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The circadian clock controls the expression of nearly 50% of
protein coding genes in mice and most likely in humans as well.
Therefore, disruption of the circadian clock is presumed to
have serious pathological effects including cancer. However,
epidemiological studies on individuals with circadian disrup-
tion because of night shift or rotating shift work have produced
contradictory data not conducive to scientific consensus as to
whether circadian disruption increases the incidence of breast,
ovarian, prostate, or colorectal cancers. Similarly, genetically
engineered mice with clock disruption do not exhibit sponta-
neous or radiation-induced cancers at higher incidence than
wild-type controls. Because many cellular functions including
the cell cycle and cell division are, at least in part, controlled by
the molecular clock components (CLOCK, BMAL1, CRYs,
PERs), it has also been expected that appropriate timing of
chemotherapy may increase the efficacy of chemotherapeutic
drugs and ameliorate their side effect. However, empirical at-
tempts at chronochemotherapy have not produced beneficial
outcomes. Using mice without and with human tumor xeno-
grafts, sites of DNA damage and repair following treatment
with the anticancer drug cisplatin have been mapped genome-
wide at single nucleotide resolution and as a function of
circadian time. The data indicate that mechanism-based
studies such as these may provide information necessary for
devising rational chronochemotherapy regimens.

Circadian rhythms are the intrinsic oscillations of �24 h
period in physiological and behavioral functions (1). The fact
that they are found in organisms ranging from cyanobacteria
to humans and that they have evolved at least four times
independently in nature is an indication that they confer a
selective advantage (2). The molecular foundation of the
mammalian circadian clock is a transcription–translation
feedback loop (TTFL) (3–14). In the TTFL, CLOCK and
BMAL1 (or its paralog NPAS2) make the positive arm, and
CRY (CRY1 and CRY2) and PER (PER1 and PER2) make the
negative arm. The CLOCK-BMAL1 transcriptional activator
and the CRY-PER transcriptional repressor generate the pri-
mary circadian loop with �24 h periodicity. This loop is
consolidated by the secondary loop of NR1D1/2 and ROR
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nuclear receptors and further fine-tuned by kinases CK1δ/ε
(15–20) and ubiquitin ligases that control the activity and
stability of the clock proteins. This basic molecular system is
present in the suprachiasmatic nucleus (SCN) in the anterior
hypothalamus of mammals as well as in essentially all pe-
ripheral tissues. However, the SCN is the master circadian
clock, which receives light signals from the eye through special
fibers of the optic nerves and synchronizes the clocks in pe-
ripheral organs according to time of day through endocrine
and neural signals (3–5, 9, 10, 21), as illustrated in Figure 1A.

Although the basic mechanism of the mammalian clock is
currently known, detailed mechanistic aspects at the molecular
level, needed for possible medical intervention, are still being
worked out. Figure 1 shows a model of the mammalian clock
based on our recent work (22–25) that incorporates earlier
work by many investigators in the field. Figure 1B shows that
the activating (CLOCK-BMAL1) and the repressive (CRY-
PER-CK1δ) proteins are in two separate complexes. Figure 1C
shows the relative abundance of various clock proteins with
respect to their target sequence (E-box = CTGCAG) in DNA
over the course of a daily cycle. The consequences of these
protein–protein and protein–DNA interactions on transcrip-
tion of clock genes and clock-controlled output genes in the
mouse liver are shown in Figure 1D. At the beginning of the
day (ZT = zeitgeber = 0), CLOCK-BMAL1 occupy their target
E-box sequence, but cannot activate transcription because the
repressor CRY is also abundant and binds to the CLOCK-
BMAL1-E box complex, which prevents the transactivation
domain of BMAL1 from interacting with transcriptional acti-
vators and thus inhibits transcription (“Blocking Type” inhi-
bition). In the middle of the light phase, CRY levels are low and
target genes are transcribed. In early evening (�ZT12) PER
accumulates, but in the absence of CRY, it cannot bind to
CLOCK-BMAL1-Eboxes and cannot inhibit transcription. In
the night phase, CRY and PER are abundant because of the
uninhibited CLOCK-BMAL1-mediated transcription; CRY
and PER enter the nucleus in the form of CRY-PER-CK1δ.
Once in the nucleus, PER mediates phosphorylation of
CLOCK by CK1δ and displacement of the entire complex from
the promoter resulting in “Displacement Type” inhibition,
which is followed by PER proteolysis and Blocking Type in-
hibition of CLOCK-BMAL1 target genes to reinitiate the cycle.
Naturally this core mechanism is fine-tuned by kinases that
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Figure 1. Molecular mechanism of the mammalian circadian clock. A, model for circadian entrainment by light. The “master” clock in the suprachi-
asmatic nucleus (SCN) in the brain is entrained by neural input from photoreceptors in the retina. The master clock in turn maintains a coherent rhythmicity
among clocks in peripheral tissue cells via neural signals and humoral factors. B, the positive (CLOCK-BMAL1) and negative (CRY-PER-CK1δ) arms of the TTFL
are in two separate complexes. Mouse liver nuclei were harvested at ZT19 and the extract was separated by glycerol gradient velocity sedimentation along
with reference proteins (thyroglobulin [669 kDa, 19S], β-amylase [222 kDa, 8.9S], and ovalbumin [43 kDa, 3.6S]). Fractions were probed by western blotting
using appropriate antibodies. Left panel, western blot; right panel, quantitative scan of the western blot. CLOCK-BMAL1 sediments as a heterodimer (Mr
�200 kDa), and PER2-CRY1- CK1δ sediments as a larger complex of Mr �500 kDa. C, TTFL model for the mammalian clock. The CLOCK–BMAL1 tran-
scriptional activator binds to E-boxes at subjective dawn. At this time CRY1 is abundant and binds to the CLOCK-BMAL1-E-box complex and inhibits
transcription (“Blocking type repression”). During the daytime, CRYs are degraded and CLOCK-BMAL1 activates transcription of target genes including Cry
and Per. When CRY and PER accumulate, they enter the nucleus in the form of a CRY-PER-CK1δ complex, which transiently interacts with CLOCK-BMAL1-E-
box (illustrated by brackets), phosphorylates CLOCK, and causes dissociation of the activator heterodimer (“Displacement type repression”). D, clock protein
levels in mouse liver over the course of a circadian cycle. The levels are illustrated in the form of qualitative heatmaps, and the consequence of this clock
protein change on clock-controlled Nr1d1 and Dbp gene transcription over the course of the day is plotted. Adapted with permission from Cao et al. (25).
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affect all the clock protein activities and ubiquitin ligases that
play roles in protein turnover (26). Having thus presented the
core clock mechanism in its essential outlines, we now discuss
studies that have investigated the effect of clock disruption on
carcinogenesis and the attempts to use the circadian rhythm to
improve the efficacy of chemotherapy.
Circadian clock–carcinogenesis

