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Radiotherapy is used as definitive treatment in approximately two-thirds of all cancers. However, like
any treatment, radiation has significant acute and long-term side effects including secondary malig-
nancies. Even when similar radiation parameters are used, 5%-10% of patients will experience ad-
verse radiation side effects. Genomic susceptibility is thought to be responsible for approximately
40% of the clinical variability observed. In the era of precision medicine, the link between genetic
susceptibility and radiation-induced side effects is further strengthening. Genome-wide association
studies (GWAS) have begun to identify single-nucleotide polymorphisms (SNPs) attributed to overall
and tissue-specific toxicity following radiation for treatment of breast cancer, prostate cancer, and
other cancers. Here, we review the use of GWAS in identifying polymorphisms that are predictive of
acute and long-term radiation-induced side effects with a focus on chest, pelvic, and head-and-neck
irradiation. Integration of GWAS with "omic" data, patient characteristics, and clinical correlates into
predictive models could decrease radiation-induced side effects while increasing therapeutic efficacy.

Keywords: Radiogenomics, Radiation-induced side effects, Genome-wide association study (GWAS),
Normal tissue toxicity, Radiotherapy

Introduction

Radiation therapy (also called radiotherapy) is a localized cancer
treatment that targets cancer cells with high doses of radiation.
More than half of patients with cancer, including children with
cancer, will be treated with radiotherapy [1]. Acute radiation-in-
duced side effects include dermatitis and fatigue, while long-term
side effects include increased risk for secondary malignancies.
Site-specific acute side effects such as mucositis, esophagitis, and
enteritis, may develop when treating head and neck cancers, lung
cancers, and gastrointestinal (Gl) cancers, respectively. Patients
treated for breast cancer and lung cancer may also develop irre-
versible cardiotoxicity and pulmonary fibrosis after thoracic irradi-
ation [2,3]. Normal tissue toxicity determines the maximum radia-
tion dose delivered to tumors. To increase the therapeutic ratio of

radiation, radiation oncologist and their teams individualize pa-
tient's treatment plans by selecting the appropriate treatment mo-
dality, radiation dose, fractionation, and target volumes. Recent
phase lI-llI clinical trials have focused on comparing treatment
modalities such as ultra-hypofractionation versus conventionally
fractionated therapy, and reducing effective doses to decrease
acute and long-term side effects [4,5]. Despite this customization,
10%-200% of patients receiving radiotherapy develop grade 2 tox-
icity and 29%-5% develop grade 3 toxicity [6,7]. Genetic variability,
in part, explains this clinical variability.

It is estimated that genetic variability may account for approxi-
mately 40% of the variability seen in treatment side effects, while
lifestyle risk factors, not limited to obesity, smoking and drinking,
account approximately for 60% of the variability [8-10]. Single
nucleotide polymorphisms (SNPs), gene deletions, epigenetic differ-
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ences and differential gene expression are markers of genetic vari-
ability. Genome-wide association studies (GWAS) use an agnostic
approach to identify SNPs associated with a predetermined out-
come such as normal tissue toxicity. Though the majority of GWAS
have focused on polymorphisms that increase the risk of develop-
ing primary cancers and tumor radiosensitivity, there is evidence
that polymorphisms that increase the risk of radiation-induced
cancers differ from those that increase the risk of primary cancers
[11,12]. Therefore, genetic markers of normal tissue toxicity sec-
ondary to radiation are needed to further personalize treatments
and improve outcomes.

