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Abstract

The functional near-infrared spectroscopy (fNIRS) can detect hemodynamic responses in

the brain and the data consist of bivariate time series of oxygenated hemoglobin (oxy-Hb)

and deoxygenated hemoglobin (deoxy-Hb) on each channel. In this study, we investigate

oscillatory changes in infant fNIRS signals by using the oscillator decompisition method

(OSC-DECOMP), which is a statistical method for extracting oscillators from time series

data based on Gaussian linear state space models. OSC-DECOMP provides a natural

decomposition of fNIRS data into oscillation components in a data-driven manner and does

not require the arbitrary selection of band-pass filters. We analyzed 18-ch fNIRS data (3 min-

utes) acquired from 21 sleeping 3-month-old infants. Five to seven oscillators were

extracted on most channels, and their frequency distribution had three peaks in the vicinity

of 0.01-0.1 Hz, 1.6-2.4 Hz and 3.6-4.4 Hz. The first peak was considered to reflect hemody-

namic changes in response to the brain activity, and the phase difference between oxy-Hb

and deoxy-Hb for the associated oscillators was at approximately 230 degrees. The second

peak was attributed to cardiac pulse waves and mirroring noise. Although these oscillators

have close frequencies, OSC-DECOMP can separate them through estimating their differ-

ent projection patterns on oxy-Hb and deoxy-Hb. The third peak was regarded as the har-

monic of the second peak. By comparing the Akaike Information Criterion (AIC) of two state

space models, we determined that the time series of oxy-Hb and deoxy-Hb on each channel

originate from common oscillatory activity. We also utilized the result of OSC-DECOMP to

investigate the frequency-specific functional connectivity. Whereas the brain oscillator

exhibited functional connectivity, the pulse waves and mirroring noise oscillators showed

spatially homogeneous and independent changes. OSC-DECOMP is a promising tool for

data-driven extraction of oscillation components from biological time series data.

Author summary

The functional near-infrared spectroscopy (fNIRS) can detect hemodynamic responses in

the brain and the data consist of bivariate time series of oxygenated hemoglobin (oxy-Hb)

and deoxygenated hemoglobin (deoxy-Hb) on each channel. In this study, we investigate
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oscillatory changes in fNIRS signals of infants by using a statistical method for extracting

oscillators from time series data, which we call the oscillator decompisition method

(OSC-DECOMP). OSC-DECOMP determines the number, frequencies and powers of

oscillators as well as their projection patterns in a data-driven manner and does not

require arbitrary selection of band-pass filters. Three types of oscillators (brain activity,

pulse wave, mirroring noise) were found and each oscillator showed a characteristic spa-

tial synchrony. Model comparison with the Akaike Information Criterion (AIC) demon-

strated that the time series of oxy-Hb and deoxy-Hb on each channel originate from

common oscillatory activity. We believe that OSC-DECOMP will become a promising

tool of neural oscillation analysis for not only fNIRS but also LFP, EEG, MEG and fMRI.

Introduction

Spontaneous changes in cerebral oxygenation reflect hemodynamic response to spontaneous

neural activity. The functional Near-Infrared Spectroscopy (fNIRS) has been used to detect the

low frequency oscillations of cerebral oxygenation with frequency range between 0.01 and 0.1

Hz in adults [1–4], elders [5] and infants [6]. Temporal correlation of the oscillatory signals

measured at multiple locations revealed the functional connectivity of the cortex in adults [7–

9] and infants [10]. However, there are three outstanding problems. (1) In addition to neuro-

genic changes, hemodynamic oscillations include cardiovascular oscillations such as cardiac

(-1 Hz), respiratory (-0.3 Hz), Mayer wave (-0.1 Hz), and vasomotion (-0.1 Hz) [1, 3, 4, 11, 12].

Conventionally, such oscillation components in fNIRS are extracted by applying band-pass fil-

ters to the raw data. (2) Although signals with a wide frequency band (0.01–0.1 Hz) have been

used to analyze functional connectivity, subdivision of the frequency range revealed that dis-

tinct functional connectivity is dependent on a specific frequency range [13]. It is not clear

which frequency range is involved in the functional connectivity in different behavioral states

such as wake and sleep, and different populations such as infants and the elderly. (3) The

fNIRS can detect both oxygenated and deoxygenated hemoglobin (oxy- and deoxy-Hb) with

high temporal resolution (-10 ms). The phase relationship between oxy- and deoxy-Hb

changes is referred to as hemoglobin phase of oxygenation and deoxygenation (hPod) and pro-

vides rich information about cerebral hemodynamics and metabolism [14]. The phase of the

time series has been computed by the Hilbert transform to bandpass-filtered data [6, 14, 15].

However, the selection of the appropriate frequency of the bandpass filter is not clear. It is also

not clear whether multivariate time series such as oxy- and deoxy-Hb signals originate from a

common oscillator or independent oscillators.

Recently, a statistical method for extracting oscillators from time series data was developed

[16, 17], called the oscillator decompisition method (OSC-DECOMP). Here, we briefly dem-

onstrate OSC-DECOMP using figures. Its mathematical detail will be explained in Section 2.3.

