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ABSTRACT

The 3D structure of the genome plays a vital role
in biological processes such as gene interaction,
gene regulation, DNA replication and genome methy-
lation. Advanced chromosomal conformation cap-
ture techniques, such as Hi-C and tethered con-
formation capture, can generate chromosomal con-
tact data that can be used to computationally re-
construct 3D structures of the genome. We devel-
oped a novel restraint-based method that is capa-
ble of reconstructing 3D genome structures utilizing
both intra-and inter-chromosomal contact data. Our
method was robust to noise and performed well in
comparison with a panel of existing methods on a
controlled simulated data set. On a real Hi-C data set
of the human genome, our method produced chro-
mosome and genome structures that are consistent
with 3D FISH data and known knowledge about the
human chromosome and genome, such as, chromo-
some territories and the cluster of small chromo-
somes in the nucleus center with the exception of
the chromosome 18. The tool and experimental data
are available at https://missouri.box.com/v/LorDG.

INTRODUCTION

Three-dimensional (3D) chromosome and genome struc-
tures have been shown to play important roles in many bi-
ological processes (1,2). However, due to the large size of a
genome, there is no experimental technology that can di-
rectly determine the 3D structure of a genome. Fluores-
cence in situ hybridization (FISH) has been used to mea-
sure the distance between genomic regions, but it is limited
by its low throughput and low resolution (3–7). Chromo-
somal conformation capture based techniques empowered
by next generation sequencing, such as Hi-C (1), TCC (8),
can capture chromosomal fragments of a genome that are in
spatial proximity that can be mapped to the genome to gen-
erate genome-wide chromosomal interaction/contact data.
The contact data, despite not 3D conformation itself, can be

used to computationally reconstruct 3D structures of chro-
mosomes and genomes.

Two kinds of methods have been developed to build 3D
structures of chromosomes and genomes using chromoso-
mal contact data. The first kind uses the polymer physics of
the chromatin to build models that are consistent with ob-
served chromosomal contact data (9,10). The second one
treats each chromosomal contact as a restraint, and then
solves a spatial optimization problem to find chromosome
or genome conformations that satisfy the contact restraints
as well as possible (11–19). A common approach used by
these methods is to convert chromosomal contacts into spa-
tial distance restraints, and then search for the optimal con-
formations (models) that satisfy the restraints best accord-
ing to an objective function. Depending on how these re-
straints are satisfied, the optimization process can produce
one consensus model or an ensemble of models.

One intrinsic characteristic of Hi-C data hindering the
conformation search is that chromosomal contacts are of-
ten inconsistent because the data are captured from millions
of cells of the same cell line and the genome structures of
the cells may vary despite the similarity between them. Be-
cause of this inconsistency, e.g. some contacts may exist in
one genome structure but not in another one, chromoso-
mal contacts and their derived distance restraints cannot
be satisfied all together in one structural model. Therefore,
during the reconstruction of the genome or chromosome
conformation, it may be better not to penalize the violation
of inconsistent restraints that are not supposed to be satis-
fied. In this spirit, we derived an objective function using the
Lorentzian function that can reward the satisfaction of con-
sistent restraints whose value is not affected by the violation
of inconsistent restraints. Specifically, a form of the bell-
shape Lorentzian function was used to quantify the satisfac-
tion of each contact restraint. This function is differentiable
and continuous so that the optimization can be solved effi-
ciently using gradient-based optimization techniques. Our
recently published method, MOGEN, (17) also implements
the idea of not severely penalizing the violation of incon-
sistent restraints. The method doesn’t require a function
to translate interaction frequencies of contacts to spatial
distances like most restraint-based methods. It is also ro-
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bust to noise and capable of reconstructing genome models
utilizing both inter-and intra-chromosomal contacts. How-
ever, the method has several parameters that need to be
tuned. Our method introduced here (LorDG - Lorentzian
3D Genome) requires a function to translate interaction fre-
quencies into spatial distances, but has only one parameter
that can be found automatically.

