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Abstract

Background: The advent of —omics technologies has enabled the resolution of fine molecular differences among

individuals within a species. DNA sequence variations, such as single nucleotide polymorphisms or small deletions,
can be tabulated for many kinds of genotype comparisons. However, experimental designs and analytical approaches
are replete with ways to overestimate the level of variation present within a given sample. Analytical pipelines that do
not apply proper thresholds nor assess reproducibility among samples are susceptible to calling false-positive variants.
Furthermore, issues with sample genotype identity or failing to account for heterogeneity in reference genotypes may

lead to misinterpretations of standing variants as polymorphisms derived de novo.

Results: A recent publication that featured the analysis of RNA-sequencing data in three transgenic soybean event
series appeared to overestimate the number of sequence variants identified in plants that were exposed to a tissue
culture based transformation process. We reanalyzed these data with a stringent set of criteria and demonstrate three
different factors that lead to variant overestimation, including issues related to the genetic identity of the background
genotype, unaccounted genetic heterogeneity in the reference genome, and insufficient bioinformatics filtering.

Conclusions: This study serves as a cautionary tale to users of genomic and transcriptomic data that wish to assess the
molecular variation attributable to tissue culture and transformation processes. Moreover, accounting for the factors
that lead to sequence variant overestimation is equally applicable to samples derived from other germplasm sources,
including chemical or irradiation mutagenesis and genome engineering (e.g.,, CRISPR) processes.
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Background

The process of genetic transformation typically involves
inserting DNA sequences originating from one species
into the genome of another species. This tool has been
used to add traits into crop species, such as herbicide
tolerance in soybean and root worm tolerance in corn
[1-4]. The commercialization of transgenic products is
subject to tight regulation, as transgenic strains must
undergo intense safety testing before being brought to
market [5]. The testing phase involves confirmation of
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the intended trait encoded by the transgene, and con-
firmation that the transgenic plant does not have unin-
tended consequences that may be detrimental to the
environment or to the consumer [6]. Adverse effects are
generally characterized in two categories: effects from
the transgene itself, and effects that arise from mutations
resulting from gene insertion or the tissue culture
process. As a result, safety testing ensures that unin-
tended DNA-level changes are not present in commer-
cialized products (7, 8].

With the recent revolution in high-throughput
sequencing technology, there is now increased interest
in understanding the molecular nature of transgenic
events, and identifying possible safety implications of
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unintended molecular changes that may result. This in-
formation may be useful in assessing the likelihood that
a particular event will express the intended trait(s) with-
out detrimental unintended effects.

Molecular studies have previously characterized the ef-
fects of transgenesis in several different plant species, fo-
cusing on the sequence changes at transgene integration
sites [9, 10] and/or the sequence changes genome-wide
[11-19]. While no clear consensus has emerged, studies
utilizing sequence-level resolution have reported a range
of possible sequence changes in transgenic plants, includ-
ing frequent observations (e.g., small deletions occuring
adjacent to the integration site) and less frequent occur-
ances (e.g., translocations between chromosomes).

A curious discrepancy in genome-wide sequence poly-
morphisms has been observed in recent resequencing
studies of transgenic soybean. One study, published by
our group [20], resequenced two independent transgenic
T1 plants, and respectivley found only two and 18 single
nucleotide polymorphisms (SNPs) genome-wide (along
with deletions adjacent to the integrated transgene, as
has been previously observed in other plant transform-
ation studies). In contrast, Lambirth et al. [21, 22]
reported high rates of molecular variation among trans-
genic soybean plants, both in terms of transcriptomic
changes and DNA sequence changes. The authors ana-
lyzed RNA-sequencing (RNA-seq) data on families from
three different transgenic events and reported thousands
of sequence variants per plant, focusing on SNPs and
small insertion-deletion (indel) variants. They reported
tens of thousands of sequence variants in these plants,
including approximately 1000 to 7700 variants that were
unique to each of the three event series. This contrast
between studies is even more surprising considering that
Anderson et al. [20] searched genome-wide while
Lambirth et al. [22] searched only the transcribed por-
tion of the genome. Both groups were studying the same
species (soybean) transformed by similar methods
(Agrobacterium-mediated transformation of cotyledon-
ary nodes) [23] and resequenced using similar chemis-
tries (Illumina short-read).