Historically, genes that increase normal tissue toxicity following
radiation were discovered through studies of rare monogenetic dis-
eases such as Li-Fraumeni syndrome, retinoblastoma, neurofibro-
matosis type 1, ataxia telangiectasia, and Fanconi's anemia. These
diseases not only raised the knowledge about genetic predisposi-
tion of normal tissue toxicity, but also provided a biological frame-
work for future discoveries, such as those informed by candidate
gene approaches [13]. Candidate gene approaches further identi-
fied polymorphisms associated with genes involved in DNA repair,
oxidation, and cytokine synthesis that increase the risk for radia-
tion-induced side effects [7]. The development of SNP microarrays
paved the way for non-priori identification of additional polymor-
phisms through GWAS approaches. To increase the power that is
needed to identify polygenic causes of radiotoxicity, establishment
of the Radiogenomics Consortium promoted pooling of GWAS data
and standardization in reporting GWAS and radiation-induced side
effects [14,15]. Now, meta-analysis of aggregate GWAS and
whole-genome sequencing continue to promote new discoveries in
the field of radiogenomics.
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To bookmark the progress of GWAS in elucidating polymorphisms
contributing to normal tissue toxicity following radiation, we com-
piled a narrative review. We focused on seminal literature spanning
from 2010 to 2020. Search terms such as polymorphisms, GWAS,
radiation, radiotherapy, radiosensitivity, normal tissue toxicity, and
radiation effects were queried through PubMed, Google Scholar,
and SearchWorks. This review focuses on radiation-induced side
effects after chest, pelvic, and head-and-neck irradiation based on
data availability. We include both early and late side effects includ-
ing the risk for secondary cancers. We do not review GWAS identi-
fying polymorphisms affecting development of primary cancers, re-
currence, mortality, and tumor radiosensitivity. The GWAS described
in this review focus on germline polymorphisms. We hope that ear-
ly identification of patients that are at high risk for radiation-in-
duced side effects could help to further personalize patients' treat-
ment plans, including the choice of modality, radiation dose and
fractionation schedules. Fig. 1 provides an overview of the GWAS
workflow. Table 1 summarizes the GWAS literature presented in
this article.

Chest Irradiation

Chest-irradiation puts the breasts, heart, lungs, esophagus, and major
blood vessels at risk for toxicity [16,17]. Candidate gene approaches
have identified polymorphisms involved in DNA repair pathways re-
lated to skin toxicity, pneumonitis, and esophageal toxicity [18-23].
Few studies have used a GWAS approach to discover polymorphisms
associated with radiation-induced toxicity. Bourgier et al. [24] at-
tempted to identify polymorphisms influencing late radiation-in-
duced subcutaneous fibrosis, radiation-induced lymphocyte apopto-
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Fig. 1. Schematic identifying genetic variants and their potential to inform cancer treatments.
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timing of radiation exposure impacts the risk of developing breast
cancer and other long-term side effects [28]. If patients receive
chest irradiation during puberty when breast development is oc-
curring, they have a higher risk for breast cancer than those pa-
tients that receive irradiation post-breast development. Similarly,
polymorphisms near the ATG5 and PRDMT genes were predictors
for secondary malignancies for patients irradiated during child-
hood, but not for those irradiated as adults [29]. Timing of radio-
therapy also suggests a role for the circadian rhythm in the devel-
opment of radiation-induced late side effects. Though identified
through a candidate gene approach, circadian rhythm variants,
PER3 and NOCT A, were predictive of worse acute and late toxicity
if radiotherapy was administered in the morning compared to the
afternoon in patients with breast cancer [30]. Normal tissue toxici-
ty is likely fluctuating during a person’s lifetime and may be influ-
enced by baseline health status, such that patients with comorbid-
ities may be at higher risk for developing radiation-induced adverse
side effects compared to their healthier counterparts.

Pelvic Irradiation

Radiation and tissue specific genetic susceptibility are also ob-
served in radiation-induced genitourinary toxicity. Female child-
hood cancer survivors that received pelvic irradiation develop ther-
apy-related premature menopause (PM) at a 10-fold rate higher
than their sibling controls. Therefore, efforts have focused on iden-
tifying patients that would benefit most from cryopreservation of
oocytes prior to starting radiotherapy. Using a two-stage GWAS
approach, whereby top-ranked SNPs identified in the first cohort
are genotyped in a second cohort, Brooke et al. [31] prospectively
followed 799 female survivors of childhood cancer for the develop-
ment of PM. Adjusting for cyclophosphamide equivalent doses of
alkylating agents and ovarian radiation doses they identified 13
SNPs on Chromosome 4 that increased the risk for PM with an
odds ratio (OR) of 25.89 in the discovery phase, and an OR of 3.97
in the replication phase. This haplotype was prevalent in 50% of
those with PM, and only observed in 3.8% of controls and in 1.4%
of the general female population. SNPs were found near the NPY2R
gene, which is known to regulate gonadotropin-releasing hor-
mones pulses, luteinizing hormone levels and ovulation [32]. Varia-
tions in expression of genes controlling hormone expression may
therefore increase the risk for gonadotoxicity and subsequently
lead to premature menopause.

