burn and wound
healing treatments within the healthcare sector (49, 50).

Extracellular Film Formation
Free-floating and sessile, are two states of bacteria exhibiting
individual features in biofilm, a wide range of genes liable for
exopolysaccharide film formation and maturation, the rapid
alteration in the expression resulting in the bacteria
attachment on the surface of the biofilms (Bjarnsholt, 2011).
Bacterial colonization subsequently initiates this transformation,
where a protective blockade is consequently produced to protect
the bacteria aligned with the endogenous resistance scheme of the
organism or from exterior agents like antibiotics (Irie et al., 2012;
Bjarnsholt, 2013; Gupta et al., 2016). Bacterial biofilms are a
coherent blend of polymers with positive effects, and may be
associated with a sole or numerous species of bacteria, fungi,
algae, archaea, etc. (Yin et al., 2016). The microbe colony can be
used to form a wide range of surfaces and living tissues,
biomedical devices, drinkable water producing systems for
industry, or stable aquatic systems. Water (97%) comprises a
major portion of biofilms and plays a pivotal role in the flow of
nutrients into a matrix of biofilm (Flemming et al., 2016).
Generally, a greater portion of the whole biofilm (65–95%)

TABLE 1 | Hydrogels derived from modifications to alginate and their applications.

Hydrogels Applications References

Carboxymethylcellulose (CMC), alginate, gatifloxacin Antibacterial (Kesavan, 2010)
Alginate-based nanocellulose Wound-healing biotechnology (Siqueira et al., 2019)
Bioglass/agarose, alginate Chronic Wound-healing (Zeng et al., 2015)
Akermanite, alginate Wound-healing, and bio-engineering (Yan et al., 2017)
Chitosan, alginate, alpha-tocopherol Wound-healing (Ehterami et al., 2019)
CMC incorporated with chitosan, alginate Chronic wounds (Lv et al., 2019)
Polyacrylamide, alginate, cations (Cu2+, Zn2+, Sr2+, Ca2+) Wound-healing (Zhou et al., 2018)
CMC hydrogel, chitosan, cellulose nanocrystal Burn wound-healing (Huang et al., 2018)

FIGURE 5 | Alginate modification incorporated with different
biodegradable materials.
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consists of extracellular polysaccharides, while the remaining
portion comprises microorganisms with polysaccharides and
proteins being the core ingredient of biofilms (Mosharaf et al.,
2018). An example of expolysaccharide generated by bacteria is
alginate, where the co-deposition of bacteria along with alginate
forms an experimentally compliant mold of bacterial biofilm. The
development and remediation of the adverse effects of biofilms
have been broadly discussed by many scholars.

Cross-Linking
The main process in the preparation of hydrogels is the need to
blend the solution which incorporates cross-linking cations
(Ca2+) from the aqueous alginate. The Ca2+ can be dissociated
or released from CaCO3/ alginate blend by adding GDL, which
gradually initiates gelation and biofilm formation. These cations
bind exclusively to G-blockiness as a structure of the G-blocks
which concedes a significant degree of coordination of divalent
ions. The G-blocks of one polymer forms junctions coordinated
with another unit (G-blocks) of adjacent polymeric chains; it is
fascinating in a gelling structure. The short stability in the
physiological situation acts as a limitation of cross-linked
alginate hydrogels. To control the gelling properties the rate of
gelation is an important factor to be considered (Grant et al.,
1973; Kuo and Ma, 2001; Crow and Nelson, 2006).

Cell Cross-Linking
When cells are added to an amino-acid-based solution of
arginine-glycine-aspartate (RGD)-modified alginate from a
distinct dispersion, a cross-linked network structure is
subsequently generated with explicit receptor-ligand
interactions (Lee et al., 2003a). Non-modified alginate solution
with cells aggregates forms an irregular structure. The gelation
characteristic is very unstable, hence frequently manifests
reversible behavior. Whenever the gel structure is broken
down by a shear force, the cross-structure is regenerated
immediately within very few minutes. The breakdown occurs
due to the weak and reversible ligand-receptor inter-action, which
is ideal for cell delivery in biotechnology especially in cell culture
engineering because the gel is required to flow like a fluid in order
to be injected into the body. Moreover, cell technology can offer
further mechanical integrity to RGD-alginate gels by cross-
linking added Ca-ions, randomly generating binding
interaction between the coupling cells and adhesion ligands to
the alginate interchain association (Drury et al., 2005).

