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Vaccination is an effective strategy to control influenza disease. Adjuvants enhance
the efficacy of vaccines, but few adjuvants are approved for human use, so novel,
safe, and effective adjuvants are urgently needed. The glycolipid adjuvant 7DW8-5
has shown adjuvanticity to malaria vaccine; however, its adjuvant effect for seasonal
influenza vaccine remains unknown. Here, we evaluated the adjuvanticity of 7DW8-5 to
a quadrivalent split influenza vaccine in a mouse model. 7DW8-5 significantly enhanced
virus-specific antibody production when administrated with influenza vaccine compared
with that of vaccine alone; 10 µg of 7DW8-5 induced similar antibody levels to those
induced by alum. Mouse body weight loss was reduced and, notably, the survival rate
was increased in the vaccine plus 7DW8-5 group compared with that in the vaccine
plus alum group. Our results indicate that the glycolipid 7DW8-5 is a promising adjuvant
for influenza vaccine.
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INTRODUCTION

Influenza virus causes seasonal influenza epidemics every winter and influenza pandemics every
few decades, leading to serious economic and social disruption (Cauchemez et al., 2009; Gasparini
et al., 2012). Annual vaccination is a useful means to control seasonal influenza (Houser and
Subbarao, 2015; Rajao and Perez, 2018; Yamayoshi and Kawaoka, 2019). Currently, three types of
licensed seasonal influenza vaccines are available: live attenuated, recombinant HA, and inactivated
vaccines (Grohskopf et al., 2018). These vaccines are composed of three or four different types
of influenza viruses (i.e., H1N1, H3N2, and one or two influenza B viruses), which are updated
annually by the World Health Organization (WHO) to reflect the most recent circulating strains1.
The inactivated influenza vaccines, including whole inactivated virus vaccine, split virus vaccine,
and subunit vaccine, are widely used throughout the world; however, their efficacy is suboptimal,
especially in the elderly2 (Wood and Siegrist, 2011; Choi et al., 2015; Dominguez et al., 2016;
Flannery et al., 2018).

1https://www.who.int/influenza/vaccines/virus/recommendations/en/
2https://www.cdc.gov/flu/professionals/vaccination/effectiveness-studies.htm
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To improve vaccine efficacy, the addition of adjuvants is
one of the most effective strategies. Adjuvants are substances
that enhance the immune response to an antigen, and the ideal
adjuvant would maximize vaccine efficacy and a strong safety
profile (Petrovsky, 2015). Although several adjuvants are in
clinical trials, many have failed to progress to approval for human
use with vaccines due to toxicity, stability, biocompatibility,
cost, and availability (Petrovsky and Aguilar, 2004; Sivakumar
et al., 2011). Given that only a few adjuvants in combination
with vaccines are currently approved for use in humans [e.g.,
alum, MF59, AS03, and AS04 (Mbow et al., 2010; Di Pasquale
et al., 2015)], the development of novel and safe adjuvants is
urgently needed.

The glycolipid alpha-Galactosylceramide (α-GalCer) binds
CD1d, an MHC I-like molecule (Blumberg et al., 1991), which
is primarily expressed by antigen-presenting cells (APC) and
is presented to invariant natural killer T (iNKT) cells (Girardi
and Zajonc, 2012). The adjuvant effect of α-GalCer has been
investigated for vaccines against tumors and various infectious
diseases, including influenza (Gonzalez-Aseguinolaza et al., 2002;
Ko et al., 2005; Youn et al., 2007; Choi et al., 2008; Huang et al.,
2008, 2013; Guillonneau et al., 2009; Kopecky-Bromberg et al.,
2009; Kim et al., 2010; Miller et al., 2011; Lu et al., 2014; Artiaga
et al., 2016). In fact, α-GalCer has been tested for several types
of influenza vaccines (i.e., inactivated vaccines, live attenuated
vaccines, and a DNA vaccine) in different animal models such
as pigs and mice, and has been shown to enhance virus-specific
antibody production and/or the protective efficacy of influenza
vaccines, suggesting that α-GalCer is a promising adjuvant for
influenza vaccines (Kamijuku et al., 2008; Guillonneau et al.,
2009; Kopecky-Bromberg et al., 2009; Lee et al., 2011; Artiaga
et al., 2016; Dwivedi et al., 2016; Fotouhi et al., 2017). Recently,
Li et al. (2010) screened a library of 25 synthetic analog of
α-GalCer, and identified a lead candidate, named 7DW8-5,
that displayed a superior adjuvant effect for HIV and malaria
vaccines in mice compared with the parental α-GalCer. For
influenza vaccines, the adjuvanticity of 7DW8-5 has been tested
for a DNA vaccine against H5N1 influenza virus (Hung et al.,
2014); however, its adjuvant effects for other types of influenza
vaccines are unknown.

