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SUMMARY

Dss1 (also known as Sem1) is a conserved, intrinsi-
cally disordered protein with a remarkably broad
functional diversity. It is a proteasome subunit but
also associates with the BRCA2, RPA, Csn12-Thp1,
and TREX-2 complexes. Accordingly, Dss1 functions
in protein degradation, DNA repair, transcription,
and mRNA export. Here in Schizosaccharomyces
pombe, we expand its interactome further to include
eIF3, the COP9 signalosome, and themitotic septins.
Within its intrinsically disordered ensemble, Dss1
forms a transiently populated C-terminal helix that
dynamically interacts with and shields a central bind-
ing region. The helix interfered with the interaction to
ATP-citrate lyase but was required for septin binding,
and in strains lacking Dss1, ATP-citrate lyase solubi-
lity was reduced and septin rings were more persis-
tent. Thus, even weak, transient interactions within
Dss1 may dynamically rewire its interactome.

INTRODUCTION

Dss1 (Sem1 in budding yeast) is a small and intrinsically disor-

dered eukaryotic protein (IDP) (Dunker et al., 1998; Kragelund

et al., 2016; Tompa, 2002; Uversky, 2002; Wright and Dyson,

1999) with a remarkably broad binding specificity. It is a 26S pro-

teasome subunit (Funakoshi et al., 2004; Krogan et al., 2004;

Sone et al., 2004) and interacts with the TREX-2 complex (Faza

et al., 2009), the BRCA2 DNA repair protein (Yang et al., 2002),

the single-strand DNA binding complex RPA (Zhao et al.,

2015), and the Csn12-Thp3 complex (Wilmes et al., 2008). A hu-

man Dss1 paralog, CSNAP, associates with the COP9 signalo-

some (CSN) (Rozen et al., 2015).

The flexibility of Dss1 allows it to bind very different surfaces.

In the structures of Dss1 in complex with BRCA2 (Yang et al.,

2002), the TREX-2 transcription-export complex (Ellisdon et al.,

2012), and the 26S proteasome (Dambacher et al., 2016), Dss1

wraps onto its targets in different manners, and even when

bound, Dss1 maintains large disordered regions. No universal

Dss1 interaction motif has been identified, although several
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Dss1-interacting proteins contain proteasome, COP9 signalo-

some, and eukaryotic translation initiation factor 3 (eIF3) (PCI)

domains, which function as scaffolds for the formation of protein

complexes (Pick et al., 2009).

Genetic studies also suggest a broad functionality: yeast lack-

ing Dss1 display pseudohyphal and temperature-sensitive

growth (Jäntti et al., 1999; Jossé et al., 2006; Marston et al.,

1999), impaired mRNA export (Faza et al., 2009), and sensitivity

to DNA damage (Krogan et al., 2004; Selvanathan et al., 2010). In

fission yeast, the growth defect is partially suppressed by

expression of other proteasome subunits, suggesting that this

phenotype is connected to a destabilization of the 26S protea-

some (Jossé et al., 2006; Mannen et al., 2008). Accordingly,

budding yeast and Aspergillus mutants, lacking the Dss1 ortho-

log Sem1, are defective in 26S proteasome assembly (Kolog

Gulko et al., 2018; Tomko and Hochstrasser, 2014). By a similar

chaperone-like function, Dss1 keeps BRCA2 soluble (Yang et al.,

2002).

Here, several Dss1 binding partners were found in Schizo-

saccharomyces pombe. Dss1 forms a short C-terminal helix,

which folds back and likely limits access to a centrally local-

ized region. The helix inhibits interaction to ATP-citrate lyase

(ACLY) and is required for binding to the mitotic septins. The

present study shows that the binding specificity of Dss1 is

even more diverse than currently appreciated and links Dss1

to additional cellular functions, including metabolism and cell

division.
RESULTS

Transient Long-Range Intramolecular Interactions in
Dss1
The C terminus of Dss1 has a highly populated a helix (>50%)

ranging from F55 to K66 (Figure 1A; Paraskevopoulos et al.,

2014), which is independent on the purification method (Fig-

ure S1G). We therefore first asked whether Dss1 forms dimers

via this structure. However, dilution of Dss1 from 500 to 50 mM

did not change the nuclear magnetic resonance (NMR) spectra.