Given the importance and real-world relevance of this
topic, it is imperative to resolve the discrepancy between
the Anderson et al. [20] and Lambirth et al. [21, 22]
studies. We are not aware of any transgenic resequen-
cing studies that have reported mutations rates similar
to those published by Lambirth et al. [22]. Therefore,
the current study focuses on a reanalysis of the Lambirth
et al. [22] dataset, applying a more stringent analytical
pipeline. The outcome of this reanalysis demonstrates
that the Lambirth et al. [21, 22] studies overestimated
the transcriptional and DNA sequence variation in the
transgenic plants. These findings provide insight into the
importance of identity preservation of genotypes,
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awareness of genomic heterogeneity within cultivars,
and leveraging bioinformatics filters and replicated data
as a way to minimize false positives.

Results and discussion

Primary source of variation in transgenic event series 764:
Incorrectly identified genetic background

Lambirth et al. [21, 22] performed RNA-seq analyses of
27 transgenic plants, including nine individuals each se-
lected from three different transgenic series known as
ST77, ST111, and 764. They reported that all three of
these transgenic series were developed in the genetic
background of cultivar “Williams 82’. As a control, they
also performed RNA-seq on nine individuals of
‘Williams 82, thus resulting in a total of 36 RNA-seq
samples in the study. As “Williams 82’ was also the geno-
type used to develop the soybean reference genome [24],
all of the mutations reported by [22] were identified sim-
ply by comparing their transcriptome sequence to the
reference genome. The authors reported surprisingly
high mutation frequencies in both the transgenic and
control plants, particularly the 764 transgenic event
series. As de novo mutations caused by the tissue cul-
ture or transgenesis pathway are expected to be unique
to a given event, the authors calculated the number of
unique event-specific mutations in each series compared
to the other groups/series in the study (i.e., the number
of mutations in one series that is not shared by the other
two series of transformants or the control “Williams 82’
plants). They reported a unique polymorphic SNP count
of 981 in event ST77, 927 in event ST111, and 7717 in
event 764. This discrepancy matched their earlier ana-
lysis of gene expression variation among three series,
where series 764 exhibited much greater expression vari-
ation as compared to controls than did the other two
transgenic groups [21].

Two findings in the Lambirth et al. [22] mutation ana-
lysis stand out: (1) The SNP frequencies were much
higher than other similar studies of soybean [20] and
model plant species [11-19], particularly considering that
only the transcribed portion of the genome was being ana-
lyzed; (2) Even with the generally high mutation rates re-
ported, the 764 series is still an outlier. To cross-validate
the findings of this analysis, we downloaded and reana-
lyzed the raw RNA-seq data from these studies.

Using the GATK Best Practices workflow [25, 26], we
re-generated polymorphic SNP lists from all 36 samples
of RNA-seq data used [21, 22]. As stated above, de novo
SNPs generated by tissue culture or transformation
would be expected to be unique to each respective trans-
genic event. Therefore, we focused our analysis on SNPs
that were unique to only one of the four groups (e.g.,
SNPs observed as an alternative base in one transgenic
series, while matching the reference genome sequence in
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the other two transgenic series and the ‘Williams 82’
controls). Given that the transgenic plants were
self-pollinated for several generations after transform-
ation, the SNPs derived from the tissue culture or trans-
formation process are expected to be predominantly
homozygous. Therefore, we filtered our initial lists for
homozygous SNPs that are uniquely polymorphic
relative to the reference genome, compared to the
other transgenic lines and ‘Williams 82’ controls
(Additional file 1: Figure S1). This analysis and filtering
pipeline differed from the Lambirth et al. [22] pipeline in
at least four critical ways: (1) The GATK Best Practices
workflow imposed a higher standard for calling variants
(see Methods section); (2) we did not include heterozy-
gous calls; (3) we did not include heterogeneous SNPs
among the nine samples of any group (the three trans-
genic series or controls); (4) we required at least six out of
the nine samples within each group to exhibit the same
homozygous base call.