Considering the overwhelming integration of the molecular
circadian clock in gene expression and the fact that the
circadian clock takes environmental cues (light, food) to syn-
chronize gene expression, it would be expected that conditions
that interfere with regular environmental or hormonal inputs
2 J. Biol. Chem. (2021) 297(3) 101068
would have serious pathological consequences, including
metabolic syndrome, psychological problems, and cancer
(9–14, 27–33). In particular, clock disruption–carcinogenesis
has been the focus of numerous studies as discussed below
(27–33).
Epidemiologic studies

For the past 25 years, numerous epidemiologic studies have
been conducted to find out if there is a higher incidence of
cancer in individuals with circadian clock disruption in the
form of night-shift work by nurses or food industry workers, or
chronic jetlag in flight attendants working transatlantic flights.
The subject has been contentious with some epidemiologists



Figure 3. Genetically modified model animal studies. A, Kaplan–Meier
plots of death from cancer from two different studies of mice with clock
gene mutations (31, 41). Eight-week-old mice of the indicated genotypes
were exposed to 4 Gy of IR at ZT10 and observed for 80 weeks (B) Effect of
Cry mutation on cancer incidence and mortality in mouse strains with a
predisposition to cancer. Kaplan–Meier plots of death from cancer are
shown. Left, p53−/− (red) and p53−/−;Cry1/2–/– (green and blue) survival
probabilities. Data shown by the green line have been published (42), and
the unpublished data shown by the blue line were obtained by a different
member of the lab in a blind experimental design (31). (Right) Tumor-free
survival of ink4a–/–;ras(V12G) (blue) and ink4a–/–;ras(V12G);Cry1/2–/– (red)
mice. The experiment was conducted in male mice maintained under
standard conditions of 12 h light–12 h dark cycles and monitored regularly
for the appearance of melanomas. There is no statistically significant dif-
ference between the two survival curves (p = 0.2), and hence, it is
concluded that in this genetic background Cry mutation has no mitigating
effect on cancer incidence or progression. Adapted with permission from
Sancar et al. (31).
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concluding shift work is a carcinogen, whereas others claim
otherwise. Nevertheless, the International Agency for Research
on Cancer (IARC) in 2019 concluded that night-shift work was
possibly carcinogenic [see (32)]. Interestingly, a paper pub-
lished in 2020 that reported a systematic review of 57 obser-
vational studies with 8,477,849 participants (including the
studies that were the basis of the WHO conclusion) “did not
find an overall association between ever-exposure to night-
shift work and the risk of breast, prostate, ovarian, pancre-
atic, colorectal, non-Hodgkin’s lymphoma, and stomach can-
cers” (34) (Fig. 2). Thus, at present this debate is still ongoing
(35, 36).

Genetically modified animal model studies

Considering the limitations of epidemiologic studies, once
the mammalian core clock genes were identified, it seemed
that the issue of clock disruption–carcinogenesis connection
might be settled definitively by using mice with genetically
modified (knockout) clock genes. Clock and Bmal1 mutations
did not predispose mice to cancer, but caused premature aging
phenotypes (37–39). Per1−/− or Per2−/− mutations did not
predispose mice to spontaneous and IR-induced cancers (40)
(Fig. 3A). Similarly, Cry1/2−/− mutant, which is arrhythmic
under free-running conditions, is indistinguishable from wild-
type with regard to spontaneous and IR-induced cancers (41).
Interestingly, when the Cry1/2−/− mutation is combined with
p53−/− mutation following a commonly used strategy to un-
cover the carcinogenicity of weakly penetrant tumorigenic
genes, the opposite of the expected effect was found: the p53−/
− mice developed lymphomas and lymphosarcomas and had an
average lifespan of 5.5 months, whereas the p53−/−Cry1/2−/−

mice developed tumors later and lived 1.5-fold longer than the
p53−/− mice (42). Thus, in this context Cry mutation plays an
anticarcinogenic function (Fig. 3B). However, this is not a
universal effect of Cry mutation: Ink4a−/−,ras(V12G) tumor
suppressor/oncogene mutant mice develop melanomas with
100% incidence with light exposed areas, and the combination
Figure 2. Meta analysis studies on circadian disruption and cancer
incidence. The studies analyzed by Dun et al. (34) met the following criteria:
(1) night-shift work was reported; (2) cancer risk was investigated; (3) cohort
studies, case-control studies, or nested case-control studies; (4) the risk was
estimated by odds ratio (OR), risk ratio, or hazard ratio, with 95% confidence
interval (CI). Cancer risks among individuals with different classifications of
night work duration (0–5, 6–10, 11–15, 16–20, 21–25, and ≥26 years) are
plotted. Taking all eligible studies together, night-shift work did not in-
crease the risk of cancer in any group of night workers. Image modified with
permission from Ref.34 and used under Creative Commons.
of Ink4a−/−,ras(V12G),Cry1/2−/− did not affect melanoma
incidence or survival (31), indicating that the antitumorigeneic
effect of the Cry mutation is context-dependent.