In this study, we evaluated the adjuvant effect of 7DW8-5 on
the commercial HA split vaccine in a mouse model. We found
that 7DW8-5 enhanced the protective efficacy of the commercial
HA split vaccine in mice, thereby demonstrating its promise as an
adjuvant for the HA split influenza vaccine in humans.

MATERIALS AND METHODS

Cells and Viruses
Madin-Darby canine kidney (MDCK) cells were maintained in
minimum essential medium (MEM) (Gibco) supplemented with
5% newborn calf serum (Sigma) at 37◦C in 5% CO2. MDCK cells
were used for plaque assays to determine virus titers.

Mouse-adapted A/California/04/2009 virus (H1N1;
MA-CA04), generated in our laboratory as previously
described (Sakabe et al., 2011), was used to challenge mice.

A/California/07/2009 virus (H1N1; CA07), which was isolated
early in the 2009 pandemic, was used as an antigen for the ELISA
after purification and inactivation to determine the virus-specific
antibody titers of sera obtained from the immunized mice.

Influenza Vaccine and Adjuvants
Quadrivalent split influenza HA vaccines were obtained from
DENKA SEIKEN Co., Ltd. (Japan). The quadrivalent split
influenza HA vaccine (for the 2016–2017 season), which
contains the HA proteins (equivalent to 30 µg of HA
protein for each virus included in a vaccine vial) of CA07
(H1N1), A/Hong Kong/4801/2014 (H3N2), B/Phuket/3073/2013
(Yamagata lineage), and B/Texas/2/2013 (Victoria lineage), was
used. Aluminum hydroxide gel Alhydrogel R© adjuvant 2% (alum),
purchased from InvivoGen, was used as a positive control
[antigen: alum = 1:1 (v/v)] (approximately equal to 500 µg of
alum/dose). The 7DW8-5 was purchased from Funakoshi Co.,
Ltd. (endotoxin level,<100 EU/mg), suspended in sterile water at
a concentration of 1 mg/ml, heated at 80◦C for 10 min, and then
sonicated in a water bath for 15 min at room temperature. Stocks
were stored at −20◦C until use. Before being mixed with the
split influenza HA vaccine, the 7DW8-5 suspension was sonicated
again for 5 min after thawing. The 7DW8-5 and the HA split
vaccine were diluted with the endotoxin-free D-PBS (Millipore,
Cat. TMS-012-A, Endotoxin<0.005 EU/mL).

Immunization and Protection
Five-week-old female BALB/c mice were purchased from Japan
SLC Inc. After one week of adaptation, the mice (10 mice per
group) were immunized with a suboptimal dose of influenza
HA vaccine [0.001 µg/dose (2016–2017 season) calculated on the
basis of the amount of HA from CA07] with or without 7DW8-5
into the gastrocnemius muscle. Two weeks later, the mice were
boost immunized (second immunization) intramuscularly. On
day 14 after the boost-immunization, blood was collected via the
facial vein by using a goldenrod animal lancet (5 mm), and sera
were obtained to measure virus-specific antibody titers. Three
weeks after the boost-immunization, the immunized mice were
challenged intranasally, under anesthesia, with 10 MLD50 (Fifty
Percent Mouse Lethal Dose) of MA-CA04 virus. Body weight and
survival of four mice from each group were monitored daily for
14 days after virus challenge. Mice that lost more than 25% of
their original body weight were euthanized.