To probe for weak interaction, we mixed 14N-Dss1-N71C-

MTSL (S-(1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-

yl)methyl methanesulfonothioate), which places a paramagnetic

spin label at the C-terminal of Dss1 (Figures S1A and S1B), with
).
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Figure 1. The C-Terminal Region of Dss1

Forms a Dynamic Intramolecular Interac-

tion Limiting Binding Site Access

(A) Dss1 consists of extended structures,

including the binding sites BS-I and -II and the

transient a helix in the C terminus.

(B) The presence of 14N Dss1-N71C-MTSL (S-(1-

oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-

3-yl)methyl methanesulfonothioate) had no effect

on the peak intensities of 15N-Dss1-WT, indicating

no inter-molecular interaction.

(C) Intramolecular effect from internal MTSL la-

beling measured from the effects on the trans-

versal relaxation rate of backbone amide protons

of Dss1-N71C-MTSL, resulting in a decrease in

the intensity (height) of heteronuclear single

quantum coherence (HSQC) peaks of the para-

magnetic sample compared to the intensity of the

HSQC peaks without the MTSL label.

(D) Truncation of the helix in Dss1Dhelix had no

long-range effect on the amide chemical shifts in

Dss1.

(E) Different possible conformers of Dss1. The

transient a helix in Dss1 forms a dynamic inter-

action with residues of BS-I, representing a

conformational ensemble shielding the BS-I.

See also Figure S1.
15N-Dss1-WT in a 1:1 ratio and recorded NMR paramagnetic

relaxation enhancements (PREs), which report on dynamic dis-

tances to the label. No transient dimerization was found

(Figure 1B). NMR data confirmed that the label did not

interfere with the helix population (Figure S1H). However, com-

parison of the NMR peak intensities of 15N-Dss1-N71C with

and without MTSL indicated transient long-range effects from

the C-terminal spin label (N71C) to regions >30 residues away.

Thus, the C terminus was observed to be close to binding

site I (BS-I) as well as to the linker between BS-I and BS-II

(Figures 1C and S1C). Deleting the helix from Dss1 (D54stop

and Dss1Dhelix) did not affect the amide chemical shifts of res-

idues in BS-I (Figure 1D), suggesting interactions to be mediated

by side chains. We propose that the C-terminal helix bends back

toward the central binding site of Dss1 and forms dynamic long-

range hydrophobic interactions. Consistently, helix formation

was not dependent on the presence of the disordered part of

Dss1 as a synthetic peptide of the region (D54-G67) was also

transiently helical (Figure S1D), just as the CD spectrum

of Dss1 was not significantly different compared to the

spectral average of the Dss1Dhelix and the helix peptide
Cell R
(Figures S1E and S1F). In support of the

fold-back contacts, elevated R1/R2
15N

relaxations rate ratios of Dss1 indicated

an exchange on a ms–ms timescale for

the helix and the interacting region (Fig-

ure S1I). Because the PREs, the chemical

shifts effects, and the population of the

helix are all less than maximal, the helix

of Dss1 is not tightly anchored but rather

forms a ‘‘cloud’’ that dynamically shields
access to the helix itself and to BS-I (Figure 1E). Such equilibrium

between open and closed conformations may have conse-

quences for how, and to which extent, the binding sites in

Dss1 are available.

Analyses of the Dss1 Interactome
Wild-type Dss1 and Dss1Dhelix were tagged with GFP for

affinity purifications. N-terminal fusions were chosen because

of the structure (Figure 1E) and since C-terminal tagging of

budding yeast Sem1 interferes with some functions (Faza

et al., 2009). Full-length fusion protein was incorporated into

26S proteasomes (Figure S2A), localized to the nucleus and

cytosol (Figure S2B), and complemented the dss1D growth

defect (Figure S2C). The Dss1Dhelix variant was also effi-

ciently incorporated into 26S proteasomes (Figure S2A) but

did not fully complement the dss1D temperature-dependent

growth defect (Figure S2C). The elongated cell morphology

(Figure S2D) and accumulation of ubiquitin-protein conjugates

(Figure S2E) were also complemented by the full-length

GFP-Dss1 fusion protein. However, the elongated cell

morphology was not fully suppressed by GFP-Dss1Dhelix
eports 25, 862–870, October 23, 2018 863
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(Figure S2D). Collectively, this suggests that the N-terminal

GFP-tag does not interfere with Dss1 functions.