We benchmarked LorDG together with existing meth-
ods (12–14). These methods use a similar approach in de-
riving distance restraints from contacts, but differ in how
restraints are satisfied. The result shows that our method
is significantly more robust to noise or inconsistency than
the method that utilizes the squared loss function, and per-
forms better than probabilistic methods on noisy data sets.
We also tested our method on real Hi-C data sets of the
cell lines GM06990 (1) and GM12878 (20) and validated
models with FISH data. The reconstructed models of chro-
mosomes and genomes possess the known features of the
human chromosome and genome, such as chromosome ter-
ritories, the clustering of small chromosomes except chro-
mosome 18, in the nucleus center.

MATERIALS AND METHODS

We model chromosome/genome structures as a series of
beads with each bead representing a chromosomal fragment
(subsequence) of a specific length (e.g. 1 Mb or 500 Kb).
The position of each bead is represented by three coordi-
nates (x, y, z) in 3D space. The number of contacts between
beads (i.e. interaction frequency (IF) can be computed from
raw reads of Hi-C data (1)). And the Hi-C data of a genome
or a chromosome can be summarized as an n-by-n matrix M
(contact matrix), where n is the number of beads, and each
element in the matrix (M[i,j]) contains the IF between bead i
and bead j. n determines the resolution of a contact matrix,
i.e. a larger n (i.e. a smaller bead length) leads to a higher
resolution.

Conversion of interaction frequency to spatial distance

An important component of restraint-based
genome/chromosome structure modeling methods is
a function to convert chromosomal contacts into spatial
distances between beads. These converted distances are
called ‘wish’ distances because they are just theoretical
approximations of exact spatial distances in 3D and may be
in conflict with each other. The conversion function plays
a crucial role in determining the quality of reconstructed
models. However, currently, there is no exact function that
can accurately capture the relationship between chromo-
somal contacts derived from experimental Hi-C data and
true spatial distances. Moreover, this distance function
can vary for different cell types and contact matrices at
different resolutions. Despite these challenges, a commonly
used approximation function that converts interaction
frequency to distance is dij = 1

I Fα
ij

, where I Fij and dij are

the interaction frequency and the spatial distance between
the two beads, respectively (1,11–14). Some methods try to
optimize α (11,13,14) instead of using a fixed value. Our
method utilizes this conversion function and searches for

Figure 1. Lorentzian function. When x = d (the contact distance is satis-
fied), the function is maximized; when x is very far from d (the contact is
violated seriously), it becomes flat and its value is very small.

the best α within [0.1, 3.0] with a step-size of 0.1. This
range covers most previously used values for α (11–13).

The Lorentzian objective function for spatial optimization

We used a simple form of the Lorentzian function,
c∗c

c∗c + (x−d)2 , to quantify the satisfaction of distance re-
straints, where c and d are constants determining the wide-
ness and the peak point of the bell curve as illustrated in
Figure 1. The objective function, f n, for spatial optimiza-
tion is formulated as below:

f n =
∑

|i−j|=1

c ∗ c ∗ I Fmax

c ∗ c + (
xij − dij

)2
+

∑
|i−j|�=1

c ∗ c ∗ I Fij

c ∗ c + (
xij − dij

)2
,

where I Fmax is the maximum of I Fs, dij is the wish distance
between beads i and j and xij is the spatial distance between
beads i and j in a 3D model. The optimization goal is to find
a chromosome or genome conformation that maximizes
this objective function, which aims to reduce the difference
between xij and dij. Although the objective of this function
is similar to traditional squared-error function (

∑
I F2

ij (xij -
dij)2), they behave quite differently during the optimization
process.

A special characteristic of the Lorentzian function is that
its derivative is very small almost everywhere except along
the two slopes of the curve centered at the wish distance d.
In order to maximize the objective function using its gradi-
ent, c is set to the average distance of wish distances so that
most of restraints will have a non-zero derivative during the
optimization process. Although inconsistent restraints that
generally have low IFs cannot be satisfied, they barely affect
the satisfaction of other restraints because their violation
doesn’t influence the value of the objective function. There-
fore, this objective function can help maximize the number
of satisfied restraints that are consistent. In the case of us-
ing the squared loss function, the optimization process will
try to prevent inconsistent restraints from being seriously
violated and thus may not be able to maximize the number
of consistently satisfied restraints. Another disadvantage of
the squared loss function is that it can be dominated by a
few noisy contacts (outliers).