The remaining mice (6 mice per group) were used to
assess virus replication. To determine virus titers in mice,
organ samples were harvested on days 3 and 6 post-challenge
and were homogenized and titrated on MDCK cells by
using a plaque assay.

Measurement of Virus-Specific Antibody
Titers
Virus-specific antibody titers in the sera were determined by
using a modified ELISA as previously described (Uraki et al.,
2014). Briefly, 96-well ELISA plates (IWAKI) were coated with
6 µg/ml of inactivated, purified CA07 virus solution overnight
at 4◦C (50 µl/well). The plates were then blocked with 200 µl
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of 20% Blocking One (Nacalai) in water at room temperature
for 1 h. After blocking, the plates were washed once with PBS
containing 0.05% Tween-20 (PBS-T), and then 2-fold serially
diluted serum samples were added to the plates, followed
by a 1-h incubation at room temperature. Bound total IgG
was detected by using peroxidase-labeled goat anti-mouse IgG
(gamma) antibody, F (ab′) 2 fragment (Kirkegaard & Perry
Laboratory Inc.) and horseradish peroxidase-conjugated anti-
mouse IgG1, or IgG2a antibodies (Southern Biotech). After the
plates were washed four times with PBS-T, 100 µl of 2, 2′-
azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium
salt substrate solution was added to each well to initiate the color
reaction, and the OD was measured at a wavelength of 405 nm.
The antibody titer was defined as the reciprocal of the highest
serum dilution that produced an OD405 > 0.1 after correcting for
the negative serum control.

Pathological Examination
Animal tissues were fixed in 4% paraformaldehyde phosphate
(PFA) buffer solution for pathologic examination. They were then
processed for paraffin embedding and cut into 3 µm-thick serial
sections. The sections were stained using a standard hematoxylin
and eosin procedure, and serial sections were processed for
immunohistological staining with a rabbit polyclonal antibody
for type A influenza virus nucleoprotein (prepared in the
Department of Pathology, National Institute of Infectious
Diseases, Tokyo, Japan) or a rat monoclonal antibody for mouse
F4/80 antigen (CL: A3-1, Bio Rad). Specific antigen-antibody
reactions were visualized with 3, 3′-Diaminobenzidine (DAB)
staining by using a Dako Envision system (Dako Cytomation).

Statistics
We used R3 and lme4 (Bates et al., 2015) to perform a linear
mixed effects analysis of the body weight data, which were
normalized to the initial weight of each individual animal. As
fixed effects, we used the different treatment groups (i.e., vaccine
alone, vaccine plus 7DW8-5 and vaccine plus alum), and the
time of the measurement (with an interaction term between those
fixed effects). As random effects, we used the intercepts for the
individual animals. We used the lsmeans (Lenth, 2016) package
to compare the groups at different time points for each model
separately, and the p-values were adjusted using Holm’s method.
For the comparisons of antibody titers and virus titers, we used
a one-way ANOVA, followed by Tukey’s Post Hoc tests. The
data were log-transformed before the comparisons were made
to stabilize the variance. For the virus titer data, each timepoint
was analyzed separately. For the antibody titers, values <10 were
arbitrarily set to 5, because it was not possible to determine
whether antibodies were completely absent or were present below
the detection limit. For the analysis of the survival data, we used
the Log-rank test, comparing the vaccine plus 7DW8-5 or alum
to the vaccine alone group. We used OASIS 2 (Han et al., 2016)
software for this analysis. P values of <0.05 were considered
statistically significant.