The GFP-trap system was used to purify proteins from dss1D

cells expressing GFP (control), GFP-Dss1 (wild-type), or GFP-

Dss1Dhelix with four replicates of each (Figure S3A). The pro-

teins were identified and quantified by trypsin digestion and

liquid chromatography-tandem mass spectrometry (LC-MS/

MS) in combination with MaxQuant data analysis. Putative inter-

actors were defined as those proteins that had a GFP-Dss1/GFP

intensity ratio >1 and met a 1% false discovery rate (FDR) Stu-

dent’s t test analysis as being significantly different between

the two groups.Mass spectrometry data are included in Data S1.

For wild-type Dss1, GFP-Dss1 preparations were enriched in

263 proteins (Figure S3B). They encompass all subunits of the

26S proteasome and several cofactors, all subunits of TREX-2,

the CSN12 complex, and RPA (Figure 2A), comprising all known

Dss1 interaction partners in yeast (Kragelund et al., 2016). The

Dss1 preparations also contained 10 subunits of the PCI-domain

complex eIF3, and we found enrichment of subunits of the Paf1

and elongator complexes and all four mitotic septins (Figure 2A).

We then tested a selection of these proteins for interaction

with Dss1. Glutathione S-transferase (GST)-Dss1 interacted

with Paf1 and Ssb1 and to a lesser extent with eIF3B (Figure 2B).

We were unable to detect any interaction to the elongator sub-

unit Elp2.

Intriguingly, the only PCI-domain complex that was not

convincingly identified in the mass spectrometry dataset was

the CSN. Except for Csn71 (Data S1), no other CSN subunits

were significantly enriched in the Dss1 precipitations. Possibly,

the CSN in fission yeast is expressed at very low levels (Mundt

et al., 1999), or another Dss1-like protein associates with the

CSN, as recently shown for the human Dss1 paralog, CSNAP

(Rozen et al., 2015). To test this, we precipitated GFP-tagged

Dss1 in a strain carrying hemagglutinin (HA)-tagged Csn1.

Dss1 did interact weakly with Csn1 (Figure 2C). However, as

Nedd8 conjugation to Cul1 was unaffected in the dss1D strain

(Figure S3C), this indicated that Dss1 does not affect the dened-

dylating function of the CSN, as in human cells lacking CSNAP

(Rozen et al., 2015).

TheDss1Helical Region Restricts Interactionwith ACLY
Comparison of the GFP-Dss1 and GFP-Dss1Dhelix interac-

tomes revealed that most interactions (Figures S3D–S3F)

occurred independently of the helix (Figure 2D, green points).

This agrees with previous reports that most binding to Dss1 is

confined to the disordered region (Kragelund et al., 2016), with
Figure 2. Quantitative Mass Spectrometry and Dss1 Binding Partners

(A) Dss1 binding partners were clustered into known protein complexes. The PCI-

Data S1.

(B) Extracts from wild-type strains, expressing the indicated 6His-tagged protei

material was analyzed by blotting for the 6His tag. Equal loading was checked b

(C) Cells with HA-tagged Csn1 and expressing either GFP or GFP-Dss1 were us

analyzed by blotting for the HA-tag or GFP (Dss1).

(D) Plot of the fold change in GFP-Dss1 versus GFP (x axis) versus the fold ch

unaffected by deletion of the C-terminal region. Proteins marked in blue were

associated with Dss1Dhelix.

See also Figures S2 and S3.
the Dss1Dhelix complementing most phenotypes of the dss1D

mutant, and with the dynamic character of the fold-back struc-

ture. All four mitotic septins showed a clear wild-type-specific

binding pattern with little or no evidence for binding to the he-

lix-deficient variant (Figures 2D and S3D–S3F). Conversely, a

small group of proteins, including the ATP-citrate lyase (ACLY)

subunits Acl1 and Acl2, showed binding preference for the

Dss1Dhelix variant over wild-type Dss1 (Figure 2D). This implies

that the helical region has a negative effect on the association of

these proteins.

Confirmatively, two proteins of �60 kDa co-precipitated with

GFP-Dss1Dhelix (Figures 3A and S3A). Mass spectrometry iden-

tified them as Acl1 (67.2 kDa; sequence coverage 55%) and Acl2

(53.9 kDa; sequence coverage 54%). Unlike in humans where

ACLY is a homotetramer (Chypre et al., 2012), fission yeast

ACLY is encoded by acl1 that resembles the C-terminal part of

human ACLY and acl2 that resembles the N-terminal part of hu-

man ACLY. The ACLY binding site was mapped by precipitation

experiments. ACLYwas primarily associatedwith Dss1when the

helix was removed (Figure 3B), and the interaction was lost upon

further mutation of the disordered region (Figure 3B). The inter-

action between Dss1Dhelix and ACLY was also evident in a

wild-type background, although to a lesser degree (Figure 3C).