Maximization of the objective function

We used the gradient ascent optimization with adaptive step
sizes to adjust the position (x, y, z coordinates) of each bead
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in order to maximize the Lorentzian objective function. The
search for a new step size was performed only when the ob-
jective (scoring) function stops increasing. Starting from a
randomly initialized structure, the objective function was
maximized iteratively and the final model was outputted
when the convergence condition was met. This gradient as-
cent optimization may produce different models in differ-
ent runs. Intuitively, we expect that, when there is a major
group of consistent restraints, the optimization process will
always manage to satisfy this group of restraints. However,
when there is no major group of consistent restraints, ev-
ery group of consistent restraints can be satisfied in differ-
ent runs. Indeed, as demonstrated in Section 3, when the in-
put was intra-chromosomal contacts of low resolution, the
optimization produced similar models because a majority
group of consistent restraints existed. But when the input
included mostly inconsistent inter-chromosomal contacts,
the optimization process produced different models in dif-
ferent runs and these models might represent the structures
of sub groups of cells in the whole population of cells used
to produce the Hi-C data.

Preparation of synthetic data sets

We simulated 13 artificial chromosomal contact data sets
from the theoretical 3D model of the yeast chromosome 4
(19) to test our method and compare it with the four meth-
ods implemented in (13). The chromosome was represented
by 122 fragments (beads). This model serves as a true model
or a gold standard model to test if methods can reconstruct
models that are similar to this model. We tried to use the
whole model with 3047 beads, but other methods used to
compare with our method could not handle the input data
at this resolution or took too long to run, even though it
only took minutes for our method to run on the same com-
puter. So we reduced the resolution to 122 beads to perform
the experiment and comparison.

We simulated the interaction frequencies using Poisson
distribution (13) as follow:

I Fij = P
(
βdγ

ij

)

Where γ = −1 and dij is the Euclidian distance between
the fragment i and j in the true model. In (13), the authors
selected γ = −3 by assuming a fractal and/or equilibrium
globule polymer model for mammalian DNA (1). However,
such a model has been ruled out by the authors later (21).
Nevertheless, the choice of γ to produce synthetic data set
for testing methods should not matter as long as methods
tested on the data are provided with true γ or are able to
find the true value of γ (or α = 1

γ
). In our comparison of

these methods, the methods that cannot search for values
for γ were provided with the true value.

To reduce numerical error, dij is divided by the average of
all distances. The scaling factor β doesn’t affect the noise
level itself because all IFs are scaled by the same factor.
However, the Poisson distribution draws only discrete value,
therefore, if βdγ

ij is a small non-integer number, the ratio
P(βdγ

ij )

βdγ

ij
could be far from 1.0, which means that the obtained

I Fij = P(βdγ

ij ) is very noisy. When βdγ

ij is large, the ratio
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Figure 2. Signal to noise ratio of data sets generated with different value
of β.

P(βdγ

ij )

βdγ

ij
is often close to 1.0 and the obtained I Fij = P(βdγ

ij )

is less noisy. The role of β is to scale interaction frequencies
to control the noise level of simulated interaction frequen-
cies. In our experiment, β in the range [1-20] gives reason-
able levels of noise to evaluate methods. Each value of β,
we generated one data set and measured the signal to noise
ratio (SNR), the higher the SNR, the better quality the data
set is. The signal to noise ratio of data sets are reported in
the Figure 2. This value of β and the signal to noise ratios
are different from (13) because the scale of the model used
here and in the model in (13) is different. When dγ

ij is large,
a small value of β is required to produce sufficient noise.

SNR =
∑

I Fij√∑ (
βdγ

ij − I Fij

)2

Normalization of the real Hi-C data

We used two real Hi-C data sets in (1,20) to reconstruct
chromosome and genome structures with our method.
These data sets were generated from millions of human B-
cells (GM06990, GM12878). Because the real-world Hi-C
data often suffers from several sources of biases and exper-
imental noises (20,21), the data needs to be normalized be-
fore 3D model reconstruction. The data set in (20) was al-
ready normalized by KR normalization (20). For the data
set in (1), we normalized the intra-chromosomal contact
data (i.e. contacts between fragments in the same chromo-
some) using the iterative correction normalization method
(21). This iterative correction normalization does not as-
sume any specific source of biases as other normalization
methods (20,22) do. It is also highly effective in that it can
highlight structural patterns from the background and thus
help satisfy restraints derived from contacts better. When
dealing with the data set of the whole genome consisting of
both intra-chromosomal and inter-chromosomal contacts
(i.e. contacts between two different chromosomes), we tried
the iterative correction normalization and coverage nor-
malization (1). The coverage normalization led to models
with higher scores and more satisfied contacts. Therefore,
we applied the coverage normalization protocol (1), which
is just one iteration of the iterative correction normalization
method.
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Measurement of structural similarity