3www.r-project.org

Ethics Statement
All experiments with mice were performed in the biosafety level
2 containment laboratory in the Institute of Medical Science,
the University of Tokyo (Tokyo, Japan) in accordance with the
Regulations for Animal Care of the University of Tokyo and
the Guidelines for Proper Conduct of Animal Experiments by
the Science Council of Japan, and were approved by the Animal
Experiment Committee of the Institute of Medical Science, the
University of Tokyo (approval no. PA 14-38).

RESULTS

7DW8-5 Significantly Enhances Influenza
Virus-Specific Antibody Production in
Mice
To evaluate the adjuvant effect of the glycolipid 7DW8-5 on
a commercial HA split vaccine, mice were immunized with
PBS, 7DW8-5 (1 µg/dose or 10 µg/dose), HA vaccine alone
(0.001 µg of HA for each virus/dose), or HA vaccine plus 7DW8-
5 (1 µg/dose or 10 µg/dose) via intramuscular administration
in a 100 µl volume twice with a 2-week interval between
the vaccinations. Commercially available alum adjuvant was
used as a positive control, as described in the Materials and
Methods, because alum is the most frequently used adjuvant
worldwide and has been used in many clinical studies (Tetsutani
and Ishii, 2012). Two weeks after the boost immunization,
sera samples were obtained from the immunized mice and
examined for the presence of virus-specific antibody in an
ELISA. No antibody against CA07 virus was detected in the
groups of mice that receive PBS only or 7DW8-5 only. Most
mice immunized with the HA vaccine alone produced no
or very low levels of virus-specific antibodies except for one
mouse whose virus-specific IgG titer was 1280 (Figure 1).
The mean antibody titer in the sera of the group of mice
immunized with the HA vaccine plus 1 µg of 7DW8-5 (i.e.,
1440.0) was significantly higher than that in the vaccine alone
group (i.e., 240.5) (Figure 1). The vaccine plus 10 µg of
7DW8-5 also induced much higher levels of virus-specific
antibody compared with the vaccine alone group, and the
mean antibody titer was comparable to that induced by HA
vaccine plus alum (Figure 1). These results demonstrate that
7DW8-5 significantly enhances the immunogenicity of the
HA split vaccine.

We also measured the influenza virus-specific IgG1 and IgG2a
titers in the sera by using an ELISA because IgG1 and IgG2a
are stimulated during Th2-type and Th1-type immune responses,
respectively (Stevens et al., 1988; Mosmann and Coffman, 1989;
Hauge et al., 2007). The IgG1 titers in the HA vaccine plus
1 µg of 7DW8-5, the HA vaccine plus 10 µg of 7DW8-
5, and the HA vaccine plus alum groups were significantly
higher than that in the HA vaccine alone group (Figure 1B).
Seven of the ten mice immunized with the HA vaccine plus
10 µg of 7DW8-5 expressed a high level of IgG2a antibodies,
whereas no IgG2a antibody was detected in the other groups
(Figure 1C). These results suggest that the HA vaccine plus
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FIGURE 1 | Virus-specific antibody titers induced by 7DW8-5 in combination
with HA vaccine in mice. Six-week-old BALB/c mice (n = 10) were immunized
with a commercial influenza HA vaccine with or without adjuvant twice with a
2-week interval between the vaccinations. Blood samples were collected
2 weeks after the second immunization. Virus-specific antibodies were
measured by using an ELISA with inactivated and purified CA07 virus as the
coating antigen. (A) Virus-specific total IgG antibody titers; (B) virus-specific
IgG1 antibody titers; (C) virus-specific IgG2a antibody titers. The data were
analyzed by using a one-way ANOVA followed by Tukey’s Post Hoc tests. The
data were log2 transformed before the comparisons to stabilize the variance.
The lines indicate the means of the antibody titers (n = 10). Values <10 were
assigned the value 5 as described in the section “Materials and Methods.”
∗∗P < 0.01.