In an acl1D strain, neither subunit was co-precipitated, and in

an acl2D strain, only Acl1 was co-precipitated (Figure 3C), indi-

cating that association of ACLY and Dss1 primarily occurs via

the Acl1 subunit and this interaction is inhibited by the dynamic

fold-back structure.

As Dss1 promotes BRCA2 solubility (Yang et al., 2002), we

tested whether this was also the case for ACLY in wild-type,

dss1Dhelix, and dss1D cells. Dss1 and Dss1Dhelix were both

soluble proteins. However, more Acl1 was insoluble in the

dss1D cells (Figures 3D and 3E) than in dss1Dhelix cells, sug-

gesting that Dss1 binding facilitates ACLY solubility.

Because ACLY converts cytosolic citrate into acetyl-coen-

zyme A (CoA) (Chypre et al., 2012), which is required for fatty

acids synthesis, we analyzed the lipid content in wild-type,

acl1D, acl2D, and dss1D strains. As a control, we included a

cut6-621 strain that is defective in acetyl-CoA carboxylase,

which is required for fatty acid biosynthesis (Saitoh et al.,

1996). The lipid droplets appeared unaffected in the ACLY mu-

tants (Figure S4A) but strongly reduced in dss1D cells and the

cut6-621 control, suggesting that ACLY does not contribute

much acetyl-CoA for fatty acid biosynthesis and that the reduced

amount of lipids in the dss1D strain is independent of ACLY.

Accordingly, the acl1D and acl2D strains did not display any
domain-containing complexes are framed (transparent). All data are included in

ns, were used for co-precipitation with GST-Dss1 and GST. The precipitated

y staining with Coomassie brilliant blue (CBB).

ed for immunoprecipitation (IP) using GFP-trap. The precipitated material was

ange in GFP-Dss1Dhelix versus GFP (y axis). Proteins marked in green were

more associated with Dss1Dhelix, and proteins marked in yellow were less
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Figure 3. The C-Terminal Region Blocks Dss1 Binding to ACLY

(A) dss1D transformed to produce GFP, GFP-Dss1, and GFP-Dss1Dhelix was used for IP using GFP-trap. The precipitated material was analyzed by SDS-PAGE

and CBB staining. The identity of Acl1 and Acl2 was determined by mass spectrometry.

(B) dss1D cells, expressing the Dss1 variants (upper panel), were used for IP using GFP-trap. BS-I* and BS-II* indicate point mutations in the BS-I and BS-II

binding sites (BS-I*: L40A/W41A/W45A; BS-II*: F18A/F21A/W26A). The precipitated material was analyzed by blotting.

(C) The indicated strains expressing GFP-Dss1Dhelix were used for IP using GFP-trap. The precipitated material was analyzed by SDS-PAGE and CBB staining.

(D) The solubility of 6His-tagged Acl1 was determined by centrifugation of whole-cell extracts and blotting.

(E) Blots as shown in (D) were quantified by densitometry and presented as percent of total (sol. + insol.). The error bars indicate the SEM (n = 3).

See also Figure S4.
obvious growth defects (Figure S4B). The redundancy of ACLY

may be caused by the cytosolic enzyme acetyl-coA synthetase,

Acs1.

The Dss1 C-Terminal Helical Region Is Required for
Interaction with Mitotic Septins
The mitotic septins (Spn1–4) only bind to wild-type Dss1 and not

to the truncated Dss1Dhelix (Figure 2D). We found that HA-

tagged Spn3 and Spn4 precipitate with Dss1 (Figure 4A). In

agreement with the proteomics analyses, further co-precipita-

tion experiments revealed that the helical region in Dss1 was

required for septin interaction (Figure 4B).