To measure the similarity between reconstructed models
and the true synthetic model, we used both Spearman’s
correlation and root mean square error (RMSE). RMSE
has been widely used to measure the similarity between 3D
structures. Its formula is given as:

RMSE =
√

1
n

∑ (
dij − d ′

ij

)2
,

where dij and d ′
ij are the distance between beads i and j in in

two 3D models and n is the number of pairwise distances. In
order to use RMSE, the two structures must be compared
at the same scale. We approximately achieved this by scaling
all pairwise distances of one model such that the two models
have the same average pairwise distance. Another limitation
of RMSE is that it can be dominated by a few large errors.
Thus, we also used Spearman’s correlation between pairwise
distances of reconstructed models and the true model. The
closer to 1 the correlation, the better is the reconstructed
model.

To determine the value of the α parameter of the formula
of converting IF to distance, we computed the Spearman’s
correlation between reconstructed distances and wish dis-
tances. We selected the value of α that produced the highest
correlation.

RESULTS AND DISCUSSION

Determine the parameter of the function converting IF to wish
distance

In 3D model reconstruction by our method, interaction fre-
quencies are first converted to Euclidian distances using
the formula dij = 1

I Fα
ij

. Because interaction frequencies of-

ten contain noise and α is unknown, converted distances
(dij) are not equal to exact true distances and not all of them
can be realized in 3D models.

We performed a line search within a range [0.1, 4.0] with
a step size of 0.1 to find the best α in term of Spearman’s
correlation between reconstructed distances and wish dis-
tances. We tested this approach on a synthetic dataset to
see if our method was capable of determining a reasonable
value of α to reconstruct models that were close to the true
model. The data set generated with β = 10 was used as the
input. Figure 3 shows how the Spearman’s correlation be-
tween reconstructed distances and wish distances changed
as α varied within [0.1, 4.0]. The correlation was peaked
at α = 1.1. We measured the similarity of reconstructed
models with the true model to see which α really gives the
best model. Figure 4 shows these correlations. The model
generated with α = 1.3 is actually the most similar model
to the true model (correlation is 0.995). When α = 1.1,
our method generated the second most similar model to the
true model with correlation of 0.994, which is very close to
the most similar model. This suggests that our method can
find a reasonable value for α. In general, our method first
searches for the best α according to the correlation between
reconstructed distances and input interaction frequencies,
and then reconstructs models with this α.
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Structure reconstruction using the synthetic data and com-
parison with Pastis, ChromeSDE, Shrec3D and MOGEN

We compared our methods with four methods implemented
in (13) and with ChromSDE (14), Shrec3D (12) and MO-
GEN (17) using the synthetic data sets. The first four
methods include two classic multidimensional scaling meth-
ods (metric multidimensional scaling – MDS2 and non-
metric multidimensional scaling – NMDS) and two statisti-
cal methods using a Poisson distribution (PM1 and PM2).
MDS2 directly infers the coordinates of beads from their
pairwise Euclidean distances. NMDS relies on the assump-
tion that, if I Fij > I Fkl, then dij should be shorter than dkl,
in order to derive an objective function to optimize. PM1
and PM2 model IFs as Poisson random variables, and then
try to maximize the likelihood of observing these IFs. While
PM1 needs a formula as the prior knowledge to convert the
spatial distance to the Poisson intensity, PM2 (also called
Pastis) can automatically adjust the formula to infer models
that best explain the observed IFs. All four methods gen-
erate a consensus model given an input data. The MDS2
method uses the squared loss function (sum of weighted
square of errors as the loss function) during optimization.
So it serves as a good comparison with our proposed objec-
tive function. MDS2, NMDS, PM1 were provided with the
true value of α to convert IFs into wish distances before spa-
tial optimization. However, models generated by PM1 are
very different from the true models in all cases, we suspected
that PM1 has implementation problems and therefore did
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Figure 5. Spearman’s correlation of reconstructed model and the true
model on the synthetic data with respect to different levels of noise.

not include PM1 in the comparison. MDS2, NMDS and
PM2 were run with 500 iterations (default is 100 iterations).