Covalent Cross-Linking Process
The physical properties of gels can be improved by
comprehensively assessing their covalent cross-linking in a
wide range of applications through gene engineering. The
mechanical properties of alginate-based hydrogels are first
scrutinized by Covalent cross-linking of alginate with
polyethylene glycol (PEG) (Eiselt et al., 1999). The mechanical
and swelling properties of alginate hydrogels can be firmly
controlled using verities of cross-linking molecules, and by
regulating the cross-linking densities. The degradation rates,
along with mechanical stiffness rather than bi-functional
crosslinking molecules, can be regulated through the use of a

multi-functional crosslinking agent to form hydrogels. Hence,
based on physico-mechanical properties, the reduction
polyaldehydeguluronate (PAG) gels can be oriented with poly
(acrylamide-co-hydrazide)/PAH as a multi-functional cross-
linker or adipic acid dihydrazide/AAD as a bi-functional
cross-linker through in vitro monitoring. It is observed that
PAG/PAH gels possess higher mechanical stiffness before
reduction and degraded more slowly than PAG/AAD gels (Lee
et al., 2004). This approach is intriguing where the photo cross-
linking to gelation exploits cross-linking. By using the
appropriate photo (chemical) initiator, photo cross-linking
may be an exciting approach to gelation that exploits covalent
cross-linking. Although photo cross-linking can be carried out in
gentle reaction conditions, it can still indirectly make contact with
drugs and cells. Alginate forms a clear, flexible hydrogel when
modification occurs with methyacrylateand cross-linked in
optimum conditions, for instance, exposed to a laser for 30 s
(514 nm, argon-ion laser) in the presence of eosin and tri-
ethanolamine. As photo cross-linking reactions are harmful to
the body, they can be partially modified using polyallylamine with
α-phenoxycinnamyldieneacetyl chloride creating a new approach
for photo cross-linking reactions that does not release any toxic
byproducts (Sun and Tan, 1972).

Thermal Gelation Process
The gel formation mechanism can be described by the thermo-
responsive phase transition in response to external temperature
for preparing fluidic scaffold (Jinchen and Huaping, 2013). The
released water molecules bind to the isopropyl group,
consequently increasing inter-and intra-molecular hydrophobic
interactions. As a result thermosensitive alginate hydrogel was
achieved by incorporatingpoly-N-iso-propylacrylamide
(PNIPAAm) and its backbone. In this synthesis, an amino-
terminated NIPAAm copolymer (PNIPAAm-NH2) covalently
coupled with carboxyl groups (-COOH) of alginate involving
water-soluble carbodiimide chemistry. The temperature-
dependent behavior of PNIPAAm-g-alginate hydrogels showed
a remarkable decrease in the swelling ratio above 32°C (Figure 6).

FIGURE 6 | Thermal gelation process in a protein medium.
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A wide range of investigation in many drug delivery
applications used thermosensitive hydrogels because of their
swelling properties, which relies foremost on temperature
changes to release the drugs to be delivered by the gels (Roy
et al., 2010). The most widely exploited thermosensitive gels
include the PNIPAAm hydrogels in aqueous media, where it
undergoes a reversible phase transition in normal body
temperature. At a constant temperature, the swelling ratio is
increased, but decreases in these gels when the temperature
increases. The mechanical strength and cumulative release can
improve bovine serum albumin (BSA) from the gels, using
sodium alginate in the semi-interpenetrating polymer network
(semi-IPN) structure indicate diversity and applicability of
hydrogel in the drug delivery system (Zhao et al., 2010).

Microorganism Enhancing
Planktonic cells and, biomaterial microbes play an advantageous
role in biomedical applications due to their forbearance to inert
materials and ecological anxiety. In unicellular microorganisms,
the symbiotic correlation with co-existing microorganisms
confides in essential elements from a poly-cellular constituent.
A typical exemplification of this symbiosis is the Escherichia sp.
located in the lower intestine of humans and other warm-blooded
animals. E. coli sp. can be commensal, existing in a symbiotic
state and providing resistance against pathogenic organisms
(Mohammad, 2010; Bjarnsholt, 2013; Rimondini et al., 2016).
A biofilm is a well-organized formulation of polymers produced
by microorganisms to control minerals and other essential
nutrients. It can also be associated with unique or related
species of bacteria, algae, fungi, and archaea. Based on the
environmental conditions, the formation of biofilm can
diversify its structural and elemental modifications (Yin et al.,
2016). Based on previous studies, a colony of bacteria, fungi, and
algae have been employed for neutralization, degradation,
mineralization, and to cut out adequate inorganic/organic
pollutants from an adulterated or contaminated atmosphere.
Among the different processes, it has been shown that a
biofilm-mediated healthcare facility has been contemplated as
an eco-friendly and low-cost choice. Bioremediation is a
technology that utilizes microbes to decontaminate and
degrade different pollutants into less toxic products.
Bioremediation was favored as an eco-friendly technique
compared to the conventional facilities for the detoxification
of toxic elements (Balaji et al., 2014; Mitra and Suman, 2016;
Sfaelou et al., 2016; Miranda et al., 2017).