Pelvic irradiation to the prostate in the form of localized
brachytherapy, with or without external beam radiation therapy
(EBRT), is also associated with radiation-induced side effects in
50%%-10% of patients. Side effects can include erectile dysfunction
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(ED), rectal bleeding, urinary and fecal incontinence, decreased uri-
nary stream, and proctitis. The first GWAS looking at radiation-in-
duced side effects in prostate cancer studied ED risk [33]. GWAS
identified SNPs located near genes involved in cell adhesion and
cell matrix association, rather than radiation-affected pathways,
such as DNA damage repair [34]. There were also group enriched
SNPs near the FSHR gene that increased the risk for radiation-in-
duced ED in African Americans [33]. This study and others revealed
that increasing the number of alleles increases the risk of erectile
dysfunction [33,34]. Younger men with more risk alleles had a sim-
ilar likelihood of developing ED as older men with fewer risk alleles.
One allele had an OR of 2.2, while multiple alleles had an OR >2.2
[34]. Furthermore, incorporation of SNPs into a multivariate model
along with ancestry was more accurate in predicting ED than clini-
cal factors alone such as stage, Gleason score, and pre-treatment
sexual function (area under the curve [AUC] for genetic model =
0.983 vs. AUC for clinical model = 0.749) [33]. Though not directly
addressed in this study, incorporation of both genetic risk factors
and clinical metrics can increase the predictability of these models.

GWAS have also been used to identify polymorphisms associated
with changes in late-toxicity such as changes urinary function,
rectal bleeding, and overall toxicity. Eight SNPs, including one as-
sociated with MY03B (rs13035033), increased the risk for urinary
straining [35]; though this finding could not be replicated [37].
GWAS of individual endpoints such as rectal bleeding identified
SNPs near genes regulating vascular proliferation [36], while mark-
ers of overall toxicity identified TANCT, a gene involved in muscle
regeneration, as a risk factor [38]. To increase the power to detect
rare polymorphisms, Kerns et al. [39] used a meta-analysis ap-
proach to identify SNPs associated with increased urinary frequen-
cy, rectal bleeding, decreased stream and overall toxicity. This study
validated previous SNPs, discovered new SNPs, and most notably it
showed that multiple data sets could be combined to increase the
power of GWAS. A follow-up meta-analysis study included addi-
tional samples from a Japanese cohort to identify new polymor-
phisms associated with hematuria, and validated SNPs previously
associated with increased urinary frequency, decreased urinary
stream, and overall toxicity [40]; again emphasizing the power of
analyzing GWAS datasets in aggregate.

Head and Neck Irradiation

Oral mucositis is an acute complication of head and neck irradia-
tion. To identify patients that would be at risk for adverse oral mu-
cositis outcomes, Yang et al. [41] performed a GWAS in more than
1,000 nasopharyngeal carcinoma patients receiving radiotherapy.
Using gene set analyses of their identified variants they were able
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to link telomere biological processes to radiotherapy toxicity and
thereby illustrate the use of GWAS in enhancing our understanding
of radiobiology.

Temporal lobe injury is a late radiation-induced side effect in pa-
tients with nasopharyngeal carcinoma. Genetic susceptibility stud-
ies for radiation-induced central nervous system toxicity are start-
ing to emerge. Wang et al. [42] conducted a three-stage GWAS
study with more than 1,000 patients for each stage. Their analysis
identified SNPs near the gene CEP728, which codes a centrosome
protein involved in cell cycle progression, and is associated with
temporal lobe injury risk (HR=1.45; 95% Cl, 1.26-1.66). Further-
more, they discovered that 12.7% of the GWAS-based genes were
associated with the neurogenesis pathway. SNP (missing period)
differences associated with the CEP728 gene were also associated
with changes in levels of expression [43]. These results suggest
again that radiation-induced injury is likely affecting tissue specific
cellular pathways.