The analysis and filtering pipeline described above was
designed to prevent false-positive SNP calls. Nevertheless,
the pipeline was able to detect nearly 10,000 SNPs among
the transgenic samples (Table 1, Additional file 2: Table
S1). However, the distribution of SNPs among the geno-
types was substantially different than what was reported
previously [22]. Almost all of the unique SNPs that we
identified were found in transgenic series 764 (9738 out of
the 9884 SNPs). Meanwhile, only 143 and 3 SNPs, re-
spectively, were identified in ST77 and ST111 (Table 1).

We postulated that the discrepancy exhibited by the
764 series might have resulted from experimental error
rather than biological factors. To test this, we compared
the list of SNPs we generated (Table 1, Additional file 2:
Table S1) with a list of pre-ascertained SNPs that were
previously used to genotype the entire USDA soybean
germplasm collection [27]. We found that 525 of the
SNPs that were unique to series 764 also matched the
genome positions on the pre-ascertained SNP list
(Table 1, Additional file 2: Table S1). We compared the
SNP profile of these 525 SNPs for series 764 with all of
the accessions in the USDA collection. One genotype,
cultivar “Thorne’ (PI 564718) [28], was a nearly perfect
match to series 764 (521 of the 525 SNPs match; Fig. 1).
The four SNPs that did not match between series 764
and ‘Thorne’ were clustered together between positions

Table 1 Number of SNPs identified as unique for each
transgenic line based on reanalysis of the RNA-Seq dataset

764 ST77  ST111 Williams 82
9738 143 3 0

“Unique” SNPs found in
the whole RNA-Seq dataset

“Unique” SNPs found in 525 11 0 0
the RNA-Seq dataset that
overlap with 50 k SNP positions

Page 3 of 9

~4.9 Mb and ~59 Mb on chromosome 15. It is likely
that this interval on chromosome 15 represents a region
of genetic heterogeneity between the individual of
‘Thorne’ used for transformation in the development of
the 764 event and the individual(s) of ‘Thorne’ sampled
for the USDA genotyping effort [27]. While the series
764 profile was a 99.2% match to ‘Thorne’ across the
525 SNPs, the next closest match was ‘Washita® (PI
618809) [29], which was only a 74.2% match. Both
‘Williams” and “Williams 82’ had a 0% match rate to the
525 SNPs in the 764 series (Fig. 1), as would be expected
because the reference genome is based on ‘Williams 82’
and these SNPs were initially identified as polymorphic
between the 764 series and the reference genome.

The clear conclusion from this analysis is that series
764 was developed in ‘Thorne; rather than ‘Williams 82’.
‘Thorne’ is commonly used for soybean transformation
(e.g., [23]). It is clear that the high polymorphism rate
reported in event series 764 is not an unintended conse-
quence of tissue culture or transgenesis. Instead, the ma-
jority (if not all) of the variation reported in this line is
simply standing variation that exists between ‘Thorne’
and ‘Williams 82’. This statement can be applied to all
previous reports of variation observed between these
plants, including gene transcription [21], mutations [22],
or any other characteristic.

Source of variation in transgenic event series ST77: Genetic
heterogeneity between different individuals of ‘William 82’
The relatively lower polymorphism rates found in the re-
analysis of S77 and S111 compared to that of 764
(Table 1) indicated that these groups are likely derived
from the ‘Williams 82’ background. However, standing
variation can persist within soybean cultivars [30], as the
breeding process typically involves bulk harvesting of
breeding populations prior to full fixation of homozygos-
ity through single seed descent. Therefore, most soybean
cultivars are expected to exhibit slight differences from
plant to plant [31, 32], as heterogeneous sub-lines fix
different haplotypes within relatively small (but some-
times large) genomic intervals. For example, previous
genotyping of four different “Williams 82’ sub-lines re-
vealed specific regions of genomic variation on chromo-
somes 3, 7, 15 and 20 [30].