ChromSDE uses semi-definite programming techniques
to fit the observed data and jointly optimizes the 3D model
and α together. Shrec3D corrects wish distances by a short-
est path algorithm and then uses distance geometry to solve
for coordinates of 3D models. MOGEN is different from
the other methods in that it does not assume a mathematical
formula for the relationship between interaction frequencies
and spatial distances. It relies on the concept of contact and
non-contact to devise soft restraints and build models that
satisfies as many soft restraints as possible. The setting of
this comparison, where the exact formula for the relation-
ship between interaction frequencies and spatial distances is
known, could underestimate the performance of MOGEN
and favors other methods. In real Hi-C data, the relation-
ship can be approximated only and therefore, another layer
of noise would be produced from the approximation.

To see the effect of using Lorentzian function and to com-
pare it with MDS2 and Shrec3D, we implemented a vari-
ant of LorDG, which is called LorDG1, where the objec-
tive function is similar to the objective function of MDS2
but the squared-loss function is replaced by the Lorentzian
function. The objective function f n1 is given as:

f n1 =
∑ c ∗ c ∗ I F2

ij

c ∗ c + (
xij − dij

)2

We compared the performance of eight methods LorDG,
LorDG1, MDS2, NMDS, PM2, ChromSDE, Shrec3D and
MOGEN. LorDG1 also searched for the best α and then
built 3D models for each input data. We use the correla-
tion and RMSE of generated models with the true model
to compare methods.

The results are shown in Figures 5 and 6. In term of
correlation, ChromSDE, LorDG and LorDG1 performed
better than the other methods, and LorDG1 seemed to be
the most robust method when the input data were very
noisy. However, when considering RMSE, ChromSDE was
the best method, LorDG was slightly better than LorDG1,
and both of them were better than other methods. Over-
all, ChromSDE, LorDG and LorDG1 performed well and
better than the other methods. ChromSDE was the best
when the input data were not too noisy, while LorDG and
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Figure 6. Root mean square error (RMSE) between reconstructed models
and the true model of the five methods on the synthetic data with different
levels of noise.

LorDG1 were slightly better than ChromSDE if the in-
put data were very noisy. However, one major limitation of
ChromSDE was that it could not scale up well to large struc-
tures because of its implementation in Matlab and usage of
matrices. ChromSDE could not handle an input data with
more than about three hundreds of points in our machine
(with 8 GB RAM).

LorDG1 was better than LorDG when the input was very
noisy, which was expected because noisy contacts often have
low IFs, therefore, assigning I F2 as weights prioritizes sat-
isfaction of reliable contacts (high IFs). However, assigning
weights also forces reconstructed distances to be close to
wish distances for contacts with high IFs and makes sat-
isfying contacts with lower IFs more difficult. Because of
that, LorDG1 was better than LorDG when the input data
are very noisy and LorDG was better when the input was
less noisy.

LorDG and LorDG1 outperformed MDS2 using the
weighted squared loss function in term of both correla-
tion and RMSE. They also outperformed PM2 and NMDS.
Overall, the results show that using the Lorentzian loss
function produced better results than using the squared er-
ror function or the probabilistic method PM2.

Local maximum in LorDG

The objective function of LorDG is non-convex so that the
optimization can converge to a local maximum. We opti-
mized the objective function by gradient ascent and always
initialized models randomly. Thus, different runs are very
likely to converge to different local maximums. However,
our intuition is that if there is a majority of consistent re-
straints, models at different local maximums should satisfy
these restraints and thus be similar to each other. If there is
no major group of consistent restraints, models at different
local maximums may not be similar to each other. We tested
this hypothesis by generating two ensembles of 50 models
at two different noise levels β = 1 and β = 10 and mea-
sured the similarity in term of correlation of models from
the same ensemble. At β = 1 (the noisiest level), the aver-
age correlation between models was 0.937 (minimum, max-
imum and standard deviation were 0.88, 0.99 and 0.0177,
respectively). While at β = 10 (less noisy), the average cor-
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relation was 0.996 (minimum, maximum and standard de-
viation were 0.93, 0.99 and 0.0020, respectively). The results
show that, when the input data were less noisy, models gen-
erated in different runs were more similar even though they
were randomly initialized and might converge to different
local maximums.