Models of Radiation Toxicity

GWAS have provided novel insight into radiobiological processes
not otherwise recognized through candidate-gene approaches.
They have also highlighted the differences in genetic susceptibility
due to radiation dosing and timing of administering radiation.
GWAS have distinguished polymorphisms comparing tissue-specific
toxicity versus overall toxicity and acute versus late radiotherapy
side effects. Two proposed models may in part explain the com-
plexity of genetic susceptibility to radiation—a deterministic model
and a stochastic model [10,44]. Under a deterministic model, each
tissue can have its own threshold for toxicity and these thresholds
can vary between patients. In a stochastic model, radiation may
impact cellular function through general processes such as increas-
ing reactive-oxygen species and promoting genomic instability.
These processes would nonspecifically affect pathways that in-
crease the risk of radiation-induced side effects. Variability in ob-
serving deterministic or stochastic processes would depend on in-
dividual patient genetic vulnerability. Patients with polymorphisms
that increase stochastic events may be at higher risk for overall
toxicity, whereas patients with polymorphisms affecting tis-
sue-specific pathways would manifest more restricted side effects.
Phenotypic expression of adverse effects would thus be dependent
on genetic susceptibility and life style factors. For example, if the
patient is already at risk for developing erectile dysfunction, both
genetically and because of lifestyle factors, exposure to radiation
may be the last “hit" required for the development of ED through a
deterministic or stochastic process. GWAS and candidate-gene ap-
proaches have been successful in identifying "general” toxicity
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polymorphisms and side-effect specific polymorphisms. Integration
of cellular assays, “omic" data such as transcriptome-wide associa-
tion studies (TWAS) and proteomics will aid in distinguishing be-
tween the two processes at the patient level.

GWAS Challenges and Opportunities

Despite recent progress and its promise to personalize patient care,
integration of GWAS findings into clinical settings remains a chal-
lenge. Reproducibility is often hard to achieve because of small
sample sizes, which decrease the statistical power needed to detect
moderate-to-weakly associated polymorphisms, and high false
positives from multiple-hypothesis testing. To address these chal-
lenges, the Radiogenomics Consortium encouraged standardization
of reporting of GWAS, central pooling of large databases, and stan-
dardization in reporting acute and late side effects [14]. Combining
multiple datasets, however, posed additional statistical challenges
that have now spawned new mathematical models and statistical
approaches. These mathematical models have been applied with
success to predict radiotherapy complications such as late rectal
bleeding and erectile dysfunction and have identified biological
processes of radiation damage [45,46].

Incorporation of GWAS findings into machine learning also has
the potential to increase the clinical utility of GWAS. Lee et al. [47]
used machine learning-based multivariate modeling to predict four
urinary symptoms following radiation therapy. They found that
weak stream was predicted when the top 75% of SNPs were in-
cluded in their model compared to a model that only included clin-
ical predictors (R® of 0.80 vs. R® of 0.60). Machine learning algo-
rithms can be applied to integrate genetic data, clinical correlates,
and patient characteristics to build models that can evolve as pa-
tients' characteristics change through the course of treatment [48].
However, in order for models to be truly predictive, racially hetero-
geneous populations must be included.

It is known that polymorphisms can vary by race/ethnic groups.
For example, SNPs associated with the TGFbT promoter and the
NFE2L2 promoters were associated with late radiation effects in
African Americans, but not Whites [49]. The failure to include di-
verse patient groups in GWAS has two main effects: (1) decreased
discovery potential and generalizability and (2) decreased predic-
tive power of model building. Although there is concern that inclu-
sion of non-European populations increases the signal-to-noise ra-
tio, low frequency variants or variants that are completely absent
in European populations may be missed [50]. In addition, the effect
sizes of identified variants in one group may be the different in
other populations. Wojcik et al. [51] used a large data set that in-
cluded Hispanic populations, African-American, Asian, Native Ha-
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waiian, Native American, and multi-ethnic individuals to show that
the effect size of published trait-variant associations were signifi-
cantly weaker in Hispanic and African-American populations. Pre-
dictive models based on these effect sizes and variants could po-
tentially result in erroneous predictions that could further increase
already existing health disparities. Thus, recruitment of under-rep-
resented groups, development of algorithms robust to the inclusion
of heterogeneous populations, building of databases, and integra-
tion with other "omic” data, will strengthen the clinical potential
of GWAS.

Conclusion

Since its adoption in radiation oncology, GWAS have identified
polymorphisms that increase genetic susceptibility to radiation-in-
duced tissue toxicity. However, challenges in high false rate discov-
eries due to multiple hypothesis testing and small sample sizes
have failed to reproduce some results. Development of techniques
to score side effects and standardize GWAS reporting, along with
the establishment of the Radiogenomics Consortium have partly
overcome some of the challenges inherent in GWAS. Meta-analy-
ses of GWAS now include larger patient cohorts, more diverse pop-
ulations, multiple steps of validation, and new statistical approach-
es. Incorporation of genetic susceptibility of normal tissue, tumor
radiosensitivity, clinical markers, and patient characteristics into
adaptive models is poised to make genomically-guided radiothera-
py a reality.
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