FIGURE 2 | Protective efficacy of 7DW8-5 plus vaccine against lethal
challenge. Six-week-old BALB/c mice (n = 4) were mock-immunized with PBS
or 7DW8-5 alone, immunized with HA vaccine alone or 7DW8-5-adjuvanted
HA vaccine twice with a 2-week interval between vaccinations. Mice were
intranasally challenged with 10 MLD50 of MA-CA04 virus 3 weeks after the
second immunization. Body weight and survival were monitored daily for
14 days. The body weight data shown are means ± standard deviation (SD).
Green asterisks indicate a significant difference between the vaccine alone
group and the vaccine plus 1 µg of 7DW8-5 group; purple asterisks indicate a
significant difference between the vaccine alone group and the vaccine plus
10 µg of 7DW8-5 group; blue asterisks indicate a significant difference
between the vaccine plus 1 µg of 7DW8-5 group and the vaccine plus alum
group; red asterisks indicate a significant difference between the vaccine plus
10 µg of 7DW8-5 group and the vaccine plus alum group. ∗P < 0.05.

10 µg of 7DW8-5 induced both Th1-type and Th2-type immune
responses, whereas the HA vaccine plus 1 µg of 7DW8-5
and the HA vaccine plus alum induced only the Th2-type
immune response.

7DW8-5 Enhances the Protective
Efficacy of Influenza Vaccine Against
Lethal Virus Challenge in Mice
To examine whether 7DW8-5 enhances the protective efficacy
of the HA split vaccine, we challenged the immunized mice
with 10 MLD50 of MA-CA04 virus 3 weeks after the boost-
immunization and monitored their body weight changes and
survival for 14 days. All mice given PBS or 7DW8-5 alone
experienced body weight loss upon virus challenge and died
by 6 days post-challenge, whereas 2 of 4 mice were protected
from lethal challenge in the vaccine plus alum group (Figure 2
and Supplementary Table 1). More importantly, 3 of 4 mice
immunized with the vaccine plus 1 µg of 7DW8-5 survived and
all four mice that received the vaccine plus 10 µg of 7DW8-5 were
protected from the lethal infection (Figure 2 and Supplementary
Table 1). These results demonstrate that the adjuvanticity of the
glycolipid adjuvant 7DW8-5 was sufficient to protect mice from
lethal challenge with MA-CA04 virus.
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HA Vaccine Plus 7DW8-5 Did Not
Completely Prevent Challenge Virus
Replication in Immunized Mice
To examine the effect of 7DW8-5 on virus replication in the
immunized mice after challenge, the mice immunized with HA
vaccine plus 7DW8-5 were challenged with 10 MLD50 of MA-
CA04 virus 3 weeks after the second immunization, and organ
samples (i.e., nasal turbinates and lungs) were collected from the
sacrificed mice on days 3 and 6 post-infection for virus titration.
On day 3 post-challenge, over 106 PFU of virus was detected in
both the nasal turbinates and lungs of mice in all of the groups
(Table 1). In contrast, on day 6 post-challenge, the mean virus
titers in the lungs for the vaccine plus 7DW8-5 and the vaccine
plus alum groups were lower than that of the vaccine alone group,
although the difference was not statistically significant (Table 1).

Pathological analysis of mice immunized with PBS, 7DW8-5
(10 µg/dose), HA vaccine alone (0.001 µg/dose), or HA vaccine
plus 7DW8-5 (10 µg/dose) after challenge with 10 MLD50 MA-
CA04 virus revealed that infection with MA-CA04 resulted in
detectable viral antigens in bronchial epithelial cells and in
infiltration of inflammatory cells into the lungs of all mice tested
on day 6 post-challenge (Figure 3A). No apparent difference in
inflammation, viral antigen distribution pattern, or the number
of viral antigen-positive cells was observed across all groups

TABLE 1 | Virus replication in the respiratory tract of immunized mice challenged
with MA-CA04 virusa.