Other experimental clock-disruption regimens in specific
genetic backgrounds have been reported to have the opposite,
procarcinogenic, effect. An early study, in which the clock was
disrupted by suprachiasmatic nuclei (SCN) lesioning, found
that Glasgow osteosarcoma and pancreatic adenocarcinoma
xenografts grew faster in SCN-lesioned arrhythmic mice (4).
Another study reported that breast cancer-prone p53R273OH/+

mice that were subjected to weekly LD inversion (chronic
circadian rhythm disturbance) gained more weight and
developed mammary tumors at a faster rate compared with
controls (43). Yet, at the end of 30 weeks of circadian
disruption, both the circadian disrupted and control mice had
equal total incidence of mammary tumors. Moreover, since the
circadian-disrupted group gained significantly more weight, it
is unclear whether the early appearance of mammary tumors
was due to weight gain, as it is known that being overweight is
a risk factor for breast cancer in humans. Yet, another study
reported that when mice with lung-specific K-ras and p53
J. Biol. Chem. (2021) 297(3) 101068 3
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deletions were subjected to chronic jet lag, they exhibited
higher tumor incidence and progression compared with con-
trols (44). However, the effect was small, with the survival
difference between the jet-lagged and control animals being
just several days. In conclusion, clock researchers have used
rather creative experimental designs to uncover the carcino-
genic effect of clock disruption and have found very specific
conditions for such an effect, but, in general, the carcinogenic
effects have been small (45). Nevertheless, these experiments
are valuable in terms of providing a foundation for more
realistic conditions for testing the clock–cancer connection.

Circadian clock–cell cycle connection

The circadian clock, like all other biochemical pathways/
signaling networks, interfaces with genes/proteins that regu-
late the cell cycle. Specifically, the p21 and p27 proteins, which
inhibit the G1/S transition kinase CDK4/6, and the Wee1 ki-
nase, which phosphorylates and inhibits the G2/M transition
kinases CyclinB1/CDKs, are controlled by the core circadian
TTFL. In addition, TIMELESS, which is strictly a clock protein
in the form of PER-TIM repressor in Drosophila, in
mammalian cells functions in both the core clock by inter-
acting with CRYs and participates in replication fork protec-
tion and the intra-S checkpoint by interacting with checkpoint
kinases CHK1 and CHK2 (46, 47). Finally, some isoforms of
the heat shock protein HSP90 exhibit a low-amplitude circa-
dian pattern of expression and, through their effect on cell
cycle progression, appear to mediate time-of-day-dependent
efficacy of certain anticancer drugs (48). Therefore, it is to
be expected that the circadian and cell cycles would recipro-
cally influence one another. This coupling of the two cycles
was unambiguously demonstrated in an exhaustive experi-
mental/computational study with circadian synchronized and
proliferating mammalian cells in tissue culture (49). However,
it was also pointed out that circadian cycle–cell cycle coupling
is not essential for development and growth of animals with a
genetically disrupted clock. Indeed, Cry1/2−/− and Per1/2−/−

mice (and Pero Drosophila) with no functional clock develop
and grow normally (10, 31, 39). Apparently, the coupling of the
two oscillators is not of such strength that its absence in-
terferes with development. Nonetheless, both clockless mice
and Drosophila exhibit reduced fecundity, which might be
ascribed to the circadian effect on mating behavior (10).

Circadian clock–oncogene/tumor suppressor connection

The major tumor suppressor gene p53 and the two onco-
genes mutated in most human cancers, myc and ras, have been
mechanistically linked to the circadian clock.

p53

There is a complex relationship between p53 and the clock.
CRYs have no effect on the life span of otherwise wild-type
mice (7, 39). However, their absence extends the life span of
p53−/− transformed cancer cells prone to intrinsic and
extrinsic apoptosis (50). Thus, while the clock does not affect
p53 expression directly, clock disruption by Cry mutation
4 J. Biol. Chem. (2021) 297(3) 101068
ameliorates the development of at least the progression of
tumors caused by p53 mutation (Fig. 3B). In support of this
antitumorigenic effect of CRY absence or downregulation, it
was found that in low-risk and slow-progressing chronic
lymphocytic leukemias, Cry1 expression is silenced by aberrant
CpG hypermethylation and that the methylation status of the
Cry1 promoter could be used as a prognostic marker (51, 52).
In addition to these effects of CRY on p53 mutation-caused
cancers, p53 also affects the molecular clock by regulating
Per2 transcription: p53 binds to a p53-response element in the
Per2 promoter, which overlaps with the E-box. As a conse-
quence, p53−/− mice have a short period and an overall un-
stable circadian rhythm (53, 54).