It is relatively intuitive to identify genomic heterogen-
eity between sub-lines of a cultivar, as sub-lines will
show nearly complete homogeny throughout the gen-
ome, interrupted by specific regions with (sometimes
dense) clusters of polymorphisms. We investigated
whether the 143 SNPs identified in our reanalysis of
group ST77 could be explained by this type of standing
heterogeneity between the ‘Williams 82’ controls used in
the study and the “Williams 82 individual that was used
for the original ST77 transformation event [21, 22].
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Indeed, 140 of the 143 SNPs and all 16 indels were clus-
tered at a single locus between positions 1.4 Mb and
2.2 Mb on chromosome 15 (Fig. 2). This cluster overlaps
with a previously reported region of heterogeneity in
‘Williams 82’ [30]. These results suggest that these vari-
ants are not associated with transgenesis, but represent
natural standing heterogeneity between the “Williams 82’
plant used to generate the ST77 transformation event
and the ‘Williams 82’ individuals used as controls by
Lambirth et al. [22].

Therefore, after filtering for genotype identity and
background heterogeneity, we found three SNPs each in
S77 and S111 that could not be explained by these fac-
tors. Follow-up analysis of S77 revealed one SNP within
an intron, one synonymous SNP within an exon, and
one non-synonymous SNP within an exon (M to V
amino acid change in the sixth exon of Gly-
ma.10G150500). Analysis of S111 revealed two SNPs
within introns, and one non-synonymous SNP within an
exon (T to G amino acid change in the fourth exon of
Glyma.04G134800).

Source of variation in all transgenic series: Bioinformatics
handling and threshold parameters

The previous two sections addressed our reanalysis of
RNA-seq data [21, 22], focusing on the subset of unique
SNPs and indels within any one transgenic series.
However, the majority of the analysis reported, discussed
and interpreted in the Lambirth et al. [22] paper (includ-
ing the base substitution profile, the predicted effect of
each polymorphism, and gene ontology enrichment ana-
lysis) used the original full set of SNPs and indels identi-
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necessary to focus on the factors that inflated the overall
higher number of SNPs and indels discovered by their
bioinformatic pipeline. While we would expect the au-
thors to identify polymorphisms due to the reasons out-
lined in the previous sections (e.g., the ‘Thorne’
background of series 764 and the genetic heterogeneity
between ST77 and the control “Williams 82’ plants), the
reported polymorphism counts were unexpectedly high.
For example, the plants in the 764 series averaged
38,188 SNPs and 2390 indels per plant. This number will
be higher than the other two transgenic series because it
is the “Thorne’ genetic background. However, the ST77
series averaged 21,666 SNPs and 1829 indels, and the
ST111 series averaged 20,208 SNPs and 1750 indels. Fur-
thermore, the untransformed ‘William 82’ control plants
exhibited counts of 20,707 SNPs and 1863 indels. There-
fore, this section is devoted to addressing the sources of
these high estimates.

We retrieved the variant calls for each of the 36 sam-
ples used in their analysis (http://de.iplantcollaborative.
org/dl/d/533570A3-1EFB-4864-B9A9-9D82F17E09A8/sn
peffgenes.zip). Initial analyses of genotype calls revealed
that there was a higher number of heterozygous variants
than homozygous variants for the alternate allele com-
pared to the reference genome. ST77 and ST111 were
respectively advanced to the T8 and T4 generation be-
fore sequencing. We can estimate the expected propor-
tion of heterozygous variants in these generations if we
assume the following: all of the mutations induced by
transgenesis were heterozygous in the TO generation, the
variants are not subject to segregation distortion, and
the variants have negligible effects on organismal fitness.