Reconstruction of the structures of human
chromosomes/genome from real Hi-C data

We applied LorDG to the Hi-C data of the human genome
to reconstruct the 3D structures of chromosomes at 1 Mb
and 500 Kb resolution and the structure of the entire
genome at 1 Mb resolution. Because the interaction of two
homologous chromosomes cannot be separated, the struc-
ture for each pair of homologous chromosomes was gener-
ated from the contacts associated with the pair rather than
each individual chromosome, that is each pair of chromo-
somes with the exception of sex chromosomes X and Y was
treated as one single entity during the modeling as most
other methods in the literature do.

Reconstruction of chromosome structures

For each contact matrix input of one pair of chromo-
somes, we generated an ensemble of 50 structures by run-
ning LorDG 50 times on the same input data. The models
were initialized randomly and might converge to different
local maximums in these runs. We measured the quality of
structures in term of Spearman’s correlation between recon-
structed distances and wish distances.

We also calculated the similarity between structures in the
same ensemble using Spearman’s correlation. The Spear-
man’s correlation between all pairs of structures in the same
ensemble were computed and averaged. This averaged cor-
relation is considered as the similarity score of structures in
the ensemble. For all chromosomes, the correlation between
structures was greater than 0.8, suggesting that structures
generated in different runs were similar. For instance, the
similarity score of the structures of chromosome 1 at 1 Mb
was 0.95, with standard deviation, min and max as 0.02,
0.91 and 0.99, respectively, and the similarity score at 500
Kb resolution was 0.91, with standard deviation, min and
max were 0.03, 0.81 and 0.99. Rows (1) and (2) in Table 1 of
the Supplementary Material report the similarity scores of
structures generated in different runs of each chromosome
at 1 Mb and 500 Kb resolution, respectively.

The quality of structures in the ensemble was assessed us-
ing the Spearman’s correlation between reconstructed dis-
tances and wish distances. Most of these correlations were
larger than 0.7, indicating that the reconstructed structures
are of good quality. Rows (1) and (2) in Table 1 report the
quality scores of structures of each chromosome at 1 Mb
and 500 Kb resolution, respectively.

Evaluation of the modeling stability against the change of res-
olution

We compared the structures of the same chromosome re-
constructed at 1 Mb and 500 Kb resolution. The structures
at 500 Kb resolution were reduced to the size of a 1 Mb

Figure 7. The superposition of the structures of chromosome 1 at 1 Mb
and 500 Kb resolution.

structure by averaging every two consecutive points. The
Spearman’s correlation between all pairs of 1 Mb structures
and reduced 500 Kb structures was computed and averaged.
For chromosome 1, the Spearman’s correlation between 1
Mb structures and 500 Kb structures is 0.9. Figure 7 shows
the superimposition of a 1 Mb structure and a 500 Kb struc-
ture of Chromosome 1, demonstrating that they are similar.
The scores of other chromosomes are shown in Row (3) of
Table 1. Except chromosomes 14 and 19, the correlations
for other chromosomes are greater than 0.7, suggesting that
the models at 1 Mb and corresponding models at 500 Kb are
consistent.

Comparison with ChromSDE and Verification with FISH
data

We used ChromSDE to build a model of chromosome 14
of the cell line GM06990 at 1 Mb and compared it with the
50 models reconstructed by LorDG. The average correla-
tion was 0.91 (minimum, maximum and standard deviation
are 0.88, 0.94 and 0.02), which indicates that models recon-
structed by ChromSDE and LorDG are highly similar.