MYC

c-MYC, like the proteins in the positive arm of the core
clock, CLOCK/NPAS2-BMAL1, binds to E-boxes to regulate
target genes. It affects the clock by multiple mechanisms
(Fig. 4A) (55–58). First, in the form of c-MYC-MAX-MIZ1, it
binds to MIZ1-binding sites in the promoters/enhancers of the
Bmal1 and Clock genes and downregulates their expression,
thus disrupting the clock. Second, the c-MYC heterodimer (or
c-MYC-MAX) binds to the E-box in the Nr1d1 promoter,
upregulates its transcription, which, in turn, leads to down-
regulation of Bmal1 by overproduced NR1D1/2, and ulti-
mately disrupts the clock. Conversely, the clock appears to
regulate c-MYC protein by transcriptional (59) and post-
transcriptional (60) mechanisms (Fig. 4, B and C). In the
transcriptional pathway, CLOCK-BMAL1 binds to the E-box
in one of the introns of β-catenin and inhibits its transcription.
β-CATENIN, in conjunction with TCF/TEF, is a transcrip-
tional activator of c-Myc. Thus, inhibition of β-catenin
expression by CLOCK-BMAL1 downregulates c-Myc expres-
sion. This inhibition is overcome by CRYs, which remove
CLOCK-BMAL1 from the β-catenin intron. As a consequence,
c-MYC expression is low in Cry1/2−/− mice compared with
WT mice (59). Thus, CRYs, which in general function as re-
pressors, in this context function as activators, albeit indirectly
(Fig. 4B). Secondly, it has been reported that CRY2 binds to
phosphorylated c-MYC and targets its ubiquitylation and ul-
timate degradation by the proteasome (Fig. 4C). As a conse-
quence, it was reported that in Cry2 mutant mice, c-MYC was
constitutively overexpressed and these mice had increased
incidence of lymphosarcomas. However, this study used mice
in which c-Myc was translocated to the Eu(IgH) locus (60), and
therefore the two studies are not necessarily contradictory.

RAS

KRAS and the related members of the RAS family are
mutated in nearly 50% of human cancers, and hence it would
be expected that if RAS expression or function is modulated by
circadian clock disruption, then clock gene mutations or
chronic shift work would affect RAS signaling and its potential
mutagenic effects. Two studies have addressed this issue (31,
61). In one, tumor-free survival of Ink4a−/−, Ras(V12G), Cry1/
2−/− mice with no functional clock were used. These



Figure 4. Regulation of the clock by c-MYC and of c-MYC by the clock. A,
c-MYC regulates Bmal1 by two mechanisms (55–58). First, c-MYC, in the
form of c-MYC-MAX-MIZ1 heterotrimer directly binds to the MIZ-binding
site upstream of the Bmal1 promoter and directly inhibits its transcription.
Second, in the form of c-MYC-MAX it binds to the E-boxes of the REV-ERB
α/β genes (Nr1d1/2) and stimulates their transcription. NR1D1/2, in turn,
binds to the RORE element of BMal1 and inhibits its transcription. B, regu-
lation of c-MYC at the transcriptional level by the clock (59). The β-Catenin
gene (Ctnnb1) contains an E-box in its 35th intron, to which BMAL1-CLOCK
bind and act as a context-dependent repressor (23, 24, 59) to interfere with
the transcription of Ctnnb1 (top). CRY-PER remove CLOCK-BMAL1 from the
intron, activating Ctnnb1 transcription (bottom). β-catenin makes a complex
with TCF/LEF, which stimulates c-Myc transcription. In CRY mutants, BMAL1-
CLOCK remains bound to the E-box of Ctnnb1 intron and inhibits its tran-
scription, and in the absence of, or with reduced levels of β-Catenin, c-Myc
transcription is downregulated (top). C, regulation of MYC by the clock at a
posttranscriptional level (60). When CRY2 is overexpressed by a strong
promoter, such as the Igu promoter, it interacts with c-MYC and targets it for
degradation by the ubiquitin/proteasome pathway, leading to reduced c-
MYC levels.
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genetically engineered mice when maintained under LD12:12
developed melanomas with 100% penetrance and die within
30–35 weeks (31). Clock disruption by Cry knockout did not
affect the tumorigenesis or the survival of the control Ink4a−/
−,Ras(V12G) as determined by the conventional Kaplan–Meier
plots (Fig. 3B). In the second study, from a circadian
perspective, a rather intrusive study, Kras and p53 were
selectively deleted in mouse lungs, and then the mice were
subjected to a chronic jet-lag regimen (61). Under these con-
ditions, tumor incidence and the rate of progression increased.
However, these effects were modest, with only a few days
difference between the jet-lagged and control mice in both
cancer incidence and progression rates. Finally, another study
investigated the effect of RAS overexpression, and not sur-
prisingly for a protein of such major signal transduction role in
cell growth and differentiation, RAS overexpression in wild-
type cells, as with p53 and MYC, leads to lengthening of the
circadian period and senescent cell phenotype (61). Thus, on
the whole, while as expected due to its global regulatory
property, the circadian clock does intersect with signaling of
oncogene and tumor suppressors with equally global cellular
functions, these overlaps are not of sufficient magnitude for
tight coupling of the clock with tumorigenesis or tumor
suppression.

Genomics of the clock–cancer connection

Several attempts have been made to correlate clock gene
polymorphisms or expression levels in either cancer cell lines
or tissues from various cancers to determine whether clock
gene mutations (62) or levels of expression (63–70) play a role
in initiation or progression of cancer and susceptibility of
cancer to a particular drug and a particular time of day for
delivery of the drug (chronochemotherapy). The effects of
clock gene polymorphism are small, and both predisposing
and protective mutations were observed in comparable levels,
and thus it is unclear whether these associations have a
pathogenic role in the observed phenotypes (33). Similarly, the
clock gene expression data lack a time dimension of sampling
(71) and a mechanistic link between the observed clock gene
expression changes and the tumorigenic pathways and the
suggestion that the -omics findings have been supported by
clinical chronochemotherapy trials (72, 73) is not in accord
with the actual clinical trials. However, the clock gene
expression profiles of a select number of cancers may have
prognostic value (64, 65, 68).