fied, rather than the “unique” subset. Hence it is Under these assumptions, we would expect
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Fig. 1 Reanalysis of series 764 reveals that its genetic background comes from genotype Thorne’ rather than genotype ‘Williams 82'. 525 SNPs
were identified that met two criteria: (1) they were consistently polymorphic between series 764 plants and the ‘Williams 82’ reference genome in
the RNA-seq dataset; (2) they were previously genotyped across the USDA germplasm [27]. A comparison of these SNPs to the all of the accessions in
the USDA soybean accessions revealed Thorne’ as a near-perfect match (99.2% identity), with a substantial gap to the next closest match (Washita at
74.2%). The reanalysis also confirmed that this panel of SNPs is completely polymorphic between the 764 series and ‘Williams 82’ (0% match)
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approximately 0.39% of the ST77 variants to be hetero-
zygous at the T8 generation, and 6.25% of the ST111
variants to be heterozygous at the T4 generation. How-
ever, the retrieved data showed that 50.21 and 48.62% of
the variants were called as heterozygous for ST77 and
ST111, respectively. The proportion of heterozygous
variants were far higher than what was expected, and
were most likely false positives resulting from the ana-
lysis method.

We further investigated whether the authors filtered
their variants for read depth and/or quality. Although
read depth alone is not sufficient to determine whether
a variant is real, calls based on low read depth are more
likely to be false positives than calls based on higher
read depths. False positives can arise from reads that
map poorly to the genome, or bases that are of low qual-
ity at the site of a polymorphism. When analyzing the
depth of variant calls for all 36 samples in the study,
43.2% of variants were called at a depth of one read, and
20.2% of variants were called with a depth of two reads
(Fig. 3). Similarly, when analyzing the distribution of
quality scores across all 36 samples, 55.3% of variant
calls had a quality score of 10 or lower (Additional file 1:

Figure S2). A quality score is represented on a log-based
Phred scale where, for example, a quality score of 10 in-
dicates that there is a 10% chance of the variant being
incorrect and a quality score of 20 indicates that there is
a 1% chance of the variant being incorrect. Further in-
vestigation into the authors’ methods revealed that the
variant calls lacked any type of depth or quality filter.
This further reinforces the likelihood that a large portion
of these variants at low depth and quality are most likely
false positives.

The experiments in these studies [21, 22] included the
sequencing of nine samples per transgenic series (or the
‘Williams 82’ controls), consisting of three sibling seeds
taken from three plants each. As mutations induced by
transformation or tissue culture would presumably occur
in the TO generation, one would expect the vast majority
of these loci to be fixed as homozygotes by the T4-T8
generations. Therefore, it may be intuitive to exclude
any variants that were not observed in all three siblings.
While the authors reported on average ~ 20,000 SNPs
and ~ 1800 indels per individual plant for ST77, ST111,
WT, and ~ 40,000 SNP’s and ~ 2400 indels per individual
plant for 764 compared to the reference genome, the
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Fig. 3 Depth of sequence coverage for all polymorphic variants (SNPs and indels) called in the Lambirth et al. [22] study. The polymorphic calls
shown here were made between each sample and the reference genome ‘Williams 82', without consideration for the uniqueness of the call
among series or reproducibility among different plants within the series. Homozygous calls are shown in blue and heterozygous calls are shown
in red. Each bar sums the number of polymorphisms across the nine plants that were called at each read depth (e.g, we are showing the ~ 211,448
total variants called in series ST77 across the nine plants; ST77 averaged 23,494 variants per plant). Note the relatively larger peak in the 21+ category
for the 764 series compared to the other series; many of these (mostly homozygous) calls likely represent standing variants between lines Thormne' and

‘Williams 82'. The 21+ peaks in the other three groups (ST77, ST111, and ‘Williams 82’ controls) may derive from various factors, most obviously the
clusters of variants that are found within heterogeneous regions of different sub-lines of ‘Williams 82'

majority of variants were detected as polymorphic in
only one of the 36 samples in the study. Figure 4a shows
a comparison of the variants from three selected ST77
plants, each derived from a different T, individual. In
this case, over 20,000 variants were called for each plant,
but only 2807 of the variants were common across all
three plants (Fig. 4a). Similar findings were observed for
the ST77 “D” series siblings (all derived from a T plant
designated as “D”), in which a relatively small proportion
(4356 out of 64,636) of the variants were in common to
all three siblings (Fig. 4b). These trends were observed
across all sibling groups in the study (Additional file 1:
Figure S3). Series 764 exhibited a greater proportion of
variants shared among the siblings, which would be ex-
pected for a plant from a different genetic background
than ‘Williams 82, i.e., these plants have more “true” se-
quence variants that can be faithfully detected among
the different siblings.