We used the chromosome 14 models of LorDG to com-
pare with FISH data obtained in (1). Four 3D-FISH probe
positions on chromosome 14 were analyzed, which showed
that L3 tended to be closer to L1 than to L2, though L2 lied
between L1 and L3, and L2 tended to be closer to L4 than
to L3, despite that L3 was between L2 and L4 (1). We mea-
sured the distances L1-L3, L2-L3 and L2-L4 in our models.
And the distance L2-L3 was consistently larger than L1-L3
and L2-L4 in all models. Figure 8 shows a model recon-
structed by LorDG with four probes, L2 is closer to L4 than
to L3 and L3 is closer to L1 than to L2. The model recon-
structed by ChromSDE is also consistent with the FISH
Data. The distances of L1-L3, L2-L3 and L2-L4 in the
model of ChromeSDE are 56.2, 81.7 and 34.9, respectively.
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Table 1. Evaluation of chromosome structures

Chr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

(1) 0.78 0.77 0.78 0.86 0.84 0.81 0.78 0.84 0.84 0.80 0.79 0.80 0.8 0.76 0.81 0.75 0.7 0.75 0.75 0.77 0.88 0.74 0.86
(2) 0.87 0.85 0.77 0.84 0.85 0.82 0.83 0.82 0.81 0.8 0.82 0.82 0.75 0.74 0.74 0.81 0.82 0.7 0.84 0.79 0.86 0.77 0.83
(3) 0.9 0.92 0.79 0.93 0.93 0.94 0.94 0.93 0.84 0.92 0.93 0.95 0.82 0.67 0.77 0.89 0.85 0.84 0.68 0.89 0.72 0.89 0.94

Row (1) Quality of models at 1 Mb resolution. Row (2) Quality of models at 500 Kb. Row (3) Similarity of models at 1 Mb and 500 Kb resolution.

Figure 8. Distances between four fluorescence in situ hybridization (FISH)
probes in the model of chromosome 14 reconstructed by LorDG. L1, L2,
L3 and L4 denote four probes. The distances between probes are labeled
along the virtual line segments connected them.

Loop realization at peak loci

We used the data set in (20) to test if LorDG was able
to reconstruct loops at peak loci predicted in the data set.
There are four loops on four different chromosomes (chr.11,
chr.13, chr.14, chr.17) of the cell line GM12878 that were
confirmed by 3D-FISH (20), and thus, we chose to build
3D model for fragments that contains these four loops to
test LorDG. Three FISH probe positons L1, L2 and L3
were analyzed to confirm these loops. Peak loci L1, L2 lie
close to each other and make up a loop while L2 and L3 are
far away from each other although they have the same ge-
nomic distance as L1-L2. 3D models of fragments of 10 Mb
long at 10 kb resolution that contain the loops were built
by LorDG. We observed these four loops in all 3D models
of the fragments reconstructed by LordDG. Locations of
the fragments and FISH probes and their distances in 3D
models are included in Table 2. The distance L1-L2 is al-
ways significantly shorter than the distance L2-L3. Figure

9 shows loops in 3D models. L1-L2 form loops while L3 is
further away from L2. This result validates 3D models re-
constructed by LorDG and demonstrates the potential of
using LorDG to predict loops or verify loops predicted by
other computational methods.

Reconstruction of the 3D structures of the entire human
genome

From the normalized IF matrix of the whole genome at
1 Mb resolution, we generated an ensemble of 50 genome
structures. The similarity between structures in the ensem-
ble was computed. Unlike chromosome structures, genome
structures in the same ensemble were different from each
other. The average Spearman’s correlation between all pairs
of structures was 0.32, with standard deviation, min and
max of 0.04, 0.23 and 0.50, respectively. However, the chro-
mosome structures extracted from different genome struc-
tures were still similar to each other. For instance, the aver-
age Spearman’s correlation between the structures of Chro-
mosome 1 extracted from the 50 genome structures was
0.86, with standard deviation, min and max of 0.05, 0.62
and 0.98, respectively. This result suggests that the dissim-
ilarity between genome structures comes mostly from the
variability of the orientations of chromosomes rather than
the structures of individual chromosomes. This is consis-
tent with the fact that inter-chromosomal contacts often
have very small IF in comparison with intra-chromosomal
contacts, e.g. mean of IFs of inter-chromosomal contacts
is 0.77 while mean of IFs of intra-chromosomal contacts
is 4.99 and 77.7% of inter-chromosomal contacts with IF
less than 1.0 while 84.2% of intra-chromosomal contacts
with IF larger than 1.0. Because of this, it is likely that
inter-chromosomal contacts are less conserved than intra-
chromosomal contacts in different cells.