Circadian clock–chemotherapy (chronochemotherapy)

Chronotherapy is generally understood to mean adminis-
tering anticancer drugs at certain times of the day as dictated
by the circadian clock for maximum efficacy and minimal side
effects (74–76). In fact, it has been shown that the toxic effects
of endotoxin (77) and the anticancer drug cyclophosphamide
(78, 79) exhibit a strong circadian pattern. With this general
principle as a guide, a number of investigators have attempted
chronochemotherapy for the past 50 years, long before the
molecular mechanism of the clock was well understood. These
efforts will be recapitulated below, but suffice it to state at the
outset that chronochemotherapy is not routinely practiced in
the United Sates and, possibly, any other country.

Empirical clinical trials

An early clinical trial of chronochemotherapy of ovarian
cancer with a small number of subjects reported a 4-fold in-
crease in the 5-year disease-free survival with doxorubicin plus
cisplatin chronotherapy compared with subjects receiving
conventional drug administration (80, 81). A follow-up large
multicenter study did not confirm this preliminary report, and
currently, chronotherapy is not practiced by the American
Gynecologic Oncology Group (82). Similarly, even though an
J. Biol. Chem. (2021) 297(3) 101068 5
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anecdotal beneficial effect of chronotherapy has been reported
in treatment of metastatic colorectal cancer (83, 84), a large
multicenter study in the European Union did not show a
beneficial effect for the entire patient cohort, but a minor
beneficial effect for men and a larger harmful effect for women
in terms of survival (85). To summarize, as of now there is no
convincing clinical trial that chronotherapy of cancer is
beneficial in the currently practiced form (32).
Mechanism-based chronochemotherapy

Elucidation of the basic mechanism of the mammalian
circadian clock at the molecular level has made it possible to
attempt to develop chronochemotherapy regimens with some
mechanistic foundation. Currently, two general approaches are
used, tissue-culture-based methods and xenograft-based
methods. The tissue-culture-based methods take advantage
of the discovery that mammalian cells in tissue culture can be
circadian synchronized by dexamethasone (49). Then, such
synchronized cultures from various cancers are treated with
anticancer drugs at different phases of the circadian cycle to
identify the phase at which the cancer cells are most sensitive
to the drug. In further elaborations of this approach, small-
molecule inhibitors or stabilizers of various core clock pro-
teins have been identified and tested in various versions of the
cell-based circadian system to develop adjuvants in cancer
treatment regimens (86–89). However, it must be noted that
analysis of synchronized cell cultures has shown that in this
system essentially only the core TTFL clock genes and those in
the secondary consolidating loop exhibit circadian rhythmicity,
in contrast to hundreds to thousands of genes in most organs
in mice, and presumably in humans, that exhibit circadian
rhythmicity. For this reason, we have focused our research on
developing chronochemotherapy regimens for cisplatin in
mice.

Cisplatin (and its second- and third-generation derivatives,
carboplatin and oxaliplatin) is the most commonly used anti-
cancer drug for treating cancers of solid tissues (90, 91).
Cisplatin kills cells by making DNA diadducts, d(GpG) and
d(ApG), and at much lower frequency interstrand cross-links.
In humans and mice, nucleotide excision repair is the sole
repair system for removing the major diadducts and thus
preventing cell death (92). Excision repair in mammals is
carried out by the concerted action of six repair factors (XPA,
RPA, XPC, TFIIH, XPG, XPF-ERCC1), which make dual in-
cisions �27 nucleotides apart bracketing the lesion. There are
two pathways of excision repair (Fig. 5A), global repair and
transcription-coupled repair (TCR) that differ in the damage
recognition step (8, 93, 94). In global repair, XPC plays an
essential role in the damage recognition step, whereas in TCR,
RNA Polymerase II stalled at a lesion performs the damage
recognition function, and as a consequence, the transcribed
strand (TS) is repaired more efficiently (2–10-fold depending
on the level of transcription) than the nontranscribed strand
(NTS), and the global repair pathway repairs both strands in
the regions of the genome that are not transcribed. For tech-
nical reasons, eukaryotic TCR cannot be performed with
6 J. Biol. Chem. (2021) 297(3) 101068
purified proteins or cell-free extracts (8), and at present, it can
only be observed in tissue culture and living organisms (8, 92,
93, 95). Similarly, circadian control of global excision repair
cannot be detected in tissue culture because of the limited
circadian effect of synchronization procedures that only syn-
chronize clock proteins and a limited number of clock-
controlled genes (71). Thus, to detect the effect of the circa-
dian clock on excision repair, we harvested mouse organs
(liver, kidney, skin) over a circadian cycle and tested cell-free
extracts made at each of these circadian time points for exci-
sion repair (21, 96–98). We found that in all tissues tested
except testis, which is arrhythmic (99), repair was at a
maximum at ZT10 and nadir at around ZT22 (Fig. 5B). When
the expression profiles of the excision repair proteins were
analyzed, it was found that transcription of the essential repair
factor XPA exhibits circadian rhythmicity in these tissues
coincident with the maxima of repair activity detected on Pt-
d(GpG) substrates (96, 97, 100). However, since the in vitro
system is not conducive to measuring TCR, we proceeded to
test the combined actions of the global excision activity
oscillation and circadian-controlled transcription on repair in
mouse tissues. To this end, we developed a method called XR-
seq (eXcision Repair-seq) to map repair throughout the whole
genome at single nucleotide resolution (95, 101), and mapped
cisplatin repair genome-wide in mice (Fig. 5C). First, we chose
a single time point to measure repair in multiple mouse tissues
(102), then measured repair over a circadian cycle (103), and
finally measured repair in several sentinel genes over a clini-
cally relevant time span (104). These studies have yielded in-
formation that will be potentially useful in improving the
therapeutic index of cisplatin and in developing chro-
nochemotherapy regimens and thus will be summarized
below.
Multiple organ damage, repair, and transcription maps after
cisplatin administration