As with ACLY, septin solubility correlated with binding speci-

ficity for the Dss1 variants. Septin solubility was greater in

wild-type cells than in the dss1D strain and appeared to depend

on the C-terminal region (Figures 4C and 4D). In dss1D, Spn3-

GFP correctly localized at the cell equator as a single or double

ring. There was no apparent reduction in signal intensity

compared to that in wild-type cells (Figure 4E). This suggests

that Dss1 functions downstream of septin ring formation. A
866 Cell Reports 25, 862–870, October 23, 2018
closer observation of Spn3-GFP by time-lapse microscopy

revealed that many septin rings were more persistent in the

absence of Dss1 (Figure 4F; average time of septins at cell

equator in the wild-type [WT] = 46.1 ± 0.5 min, n = 126;

dss1D = 55.9 ± 2.1, n = 94; p < 0.0001). We conclude that

Dss1 may affect septin maintenance, rather than recruitment,

during cytokinesis.

DISCUSSION

Previously, Dss1 has been suggested as a component of the

eIF3 complex (Pick et al., 2009). Our data support this notion.

The S. pombe eIF3 subunits, eIF3a, eIF3c, and eIF3m, contain

PCI domains and all associated with Dss1. CSN was the only

PCI domain protein complex that was not found in our prote-

omics analyses. However, Dss1 and Csn1 co-precipitated, so

perhaps in fission yeast, which is without CSNAP, Dss1may fulfill

the function of CSNAP in the CSN, which neither in human cells

(Rozen et al., 2015) nor in fission yeast involves the deneddylat-

ing activity of the CSN.



Figure 4. The C-Terminal Region Is Required for Dss1 Interaction with Mitotic Septins

(A) Cells with HA-tagged Spn3 or Spn4 and expressing either GFP or GFP-Dss1 were used for IP using GFP-trap. The precipitated material was analyzed by

blotting for the HA-tag or GFP.

(B) Cells with HA-tagged Spn3 and expressing either GFP or GFP-Dss1 variants (upper panel) were used for IP using GFP-trap. BS-I* and BS-II* indicate point

mutations in the BS-I and BS-II binding sites (BS-I*: L40A/W41A/W45A; BS-II*: F18A/F21A/W26A). The precipitated material was analyzed by SDS-PAGE and

blotting for the HA-tag or GFP.

(C) The solubility of GFP-tagged Spn3 was determined by centrifugation of whole-cell extracts and blotting.

(D) Blots as shown in (C) were quantified by densitometry and presented as percent of total (sol. + insol.). The error bars indicate the SEM (n = 3).

(E) The septum ring of wild-type and dss1D cells was observed by fluorescence microscopy using Spn3-GFP as a marker. Scale bar represents 5 mm.

(F) Wild-type and dss1D cells expressing Spn3-GFP were observed at 27�C over time by fluorescence microscopy, and the duration of the GFP signal was

quantified. Each circle or square represents the timing in 1 cell. Black bars represent the average and SEM; n > 94 cells; 2 experiments. Unpaired two-tailed t test;

****p < 0.0001.
Free Dss1 is disordered but attains structure upon binding to

BRCA2, TREX-2, and the 26S proteasome (Kragelund et al.,

2016). The structure of Dss1 in each of these complexes is
different, and large parts of Dss1 remain disordered. This

may also be the case for the Dss1-binding proteins identified

here.
Cell Reports 25, 862–870, October 23, 2018 867



Dss1 interacts with BRCA2 (Yang et al., 2002), keeping BRCA2

soluble and facilitating dissociation of RPA from DNA, allowing

access for BRCA2 (Zhao et al., 2015). S. pombe has no

BRCA2 ortholog, but the Dss1-RPA interaction is conserved. In

addition, Dss1 associates with Rad52, which stimulates strand

exchange. In agreement, yeast Dss1 localizes to double-strand

breaks and promotes DNA repair (Krogan et al., 2004; Selvana-

than et al., 2010), suggesting that Dss1 stimulates DNA dissoci-

ation of RPA also in yeast.

It is likely that many of the interactions are not direct. It is

possible, for instance, that the TREX-2 complex bridges the

interaction with elongator and the Paf1 complex because

budding yeast TREX-2 mutants display synthetic phenotypes

with components in the Paf1 and elongator complexes (Collins

et al., 2007; Wilmes et al., 2008). Accordingly, mutants in the

Paf1 complex are also epistatic with mutants in elongator

(Collins et al., 2007; Laribee et al., 2005). Along the same line,

eIF3 has previously been found to associate with the 26S protea-

some (Sha et al., 2009), and because Dss1 binds ubiquitin, some

interactions might even be interceded by ubiquitin.