Immunogen Mean virus titers (Log 10 PFU/g) ± SD

NT Lungs

Day 3 p. i. Day 6 p. i. Day 3 p. i. Day 6 p. i.

PBS 6.3 ± 0.0 5.0 ± 0.6 7.3 ± 0.1 5.6 ± 0.3

1 µg 7DW8-5 6.5 ± 0.4 5.6 ± 0.5 7.2 ± 0.1 6.2 ± 0.4

10 µg 7DW8-5 6.9 ± 0.4 5.8 ± 0.1 7.3 ± 0.0 6.6 ± 0.1

Vaccine alone 6.0 ± 0.0 4.7 ± 0.5 7.2 ± 0.1 6.0 ± 0.4

Vaccine + 1 µg
7DW8-5

6.2 ± 0.1 4.2 ± 1.2 7.1 ± 0.1 5.3 ± 0.4

Vaccine + 10 µg
7DW8-5

6.1 ± 0.0 5.0 ± 0.2 7.0 ± 0.1 4.6 ± 1.7

Vaccine + Alum 6.2 ± 0.1 5.0 ± 0.4 7.2 ± 0.0 4.0 ± 1.3

aSix-week-old BALB/c mice were immunized with the indicated immunogens
(100 µl) twice (2-weeks apart) and challenged with 10 MLD50 of MA-CA04 virus
3 weeks after the second immunization. The nasal turbinates (NT) and lungs were
collected from the mice (n = 3) on days 3 and 6 post-infection (p. i.) and viral titers
were determined in MDCK cells by use of plaque assays.

(Figure 3A). Moderate inflammation, including infiltration
of neutrophils, monocytes/macrophages, or lymphocytes, was
observed in more than half of the sections from each mouse

FIGURE 3 | Pathological analysis of the lungs of immunized mice after challenge. Six-week-old BALB/c mice (n = 3) were immunized with PBS, 7DW8-5
(10 µg/dose), HA vaccine alone, or HA vaccine plus 7DW8-5 (10 µg/dose) twice with a 2-week interval between vaccinations. The immunized mice were intranasally
challenged with 10 MLD50 of MA-CA04 virus 3 weeks after the second immunization. The lungs were fixed with 4% PFA buffer solution on day 6, and stained as
described in the Materials and Methods section. HE, hematoxylin and eosin staining; IHC, immunohistochemistry for the detection of influenza virus NP antigen (A)
or anti-F4/80 antibody (B). Scale bars: 100 µm (A) and 50 µm (B).
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across all groups; however, we detected more F4/80-positive cells
in the lungs of immunized mice after virus challenge in the HA
vaccine alone and the 7DW8-5 plus HA vaccine groups compared
with the PBS and 7DW8-5 groups (Figure 3B). These results
suggest that immunization of mice with the HA vaccine induces
infiltration of macrophages into the lungs after virus infection,
although no difference in the number of F4/80-positive cells was
observed between the HA vaccine alone and the 7DW8-5 plus
HA vaccine groups.

Taken together, our results demonstrate that although 7DW8-
5 did not facilitate a reduction in virus replication by the HA
vaccine, it did improve vaccine efficacy as evaluated by lethality.