Damage and repair maps were generated by Damage-seq
and XR-seq, respectively; and transcription was quantified by
RNA-seq (102). Cisplatin was administered by intraperitoneal
(IP) injection and 4 h later, the liver, kidney, lung, and spleen
were harvested and strand-specific DNA repair was analyzed at
single-nucleotide resolution and compared with RNA-seq
from the same tissues. Damage formation was the highest in
the kidney, followed by the liver and lung, and the lowest in the
spleen, in agreement with immunoslot blot data. XR-seq
revealed the concordance of TS repair and RNA-seq, while
the NTS was in general 5–10-fold less efficiently repaired
compared with the TS in constitutively expressed genes and in
genes in which the expression maximum phase coincided with
the sampling time. As expected while some genes were in
phase in all tissues, each tissue also exhibited rhythmic gene
expression and a corresponding rhythmic repair pattern spe-
cific to that tissue. Perhaps one of the most significant findings
of this study (Fig. 6) was the nearly 5-fold induction of Per1 in
all tissues after cisplatin administration as revealed by RNA-
seq, and this increase in Per1 transcription was accompanied



Figure 5. Mechanism of nucleotide excision repair and its control by the circadian clock. A, molecular mechanism of mammalian Global and
Transcription-Coupled Repair. Transcribed strand (TS) repair is predominantly determined by the phase of transcription of a given gene. The nontranscribed
strand (NTS) repair is controlled by the repair enzyme complex oscillation, which is dictated by XPA damage recognition protein with a maximum at ZT10
for all genes regardless of the phase of transcription. B, schematic of the core clock that controls XPA expression. C, repair patterns of various gene’s TS and
NTS repair depending on whether they are constitutively expressed or controlled by the circadian clock, their phase of expression, and level of expression.
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by a similar level of increase of TS repair with only a minor
effect on NTS repair, even though because of the 4 h delay
between cisplatin administration and sampling, by this time
the NTS contained more damage than the TS as revealed by
Damage-seq. The significance of the Per1 elevation on the
circadian phase and amplitude remains to be investigated.
Effect of the circadian clock on cisplatin damage formation and
repair

To establish a foundation for mechanism-based chro-
nochemotherapy for cisplatin, we analyzed damage formation
and repair of cisplatin administered to mice at 4 h intervals
over a full circadian cycle (103) (Fig. 7A). Genome-wide repair
at single nucleotide resolution revealed interesting features.
First, genome-wide analysis of TS and NTS repair shows
strong preference for TS repair at all time points and
throughout the gene body of transcribed genes. The strand
preference upstream of transcription start sites (TSS) is
reversed because of the short promoter/enhancer transcript in
the opposite direction (Fig. 7B). Interestingly, a screenshot of
the repair pattern within a region of chromosome 1 that
contains a strongly circadian-controlled gene (Npas2) and two
adjacent genes that are weakly circadian (Rpl31) or non-
circadian (Tbc1d8) and transcribed in opposite directions
shows that the circadian-controlled Npas2 gene exhibits
strong circadian preference of TS/NTS repair, whereas Rpl31
demonstrates weak rhythmicity and Tbc1d8 maintains the
same TS/NTS preference over the entire circadian cycle
(Fig. 7C).

With this background, we then analyzed the effect of the
circadian clock on genome-wide repair of cisplatin damage in
mouse kidney and liver. The repair heat map of 1661 genes
that exhibit rhythmicity in TS repair with an amplitude of 2-
fold in mouse kidney is shown in Figure 8A. The repair
pattern exhibited rather interesting features. The TS of each
gene controlled by the clock is repaired at the time of day
dictated by the circadian clock-controlled transcription of
that particular gene. This is because of the strong effect of
transcription on TS repair (Fig. 5). In contrast, the NTS of all
J. Biol. Chem. (2021) 297(3) 101068 7



Figure 6. DNA damage, repair, gene expression, and epigenomic markers for Per1. Per1 is significantly upregulated after cisplatin treatment across all
four organs. RNA-seq plus and minus cisplatin (cisp. and cont., respectively) is shown in gray at the top for each organ. Damage-seq and XR-seq data are
shown for both strands. Pt-d(GpG) damage (Damage-seq) and repair (XR-seq) distribution on the TS and NTS are shown with − and +, respectively.
Epigenetic data from ChIP-seq of H3K4me3 and H3K27me3, as well as DNase-seq, are plotted at the bottom of each organ. We show that the transcriptional
and epigenomic profiles of Per1 and neighboring regions across all four organs recapitulate the differences in DNA damage and repair between the TS and
NTS. Adapted with permission from Yimit et al. (102).

JBC REVIEWS: Circadian clock–carcinogenesis–chronochemotherapy
genes and both strands of nontranscribed genes and inter-
genic DNA are repaired maximally at one phase of the
circadian clock (�ZT10) (Fig. 8B). The circadian oscillation of
the repair activity has negligible effects on TS repair because
the effect of transcription on TS repair is of higher amplitude
than the amplitude of the oscillation of the repair enzyme
system. Finally, we note that these unique features of tran-
scription and transcription enzyme circadian rhythmicities
give rise to an interesting phenomenon at the single gene
level: Depending on the circadian time of transcription, the
TS and NTS of a particular gene might be repaired in-phase,
in opposite phase, or in any of the phase relationships in
between (Fig. 8C).