Another indication of the high frequency of false pos-
itives called in the Lambirth et al. [22] study relates to
the structure of the indels that were called as poly-
morphic. Of the 70,486 indels that were called, 52.9%
of them were heterozygous and 59.6% of them had a
read depth of 3 or less. Interestingly, all of the indels
reported in the study exhibited polymorphisms that
were either 1 bp insertions (22,809 calls), 2 bp inser-
tions (8480 calls), 1 bp deletions (13,427 calls) or 2 bp
deletions (25,770 calls). The high number of only 1- or

2-bp indels (Additional file 2: Table S2) are likely a con-
sequence of the read mapping software and bioinfor-
matics pipeline used [33].

Conclusions

In the present study, we re-examined an existing data
set that was previously used to report high mutation
counts from three transgenic plant series. We identified
three major factors that inflated the estimates of mo-
lecular variation in the transgenic plants from these
studies. These factors included residual heterogeneity,
genotype misidentification, and insufficient data filtering.
The issue of genotype identity is obvious and intuitive,
but requires caution, both for those handling and main-
taining the materials (e.g., seeds, tissue, DNA) and those
handling the computational analysis. Errors in genotype
identity can be diagnosed using strictly molecular ap-
proaches, but situations where the identity of the
material has been compromised or misinterpreted
can be problematic (see commentaries [34, 35]). The
issue of genetic heterogeneity within lines and seed
stocks can create more subtle complications in analysis,
as has been documented in the soybean line “Williams
82" [30]. When properly accounted for, heterogenetity
does not disrupt accurate analysis and interpretation.
However, when not properly accounted for, this issue
may be problematic in assessing genomic, transcrip-
tomic, and other types of variation. Within-line genetic
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heterogeneity can be an issue in many species, particu-
larly those in which a reference genome is presumed to
be perfectly representative of every individual in the seed
stock. Lastly, data handling can be a major source of
variation leading to inflated variant calls. Informatics
pipelines generate large data sets, and users should be
aware of quality control measures, and commonly used
filtering parameters. Furthermore, experimental designs
that provide replicated samples or comparisons among
near-isogenic materials (e.g., the sibling lines discussed
in this study) can be used to further differentiate the
high-confidence and low-confidence variant calls.

While the present reanalysis focused specifically on
comparisons between transgenic lines, all the factors ad-
dressed in this paper need also be considered when con-
ducting any type of expression and/or genomic
comparisons. This includes studies that focus on the
effects of mutagenesis, on-target and off-target effects of
genome engineering technologies, assessments of stand-
ing/natural variation, or other comparisons of

Page 7 of 9

germplasm sources. This is particularly true for experi-
ments on materials within the realm of biotechnology,
as the findings may be used to inform regulatory agen-
cies about the intended and unintended consequences of
using these technologies. Evaluation for the presence of
unintended changes at the DNA level continues to be a
part of the safety evaluation for transgenic plants, and
whole-genome sequencing has been proposed as a tool
for this purpose [36]. However, technical issues may
make this problematic in crop species, which have com-
plex, highly variable, and often heavily duplicated ge-
nomes. Furthermore, as demonstrated by the present
study, the analysis and interpretation of whole-genome
sequencing data may be inconsistent among research
groups. While Lambirth et al. [22] reported high rates of
mutation in transgenic soybean lines, our reanalysis of
their data concluded that there are relatively few se-
quence variants detected in these lines that might be at-
tributed to the transformation process. It will be difficult
to standardize a regulatory methodology that accounts
for every complication that will arise across research
groups and species (e.g., standing genetic heterogeneity
within a parental seed stock) that may be incorrectly at-
tributed to the genetic transformation process.