The Dss1 C-terminal helix can fold back and form a transient

interaction with BS-I. Helix formation was independent of intra-

molecular interaction and inherent to the amino acid sequence.

Access to BS-I as well as the helix itself may be controlled by

an open-closed equilibrium through a population shift mecha-

nism (Vallée-Bélisle et al., 2009) as seen with other IDPs. Helix

propensity has, for instance, been linked to ligand binding (Borc-

herds et al., 2014; Ie�smantavi�cius et al., 2014), and a change in

the structural ensemble can also be introduced by posttransla-

tional modifications (Bah and Forman-Kay, 2016; Bui and

Gsponer, 2014). We therefore propose that even the weak,

transient interactions, formed between the helix and the central

binding site, can regulate the Dss1 interactome.

Contrary to the situation with ACLY, we found that the C-termi-

nal helical region of Dss1 was required for interaction with the

septins. S. pombe has four mitotic septins that assemble into

hetero-oligomeric complexes in interphase (An et al., 2004).

During mitosis, the septins concentrate at the medial region of

the cell to form ring-shaped structures that are binding scaffolds

for other proteins. Previous studies have tied Dss1 to the

Spt-Ada-Gcn5-acetyltransferase (SAGA) complex (Garcı́a-

Oliver et al., 2013), which regulates septin ring assembly via

transcriptional activation of mid2+ (Lei et al., 2014). We did not

observe any defects in septin ring formation in the dss1-null

mutant, but we cannot rule out that the role of Dss1 in transcrip-

tion contributes to the dss1D septation problems.

The present study shows how the flexibility of an IDP allows it

to accommodate binding to a plethora of protein complexes and

suggests that intramolecular transient structures and their rela-

tively weak interactions may be sufficient to rewire interaction

networks. How this is timed and controlled should be the focus

of future work.
EXPERIMENTAL PROCEDURES

Yeast Strains and Plasmids

Strains were kindly provided by Dr. Colin Gordon, Dr. Michael Seeger, Dr.

Mitsuhiro Yanagida, and Dr. Kathleen L. Gould. All strains (Table S1; all strains
868 Cell Reports 25, 862–870, October 23, 2018
used for this study) and procedures used in this work are listed in the Supple-

mental Information.

Protein Purification and Proteomic Analyses

Protocols for protein purification, NMR analyses, and proteomics are provided

in the Supplemental Information. For co-precipitation experiments, GFP-,

GFP-Dss1-, and GFP-Dss1Dhelix-expressing cultures of 2 L were set up in

quadruplicates and grown at 29�C to mid-exponential phase. The cells were

then harvested by centrifugation (3,000 g; 10 min) and lysed in Buffer C

(25mM Tris/HCl [pH 7.4], 50 mMNaCl, 2 mMMgCl2, 2 mMATP, 10% glycerol,

0.1% Triton X-100, 1 mM PMSF, and Complete protease inhibitors; Roche) at

4�C using glass beads and a FastPrep machine (Thermo Scientific). Lysates

were cleared (13,000 g; 30 min) and tumbled with 30 mL GFP-trap (Chromotek)

beads for 4 hr at 4�C. Beads were washed in 43 1 mL Buffer C by centrifuga-

tion (3,000 g; 30 s) and finally resuspended into 30 mL SDS sample buffer. Iden-

tification of Acl1 and Acl2 by MALDI MS/MS was performed by Alphalyse

(Denmark). Co-precipitations with GST-tagged proteins were performed as

in Paraskevopoulos et al. (2014).

Microscopy

We used an inverted Zeiss microscope and Axiovision software, a Plan Apo

1003 oil objective, numerical aperture (NA) = 1.4, and a CoolSnap HQ camera.

Detailed protocols are in the Supplemental Information.

Nuclear Magnetic Resonance

Detailed protocols are in the Supplemental Information.

Statistics

For the mass spectrometry, proteins were defined as statistically differing be-

tween groups using the Perseus unpaired two-sample Student’s t test

truncated by 1% permutation-based FDR using an S0 value of 0.1. Complex

enrichment analysis was performed in Perseus using the Fisher’s exact test

using the different sub-categories of the data as comparison with the whole

set of 1,005 proteins. For western blots, statistical analyses were performed

in MS Excel. The results are presented as average and SEM. For time-lapse

imaging, statistical analysis was performed with Prism using an unpaired

two-tailed t test. The results are presented as average and SEM.
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