Effect of the clock and transcription on long-term repair kinetics
of cisplatin damage

Cisplatin causes cell death by inhibiting replication,
interfering with transcription, and inducing apoptosis. To
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analyze the kinetics of cisplatin damage repair over a clini-
cally relevant timespan, we followed gene and strand-specific
repair of cisplatin damage in mouse liver over a 2-month
period following cisplatin administration (104). We found
(Fig. 9) that following cisplatin administration, the TS repair
of a sentinel gene (Npas2) exhibited periodicity of �24 h,
whereas the NTS repair proceeded at a slow and constant
rate. The TS repair at its maximum was approximately 5-
fold higher than the NTS and went down to a level lower
than the NTS repair and went back up again in a circadian
manner to the next peak �24 h later, whereas the NTS
repair continued at the same slow rate. As a consequence of
TCR, the TS repair was essentially complete within a week,
while the NTS repair continued at its slow pace for 70 days,
which was the duration of the experiment (100). Thus, in the
clinical setting, these time-dependent differential rates of TS
and NTS repair need to be considered in determining in-
tervals of cisplatin dosing.



Figure 7. Transcriptional and circadian control of excision repair of
cisplatin-DNA adducts in mice. A, schematic of circadian repair experi-
ment. Mice kept under 12-h light:12-h dark (LD 12:12) conditions were
administered cisplatin at the indicated time points, and tissues were har-
vested 2 h later; the excision products were isolated from the liver and
kidney and analyzed by XR-seq. ZT indicates circadian time where ZT0 is
light-on and ZT12 is light-off. For each time point three mice were killed for
XR-seq. B, genome-wide analysis of TS and NTS repair shows strong pref-
erence for TS repair in promoter-proximal regions, throughout gene bodies,
and into the transcriptional end site (TES). Preferential repair reversal up-
stream of the transcription start sites (TSS) is due to bidirectional promoters
for most mammalian genes such that the NTS in the gene body becomes
the TS upstream of the TSS. The y axis shows reads per kilobase pair per
million total reads (RPKM) for 100-nt windows. C, illustration showing the
effect of transcription and the combined effects of the circadian clock and
transcription on cisplatin repair. Repair patterns of a 295-kb region of
chromosome 1 encompassing the Npas2 clock gene and two neighboring
genes are shown. Blue, plus strand XR-seq repair reads; red, minus strand
XR-seq repair reads. The Npas2 gene is itself clock-regulated and repair of its
TS peaks at ZT20-ZT0 and troughs at ZT08. The clock output gene Rpl31
exhibits much weaker rhythmicity in repair that is delayed compared with
Npas2 (peak ZT0-ZT08, minimum ZT16). Tbc1d8 exhibits high amplitude and
constant TS repair over the entire course of the circadian cycle. Adapted
with permission from Yang et al. (103).

Figure 8. Two interdependent circadian programs control repair of the
TS and NTS. A, heatmaps of circadian repair cycles of the transcribed strand
(TS) and nontranscribed strand (NTS) of 1661 highly rhythmic genes in
mouse kidney. Exp/Med is, for each gene, RPKM at a given ZT divided by the
median ZT RPKM value. Note the distribution of the repair maxima over the
entire circadian cycle for the TS and the single maximum for repair of the
NTS due to the circadian-controlled peak repair activity, which manifests
itself on the NTS but its contribution to the TS repair is obscured by the
much stronger effect of transcription on repair. The scale for selecting the
significant cyclical genes is meta2d_pvalue <0.05, meta2d_rAMP>0.1. Each
horizontal line represents one gene every 4 h from ZT0 to ZT24 with two
replicates. B, radial diagram representation of TS and NTS repair. The TS
repair exhibits two peaks corresponding to predawn and predusk, in
agreement with numerous transcriptional analyses studies. The NTS repair
exhibits a single peak at ZT08-11 in agreement with the peak transcription-
independent excision repair activity. The scale for selecting the significant
cyclical genes both in TS and NTS is meta2d_pvalue < 0.05, meta2d_rAMP
> 0.1. C, examples of dissonance of the TS versus NTS repair. The dissonance
is most apparent when the transcription/repair phase is farthest from ZT08,
which represents the total repair activity and hence maximum NTS repair.
We used three animals per time point for analysis and performed two
biological replicates. The time range is from ZT0 to ZT24. In C (as in A), data
for ZT0 to ZT24 replicate one are followed by data for ZT0 to ZT24, replicate
two. Adapted with permission from Yang et al. (103).
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Human colorectal cancer xenografts as a model for
chronochemotherapy

It has been reported that most cancers, at the tissue level,
lack circadian rhythmicity, or if rhythmic, are out of phase with
normal tissues (13). We wished to find out if this behavior can
be used to advantage to develop more efficient chemotherapy
regimens. We used colorectal cancer (CRC) xenografts to
attempt to develop a chemotherapy regimen that minimizes
side effects with maximum damage to cancer cells.

Xenografts from three CRC patients were grown in JAX
NOD.CB17-Prkdc (SCID) mice. Once the tumor reached a size
of 1 cm × 1 cm in diameter (500 mm3), six mice per patient
xenograft were injected with cisplatin at 4 h intervals over a
circadian cycle. Tumors were harvested 2 h after cisplatin in-
jection, and Pt-d(GpG) repair in tumor tissue and liver and
kidney of the host mouse was analyzed genome-wide by XR-
seq. Results, to be further elaborated below, show that in
general, circadian rhythmicity is lost in CRC xenografts (105).
Whether the lack of rhythmicity in the tumor tissue is because
of the inability of the population of cancer cells to maintain
phase coherence or because of the disruption of the clock in
individual cells as a consequence of carcinogenic trans-
formation cannot be ascertained from our experimental
system.