DISCUSSION

The use of adjuvants is an effective approach to improve vaccine
efficacy. The CD1d-binding glycolipid α-GalCer is recognized
as a member of a new class of adjuvants and its adjuvanticity
has been investigated for vaccines against tumors and various
infectious diseases, including influenza (Gonzalez-Aseguinolaza
et al., 2002; Ko et al., 2005; Youn et al., 2007; Choi et al., 2008;
Huang et al., 2008, 2013; Guillonneau et al., 2009; Kopecky-
Bromberg et al., 2009; Kim et al., 2010; Miller et al., 2011; Lu
et al., 2014; Artiaga et al., 2016). In this study, we evaluated
the adjuvanticity of the glycolipid 7DW8-5, a novel analog of
α-GalCer that showed a superior adjuvant effect compared with
that of α-GalCer in malaria and HIV vaccines (Li et al., 2010),
for a commercial influenza HA split vaccine in a mouse model.
Although the adjuvant effect of 7DW8-5 on the DNA vaccine
for H5N1 influenza virus was less than that of the parental
compound α-GalCer (Hung et al., 2014), 7DW8-5 did enhance
virus-specific antibody production and the protective efficacy
of a commercial HA split vaccine against a lethal challenge
of influenza A virus in mice. The safety and adjuvanticity of
α-GalCer have been demonstrated in humans in Phase I clinical
trials (Giaccone et al., 2002; Ishikawa et al., 2005; Nicol et al.,
2011). In addition, 7DW8-5 has been shown to have a good safety
profile and potent immune-enhancing activity in a non-human
primate model (Padte et al., 2013). Additionally, we found that
7DW8-5 has a dose-sparing effect on the HA vaccine because
the mean titer of the virus-specific antibody in mice immunized
with 0.03 µg of HA vaccine alone was 2560, as described in our
previous study (Feng et al., 2019), which is comparable to that
in mice immunized with 0.001 µg of HA vaccine plus 10 µg of
7DW8-5 (mean antibody titer: 3072) in this study. These findings,
coupled with our results, suggests that the glycolipid 7DW8-
5 could be a promising adjuvant for the commercial HA split
influenza vaccine.

Previous studies have shown that the induction of IgG2a
antibodies, which occurs during the Th1-type immune response,
is associated with increased efficacy of influenza vaccines (Huber
et al., 2001, 2006; Proietti et al., 2002; Hovden et al., 2005).
In contrast, inactivated influenza vaccines and subunit vaccines
induce the Th2-type immune response, which is associated with
the stimulation of IgG1 antibodies in BALB/c mice (Hocart et al.,
1989; Benne et al., 1997; Moran et al., 1999). In the current
study, we found that mice immunized with the HA vaccine plus

10 µg of 7DW8-5 had increased titers of both IgG1 and IgG2a
antibodies (Figure 1C), suggesting that both Th1-type and Th2-
type immune responses were induced by vaccination with the
HA vaccine plus 10 µg of 7DW8-5. Additionally, pathological
analysis showed that immunization of mice with the HA vaccine
or with 7DW8-5 plus the HA vaccine induced macrophage
infiltration into the lungs after virus challenge (Figure 3B). The
induction of both Th1- and Th2-type immune responses in
addition to macrophage infiltration may have facilitated viral
clearance from the lungs of the infected mice immunized with
the HA vaccine plus 10 µg of 7DW8-5, resulting in 100%
protection (Figure 2).

The current influenza vaccines induce strain-specific antibody
responses against viral HA proteins; however, strain-specific
antibodies can only provide a reasonable measure of protection
if the vaccine strains match the antigenicity of the current
circulating strains (Pica and Palese, 2013; Khurana, 2018).
Therefore, an approach aimed at broadening the cross-reactivity
of influenza vaccines by targeting T cell responses is of
considerable interest. The glycolipid α-GalCer activates iNKT
cells, leading to the production of Th1 and Th2 cytokines
(Bendelac et al., 2007), and the subsequent stimulation of various
immune cells including dendritic cells (Fujii et al., 2003, 2006),
natural killer (NK) cells (Kawano et al., 1997; Brossay et al.,
1998), B cells (Kitamura et al., 2000), and CD4+ and CD8+
T cells (Singh et al., 1999; Hermans et al., 2003). Guillonneau
et al. showed that α-GalCer enhanced T cell-mediated immune
responses in mice immunized with an inactivated influenza virus
vaccine and protected the immunized mice from heterologous
influenza A virus challenge (Guillonneau et al., 2009). Therefore,
the use of α-GalCer, and its analogs such as 7DW8-5, as an
adjuvant could be an effective strategy to compel vaccines to elicit
broader immune responses.
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