Biodegradation
Ionically cross-linked alginate gels can be dissolved by releasing
divalent ions into the surrounding media due to the exchange
reactions with monovalent cations such as sodium ions. Sodium
ions are monovalent cations and can be ionically cross-linked in
alginate gels to release divalent ions which can be dissolved into
the surrounding media due to the exchange reaction has occurred
among the ions and cations (Al-Shamkhani and Duncan, 1995).
Degradation of alginate in physiological conditions, which is a
lucrative approach, can be obtained by partial oxidation, which
does not interrupt the properties of the gel. Alginate can be

degraded and indicated by slight oxidation, the latent drug
delivery avenue in cells and drugs for diversified applications
in healthcare. Alginate is usually oxidized using sodium periodate
as it undergoes periodate oxidation that cleaves the cis-diol group
into the uronate residues present in alginate and degrades the
backbone of alginate. The blockiness of G-blocks and the partial
oxidation of the G-block allow the formation of a degradable gel.
Only polyguluronate (PG) oxidized as sodium periodate to
prepare PAG can covalently be cross-linked with AAD during
ionic cross-linking polymerization to form a gel. The reaction
occurs quickly between the aldehydes and hydrazides group, as
hydrazone bonds are quite vulnerable to hydrolysis which
promotes the degradation of the gels in an aqueous solution
(Lee et al., 2000).

APPLICATIONS OF ALGINATES

Alginates are used to coat fruits and vegetables; as a microbial and
viral protection by-product; and as a gelling, thickening,
stabilizing, or emulsifying agent in food factories (Gheorghita
Puscaselu et al., 2020). Whereby, alginate substantially plays a
vital role in the sustainable release of drug delivery products in the
pharmaceuticals industry. In this review, the controlled drug
delivery system of alginate or its derivatives are depicted in
various clinical aspects (Figure 4).

Pharmaceuticals and Therapeutic Clinical
Observation
Alginate also possesses raft-forming properties like Gaviscon
Liquid (GL), containing sodium alginate, CaCO3, NaHCO3,
and flourishes a robust floating raft in the bitter domain of the
abdomen (Yousaf et al., 2019). The alginate-based hydrogels are
frequently associated with therapeutics of other origins such as
antacids to amplify the competence of raft formulations (Mandel
et al., 2000). Alginate protects the bacteria and enhances adhesion
to solid surfaces, whereby, the adhesion induces the migration of
alginate-based bio-synthetic genes and increases the production
of alginate. Thus, alginate biofilms are developed to facilitate the
survival and growth of bacteria. These biofilms manifest high
water absorption and low viscosity emulsification at a low
molecular weight (50–2000 kDa) (Mangwani et al., 2016).

Clinical investigations have been conducted as an anti-AIDS
drug in China, where heparinoid alginate derivatives were
explored for the treatment of HIV. They used sulfated
enriched mannuronic and guluronic heterogeneous alginate
fragments incorporated with heparinoid polysaccharides, drug
911 which consists of 10 kDa to 1.5 sulfates and 1.0 carboxyl
groups per sugar residue. It was diagnosed that heparinoid 911
interacted with the positively charged regions of glycoproteins
present on the cell surface, leading to shielding effect on these
regions, thus counteracting HIV-virus binding to the cell surface.
The mode action of 911 was found to be related to the inhibition
of viral reverse transcriptase and prevention of viral adsorption. A
significant inhibitory effect on DNA polymerase of the hepatitis B
virus was reported, meaning it can be applied in hepatitis B
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treatment (Xin et al., 2000; Wu et al., 2011; Szekalska et al.,
2016b).

Alginate consisting oligosaccharides caused lower blood
pressure, it appears that the hypertensive mechanism is
associated with calcium antagonist activity toward voltage-
operated calcium channels. It was clinically reported that
sodium alginate in a dose of 60 mg/day decreased blood
pressure eliminated hypertension after 2 weeks of treatment.
Another trial revealed that polymers’ facility prevented early
stage kidney injury by decreasing the rate of glomerular
filtration. Apart from this, alginate-based potassium tested as
a promising agent for mitigating cardiovascular complications
associated with hypertension, including cardiac and renal
hypertrophy in the risk of stroke occurrence (Chen et al.,
2010; Morria et al., 2013; Szekalska et al., 2016b). Alginate
biopolymers are extensively used to develop various dressing
materials for the treatment of wound healing (Varaprasad et al.,
2020). Different cardiovascular diseases, such as atherosclerosis,
myocardial infarction, etc. are the leading cause of morbidity
and mortality. The alginate and hydrogels are mostly applicable
in cardiac regeneration (Cattelan et al., 2020).