Figure 10A shows the genome-wide analysis of repair of
transcribed genes in the livers of the host mice along with
repair in xenografts. As apparent from the figure, both the
J. Biol. Chem. (2021) 297(3) 101068 9



Figure 9. XR-seq analysis of repair in circadian-controlled genes. The screenshot shows repair profiles for the circadian-controlled gene, Npas2, which
has a peak expression at ZT22. Repair of the rhythmic Npas2 gene exhibits high amplitude transcribed strand (TS) (−s) repair peaks at 2 h, �24 h, and �48 h
after drug injection. Only after 48 h does the nontranscribed strand (NTS) become the main source of repair product from the Npas2 gene. RPKM reads per
kilobase per million reads. Adapted with permission from Yang et al. (104).
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livers of host mice and the xenografts of cisplatin-sensitive and
-resistant CRC xenografts perform TCR to the same extent.
Thus, for all practical purposes, repair in normal mouse tissue
and cisplatin-sensitive and -resistant CRCs are of comparable
efficiency and, in these cases at least, diminished or augmented
excision repair capacity is not the cause of cisplatin sensitivity
or resistance.

Next, we analyzed repair in host and in xenografts as a
function of circadian time in the form of heatmaps and Radial
Diagram representations (Fig. 10B). Liver data exhibited fea-
tures essentially identical to our previously published data and
were similar in the three host liver groups with peaks at ZT8-10
and ZT19-21 for the TS and a single peak at ZT10-12 for NTS.
In contrast to the host liver with 1368 cyclic genes, xenografts
range from 48 to 124 cyclic genes. A wild-type-like predawn/
predusk TS repair pattern is seen in at least two of the xeno-
grafts, and NTS repair is widely distributed over the entire
circadian cycle in two of the xenografts, indicative of lack of
circadian rhythmicity in the excision repair enzyme activity. We
also note that the genes that exhibit a circadian pattern of TS
repair are not shared by the host liver and possibly reflect
feeding pattern-dictated transcription of relevant genes.

Next, we analyzed circadian clock-controlled genes to
illustrate the status of the primary TTFL genes and the genes
of the consolidating secondary loop to gain further insight into
the status of the molecular clock in the xenografts. In
Figure 10C we show screenshots of representative genes
controlled by E-box (primary TTFL) and RER element
(consolidating NR1D1/2 loop). Figure 10C top panels show
that while the livers of the host mice exhibit circadian rhyth-
micity and TCR of an E-box-controlled gene (Dbp), the xe-
nografts, while exhibiting high TCR, no longer exhibit
circadian control of this gene in terms of total transcription as
measured by RPKM. Figure 10C bottom panels also show
striking circadian rhythmicity in NR1D1/2-controlled Npas2
in the liver of the mouse. In contrast, the rhythmicity is lost in
the xenografts, but the relative transcription rate over the
10 J. Biol. Chem. (2021) 297(3) 101068
entire circadian cycle is high in all three xenografts. Finally,
Arntl(Bmal1), which is also primarily controlled by the sec-
ondary loop, has also lost rhythmicity, and this core clock
activator gene maintains a constantly low level of expression in
the xenografts (not shown). It is interesting that of all clock-
controlled genes analyzed, only Npas2 is constitutively
expressed at a high level over the entire circadian cycle in
xenografts relative to the host liver, which exhibits the well-
known circadian pattern. In all other tested genes, including
Arntl (Bmal1), which like Npas2 is mainly controlled by
NR1D1/2, and secondarily by DBP, the expression pattern is
uniformly low and at the level of the minimum of the
circadian-controlled genes in normal tissues. Explanation of
this observation requires further research into the circadian
clock in normal human tissues.

To summarize, using XR-seq we have discovered that CRC
xenografts perform global and transcription-coupled repair,
but lack circadian rhythmicity in repair whether the xenograft
is from a cisplatin-resistant or cisplatin-sensitive tumor. At
present, the number of xenografts is insufficient for making
generalizations and designing chronochemotherapy regimens
based on this limited data. However, XR-seq is a powerful
method for comparing repair in four dimensions in cancer and
normal tissues and has the potential of aiding development of
mechanism-based chronochemotherapy.
Conclusions/perspective

Although circadian rhythms have been studied in great
detail at a phenomenological level for nearly a century, the
mechanistic foundation of the clock has only been elucidated
over the past 25 years. The recent rapid progress in the field
has revealed the pervasiveness of clock control of 50–90% of
genes in mammals and in other organisms ranging from cya-
nobacteria to fruit flies. Moreover, sleep disorders caused by
mutations in clock genes have been identified. Similarly, the
interfacing of the clock with the cell cycle and all of the major



Figure 10. Genome-wide analysis of TS and NTS repair in host liver and human colorectal cancer xenografts. A, plots of average TS and NTS repair
across all genes in mouse liver and in cisplatin sensitive (057) or resistant (119) xenografts. XR-seq data obtained at ZT0 are plotted as RPKM average repair
reads (y axis) along the length of a “unit gene” (x axis). The unit gene was constructed using all nonoverlapping human or mouse genes >5 kpb with a
distance >5 kbp between adjacent genes. The unit gene is 100 bins in length, and values for average repair were obtained by dividing each gene into 100
bins and averaging the repair values for each successive bin for all genes from 1 to 100. Average repair 2 kbp upstream and downstream was similarly
obtained. B, Heatmaps (above) and radial diagram representations (below) of circadian TS and NTS repair cycles in host liver and in cisplatin sensitive (057)
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signal transduction pathways has been established. Against this
background, it has come as a major surprise that clock
disruption by shift work or by clock gene mutations has not
been found to be a significant contributing factor in carcino-
genesis. Similarly, most of the genes/proteins that are targets
for anticancer drugs, and therefore the efficacy of anticancer
drugs, would be expected to be circadian time-dependent;
however, research so far has not shown this to be the case.
Yet it should be noted that the fine details of the circadian
clock are still being worked out, and there is hope that with
more advanced understanding of the mechanism of the human
molecular clock, this knowledge will aid in developing more
efficient approaches for cancer prevention and treatment.
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