Despite the dissimilarity between genome structures, they
still share some similar structural patterns that are consis-
tent with some known knowledge about the human genome.
Figure 10 shows a reconstructed genome structure that has
the chromosome territory feature (23,24). That is, although
chromosomes touch with each other at their borders, they
generally maintain their own space and do not mix up with
each other.

We calculated the center of the mass of each chromosome
and of the whole genome and the distances between these
centers. These distances were averaged over all genome
structures. The heat map of averaged distances is shown
in Figure 11. The center of the mass of the genome is la-
beled as 0 and chromosome X and Y are labeled as 23 and
24, while the other chromosomes are labeled by their index
from 1 to 22. The intensity of red color corresponds to spa-
tial proximity. Small chromosomes (17, 19, 20, 21 and 22)
except chromosome 18 are closer to each other and cluster
together near the center of the mass of the genome. Chro-
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Figure 9. Loop and peak loci (L1, L2) on fragments of (A) Chr. 17, (B) Chr. 14 (C) Chr. 11 and (D) Chr.13.

Table 2. Fragments that contain loops and distances of peaks in 3D models

Fragment Chr. Start (Mb) End (Mb) L1 (position, Mb) L2 (position, Mb) L3 (position, Mb) L1-L2 L2-L3

1 17 60.00 70.00 66.76–66.79 67.22–67.25 67.68–67.71 0.3 4.7
2 14 65.00 75.00 71.60–71.63 72.20–72.23 72.80–72.83 0.3 2.6
3 11 125.00 135.00 130.72–130.75 130.29–130.32 129.86–129.89 0.3 3.3
4 13 80.00 90.00 86.37–86.40 85.46–85.49 84.55–84.58 0.8 6.6

Columns 3 and 4 list the start and end position of each fragment, Columns 5, 6, and 7 the start/end position of probes L1, L2 and L3, and Columns 8 and 9 the distance of
L1-L2 and L2-L3.

mosome 18 lies near the periphery. This is consistent with
previous studies (25–27).

In contrast, the large chromosomes lie near the periph-
ery. We also observed a striking feature that large chro-
mosomes have telomeres and/or elongated regions intrud-
ing into the genome center to interact with small chro-
mosomes as shown in Figure 12. To quantify the satisfac-
tion of inter-chromosomal contacts, we computed the inter-
chromosomal contact matrix between chromosomes and
then calculated the correlation between this matrix and the
distance heat map between chromosomes (lower distances
are expected for higher IFs). The correlation is −0.386 in-

dicating that a portion of inter-chromosomal contacts had
been satisfied.

Running time

LorDG is relatively fast. We ran all experiments in a PC
with Intel Core i5-2400 3.1 Ghz and 8.00 GB RAM. It took
about a minute to reconstruct a chromosome structure at 1
Mb or 500 Kb resolution. For genome structures at 1 Mb
resolution with 2911 beads, it took LorDG about 2 minutes
to generate a model.
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Figure 10. A genome structure with chromosome in different colors
demonstrating the existence of chromosome territories.

Figure 11. Distances between centers of the mass of chromosomes and of
the genome. The intensity of red is proportional to proximity. Small chro-
mosomes (17, 19, 20, 21 and 22), except chromosome 18, cluster near the
center of the genome, as shown by their close proximity to the center of the
genome.

CONCLUSION

We present a novel method to reconstruct 3D chromo-
some and genome structures from Hi-C data. The core
of the method is an objective function that can tolerate
inconsistent/noisy restraints and maximize the number of
realistically satisfied restraints. The method was tested on
both synthetic and real Hi-C data sets. And it performed
very well among a panel of eight methods on the syn-

Figure 12. Telomeres and/or elongated regions of large chromosomes in-
trude into the nucleus center (the red circle), where small chromosomes are
located, but not shown for the purpose of clarity.

thetic data. The models reconstructed by our method from
real Hi-C data sets were validated by 3D-FISH data. And
they exhibit known features of the human chromosome and
genome such as, chromosome territories and the cluster of
small chromosomes, except chromosome 18, in the nucleus
center. This result demonstrates that our method is useful
for modeling the architecture of the human chromosome
and genome from Hi-C data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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