Delivery of Drug Molecules
A nanoporous (pore size ∼5 nm) alginate gel is utilized in the
release of various small molecular weight drugs, whereby the
tiny molecules can pass rapidly through the gel (Boontheekul
et al., 2005). A combination of different drugs associated with
alginate-based gels are used for instantaneous and continuous
release. For instance, alginate grafted with polycaprolactone is
cross-linked with Ca2+ for sustained delivery of theophylline.
The sustained release of theophylline was also obtained from
alginate microspheres with carbon nanotubes (Zhang et al.,
2010). Encapsulated chitosan-alginate may also be used in

drug application. It is formulated as magnetic products of
alginate-chitosan beads for passive targeting in the
gastrointestinal tract tagged with albendazole (ABZ) (Wang
et al., 2010).

Protein Delivery
At present alginate is also widely used in protein drugs delivery
systems, which can easily be integrated with alginate-based
formulations through a comparatively simple process. The rate
of protein delivery can be maintained in different ways from
alginate globules. The flow rate of protein release from alginate
gels is usually rapid. Hence, if the degradation rate is changed, the
pace of protein release from the gel has to be harmonized (Silva
and Mooney, 2010). The released angiogenic molecules can be
controlled by the alginates gel. As a building block molecule,
alginate is also used in the polymeric structure of a tetra-
functional acetal-linked network by using polymer synthesis.
The rapid release of gels can enhance protein-hydrogel
interactions in the interchain association of alginate, whereby
it is widely applied in tissue engineering and regeneration
(George and Abraham, 2006).

Wound Dressings
Wound healing treatment demands many desirable functions
fulfilled by wound dressing materials prepared from alginate.
Traditional dressing materials like gauze only have a barrier
function, however, modern alginate dressings present a moist
wound environment and ease healing (Queen et al., 2004) as it is
prepared using polymerization and cross-linked in an aqueous
solution with divalent cations. In ry conditions alginate dressing
materials immersed in fluidic concentration re-gel transport
water to the wound to maintain a damp situation and protect
the wound location from bacterial infection. Available dressings

TABLE 2 | Application of alginate gels in the tissue regenerations.

Gel Activities Tissues Descriptions

Alginate Tissue regeneration
with protein and cell delivery

Blood
vessels

The injected alginate gels into ischemic muscle tissues are beneficial for enduring release of VEGF, and
configuration of VEGF gradients in close to tissues (Lee et al., 2003b)

Bone Modified RGD-alginate gels employed for regeneration of femoral rift in rodents with a mum dose of BM (Kolambkar
et al., 2011). The controlled delivery of BMP-2 and BMP-7 via alginate gels enhanced osteogenic segregation of
bone marrow resulting technology of stem cells (Buket Basmanav et al., 2008)

Cartilage Alginate may enhance hydrogenesis, stem cell technology (chondrogenesis) regulates the morphology of cell
encapsulation (Dashtdar et al., 2011) and alginate gels promote a rounded morphology to accelerate the
differentiation process of cells (Tuan et al., 2003)

Muscle Alginate gels facilitated the process of growth factor release, skeletal muscle reformation, stem cell transplantation
etc. (Saxena et al., 1999; Levenberg et al., 2005). Alginate gels also used as stimuli-responsive for stimulating
myogenesis, combined delivery of VEGF, growth factor-1 like insulin (IGF-1). The growth factor works as a
significant muscle formation and regeneration when localized and sustained delivery occurred in the system
(Borselli et al., 2010)

Nerve Investigation has been done for the remapping of the peripheral and central nervous system by the significant use of
alginate gels. Extremely isotropic capillary gels, imported into acute cervical spinal cord lesions in adult rats,
incorporated into the spinal cord parenchyma, and assisted axonal regrowth (Prang et al., 2006), as well as the gels
of alginate, may help for cell-based neural therapies (Li et al., 2006)

Pancreas It is revealed that type I diabetes is curable, placing grafts of alginate gel as the transplantation of encapsulated
pancreatic islet. This type of approach has succeeded in Type I diabetes in an animal model experiment without
prior immunosuppressive drugs (Lim and Sun, 1980; Lacy et al., 1991; Calafiore, 2003)

Liver In the field of tissue engineering, alginate gels wrapping hepatocytes may bid a suitable platform for increasing a
bio-artificial liver as they are easily accomplished and stored (Selden and Hodgson, 2004; Koizumi et al., 2007)
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on the market, include Algi-cell (Derma Sciences), Algi-Site M
(Smith and Nephew), Comfeel Plus (Coloplast), Kaltostat
(ConvaTec), Sorbsan (UDL Laboratories), and Tegagen (3 M
Healthcare) (Balakrishnan et al., 2006).