Methods

Variant and indel detection

RNA-seq from [21] was downloaded from the National
Center for Biotechnology Information Sequence Read
Archive using project number PRJINA271477 and reana-
lyzed as described below. Sequencing adapters and
low-quality bases were removed using Cutadapt with
minimum read length set to 40 and quality cutoff set to
20 [37]. Using the GATK Best Practices workflow for
RNA-seq [25, 26], reads were aligned to assembly version
two of the reference genome (Wm82.a2) from www.soy-
base.org using the STAR aligner [38]. Read-group identifi-
cations were added and duplicate reads were marked
using Picard tools. Reads were then split into exon seg-
ments, overhanging intronic segments were hard clipped,
and mapping qualities were reassigned using the SplitNCi-
garRead tool from the GATK Genome Analysis Toolkit
with -RMQF set to 255 -RMQT set to 60 and enabling the
-U ALLOW_N_CIGAR_READS flag [39]. SNPs and indels
were called using GATK HaplotypeCaller with the -don-
tUseSoftClippedBases flag and -stand_call_conf set to 20.
The resulting VCF file was then split into separate files for
SNPs (Additional file 3) and indels (Additional file 4) and
then filtered using VariantFiltrations from the Genome
Analysis Toolkit with parameters set to window of 35,
cluster of 3, filter parameters of FS > 30, and QD < 2.0 for
SNPs. Similar parameters were used for indel filtration,
except FS filter was set to >200 for all 36 samples.
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Variants that passed filtration were then used for down-
stream analysis.

Accession identification

Genotype calls from the filtered SNP list were extracted
using a custom python script then loaded into R statis-
tical software. The dataset was filtered for homozygous
SNPs that are uniquely polymorphic to the reference
compared to the other transgenic lines and “Williams 82’
controls. SNPs were removed from the analysis if there
was more than 33% missing data for a given line and if
there was no consensus genotype call between plants
and replicates (Additional file 1: Figure S1). The result-
ing SNPs were used to identify positions that overlapped
within the SoySNP50k iSelect BeadChip [27] VCF file
using the Wm82.a2 coordinates downloaded from
www.Soybase.org. SNP calls for each of the 20,087 acces-
sions in the 50 k dataset were compared to the SNP calls
for the 764 series to identify the accession with the high-
est level of SNP identity.

Analysis of data from previous studies

The Lambirth et al. [22] supplementary data was down-
loaded from http://de.iplantcollaborative.org/dl/d/53357
0A3-1EFB-4864-B9A9-9D82F17E09A8/snpeffgenes.zip, and
each of the 36 samples VCF files were parsed for depth,
quality, and genotype information using a custom
python script.

Software and figures

Parallelization of commands was run using GNU parallel.
Data that was generated using R statistical software was
plotted using the ggplot2 package [40]. The genome distri-
bution of SNPs was created by using Phenogram [41].

Data availability

Software versions, options, thresholds, workflow details
and custom scripts can be found at https://github.com/
MeeshCompBio/The_Other_WPT_Study.

Additional files

Additional file 1: Figure S1. Pipeline to identify the background
genotype of 764. Figure S2. Quality scores for all polymorphic variants
(SNPs and indels) called in the Lambirth et al. [22] study. Figure S3.
Number of overlapping polymorphisms in the Lambirth et al. [22] study
within each of the 12 sibling families studied. (PPTX 1455 kb)

Additional file 2: Table S1. SNP calls resulting from the data filtering
pipeline shown in Additional file 1: Figure S1, excluding the accession
identification steps. The SNPs correspond to the top row in Table 1.
Table S2. Indel calls resulting from the data filtering pipeline shown in
Additional file 1: Figure S1, excluding the accession identification steps.
(XLSX 2307 kb)

Additional file 3: Resulting raw variant SNP calls from GATK
HaplotypeCaller. (VCF 49825 kb)
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Additional file 4: Resulting raw variant indel calls from GATK
HaplotypeCaller. (VCF 29397 kb)
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