Cell Culture
The alginate-based gels are used in healthcare applications
especially in mammalian cell technology as a multidimensional
(2-D/3-D) culture system. The RGD-adopted alginate gels are
most frequently employed in vitro tissue culture engineering;
whereas RGD peptides in alginate are usually exploited to
regulate the interacting characteristics of myoblasts (Rowley
et al., 2002). The combination of alginate backbone and RGD
peptides bond enhance the propagation and adhesion of myoblast
culture onto alginate gels (Rowley et al., 1999).

Immobilization of living cells persuading factors in the
alginate matrix is frequently used in cell engineering. A lot of
advanced research has been conducted in Australia for the
development of cell transplantation therapy in long-term
diabetes and neurodegenerative Immupel™. It has a selectively
permeable ability to protecting via encapsulation living cells from
the host immune system, managing their function and able to
differentiate between them accurately. Apparently, ALG-based
foodstuffs NTCELL(R) and DIABECELL(R) are in an advanced
stage of clinical investigation (yang and Yoon, 2015; Szekalska
et al., 2016b) since the last decade.

Antibiotics
Alginate-based gel is usually used in antibiotics, while a number
of drawbacks have been observed in the following processes of
biofilm resistance to antibiotics:

i) In a biofilm, the change in bacterial growth causes antibiotic
diffusion to differ (Fux et al., 2003; Joo and Otto, 2012).

ii) Horizontal transformation of gene resistance is acquired by
P. aeruginosa (Gupta et al., 2016).

iii) It is responsible for resistance as multidrug efflux pumps
antibiotic agents present in the system (Zhang and Mah,
2008; Hall and Mah, 2017).

iv) Recurrently, the dual-species biofilm manifests increased
resistance, which is already revealed as a barrier to the
antibiotic (Adam et al., 2002).

Thus, due to these limitations, biofilms are problematic to
apply in current antibiotic therapies, for treatment with biofilm
can cause infections, and it is recommended that state-of-the-art
advancement of implantable biomedical devices be immediately
explored (Singhai et al., 2012; Shah et al., 2013; Stoodley et al.,
2013). Despite the shortcomings, alginate-biofilms have been
exploited in the regeneration of different types of tissues
(Table 2) including versatile applications in healthcare.
Table 2 describes the cutting-edge applications of the
alginate-based biomaterials in tissue regeneration using molecular
biology related techniques. Using modern technologies, from stem
cells different types of tissues including blood vessels, bone, muscles,
cartilage, and nerve cells can be generated using alginate and

alginate-based biomaterials (Tuan et al., 2003; Levenberg et al.,
2005; Dashtdar et al., 2011; Kolambkar et al., 2011).

CONCLUSIONS AND FUTURE
PERSPECTIVES

In the production of natural and biosynthetic materials for medical
devices, our interest has been greatly increased. Another, more in-
depth, experiment should be promptly commenced to find potential
applications for medical purposes. Alginates holds great potential as
biomaterials for biomedical applications in human healthcare, and
mainstream biotechnology like tissue plantation, drug delivery,
wound healing, stem cell culture, and gene engineering. Alginate-
based biomaterials can be detached with tolerable discomfort
compared to other commercially available conventional wound
dressing materials. Furthermore, since sustained released
antibiotics prepared using alginate exhibit high absorbing
capacity, they are most useful to treat deep burns. To prepare
alginate derivatives with ultramodern characteristics, the most
effective physicochemical, mechanical, and thermal properties
that need to be improved for these applications include
biocompatibility, mild gelation, and moderate modification of
alginate gels. Finally, the world is developing; progressing
through newly invented technologies and high-tech facilities, but
accomodation in these sectors for the environment and many other
aspects of sustainability are still limited. Hence, modification and
characterization of alginate polymers and their biofilms in
biomedical application for various purposes could play a pivotal
factor in its development for the medical sector, along with
minimizing environmental effects to allow for sustainable
societies. The knowledge acquired from the study can evolve the
potentiality in healthcare application in the medical sector.
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