Fig 1 shows an example of application to univariate time series data. In this case, OSC-DE-

COMP determines that the given time series (Fig 1A) is a superposition of four oscillation

components (Fig 1C) plus noise, based on statistical model fitting. More precisely, each oscilla-

tion component in Fig 1C is the projection onto the horizontal axis (first coordinate) of an

oscillator that rotates on a plane with random fluctuation (Fig 1B), and OSC-DECOMP

extracts an appropriate number of oscillators from the time series. Thus, OSC-DECOMP also

provides the phase of each oscillator (Fig 1D). In this way, OSC-DECOMP enables data-driven

investigation of the oscillatory dynamics that underlie the time series data. Notably,
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Fig 1. OSC-DECOMP for univariate time series data. (A) Input data. (B) Schematic of OSC-DECOMP. Each oscillation component is the

projection onto the horizontal axis (first coordinate) of an oscillator that rotates on a plane with random fluctuation. (C) Decomposition into

four oscillation components. (D) Phase of four oscillators (in degrees).

https://doi.org/10.1371/journal.pcbi.1009985.g001
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OSC-DECOMP determines the number and the frequencies of the underlying oscillators in a

data-driven (objective) manner and does not require the arbitrary selection of band-pass

filters.

OSC-DECOMP is also applicable to multivariate time series data [17]. Fig 2 shows an

example of application to bivariate time series data. In this case, OSC-DECOMP establishes

that the given bivariate time series (Fig 2A) originates from three oscillators. As a result, each

time series is decomposed into three oscillation components (Fig 2B and 2C), and the phase of

the extracted oscillators is also obtained (Fig 2D). The oscillation components in Fig 2B and

2C are the projection of the extracted oscillators. However, unlike the case of the univariate

time series (Fig 1B), when applied to multivariate time series, OSC-DECOMP estimates the

projection pattern between each time series and each oscillator based on data, and the projec-

tion pattern describes the amplitude and phase modulation. Fig 3 shows the estimated projec-

tion pattern. In Fig 3A, the thickness of each line represents the amplitude modulation,

whereas the color and text of each line indicate the phase modulation. For example, Fig 3B

shows the projection pattern for the first oscillator, in which the black and red vectors corre-

spond to the first and second time series, respectively. Given that the red vector is longer than

the black vector, the first oscillator superposes on the second time series more than on the first

time series. On the other hand, since the angle between the two vectors is 31˚, the second time

series has a 31˚ phase delay compared to the first time series. Similarly, Fig 3C and 3D presents

the projection pattern for the second and third oscillators. In this way, the projection pattern is

estimated in the form of vectors. Thus, OSC-DECOMP enables the investigation of the com-

mon oscillators underlying multivariate time series in a data-driven manner.

In this study, we investigated oscillatory changes in infant fNIRS data by using OSC-DE-

COMP. Specifically, we analyzed fNIRS data (3 minutes) acquired from sleeping 3-month-old

infants [10] and extracted oscillators on each channel of each infant. The phase difference

between oxy- and deoxy-Hb was then calculated for each oscillator. By comparing the Akaike

Information Criterion (AIC) of two state space models, we determined that the time series of

oxy- and deoxy-Hb on each channel originate from common oscillatory activity. We also uti-

lized the result of OSC-DECOMP to investigate frequency-specific functional connectivity.

Material and methods

Ethics statement

In the present study, we analyze data that was previously reported in [10, 18]. The Office for

Life Science Research Ethics and Safety, the University of Tokyo, approved this study (No. 20–

225). The parent(s) of all the infants provided written informed consent prior to initiation of

experiments.

Participants

We analyzed the data obtained from 21 full-term infants (11 girls and 10 boys; mean postnatal

age: 111.6 days, range: 102–123 days) as they slept naturally.

Data acquisition

We used an fNIRS instrument (ETG-7000; Hitachi Medical Corporation) with 94 measure-

ment channels (47 channels in each hemisphere) to detect the relative concentration changes

in oxy-Hb and deoxy-Hb [millimolar-millimeter (mM �mm)] for 3 min without presenting

external stimuli. The sampling rate was set at 10 Hz, resulting in 1,800 points per channel of

spontaneous changes in oxy- and deoxy-Hb signals. Two sets of 3 × 10 array probes composed
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Fig 2. OSC-DECOMP for bivariate time series data. (A) Input data. (B) Decomposition into three oscillation

components of the first time series. (C) Decomposition into three oscillation components of the second time series.

Although the waveform may look almost the same, the scale is different from (B). (D) Phase of extracted oscilators (in

degrees).

https://doi.org/10.1371/journal.pcbi.1009985.g002
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of 15 sources and 15 detectors of NIR light (wavelengths: 785 nm and 830 nm, intensity: 0.6

mW), which defined 47 channels, were mounted on a flexible cap over the frontal, temporal,

parietal, and occipital regions of the left and right hemispheres. The distance between the

source and detector was set to approximately 2.0 cm. The international 10/20 system of elec-

trode placement was referenced to set the positions of the measurement channels. We previ-

ously estimated the locations of channels using a magnetic resonance imaging brain atlas [15,

19]. To evaluate the tendency in broad cortical regions and reduce computational complexity,

we selected data from nine channels located in the middle line of the array on each hemisphere

for the following analyses (Fig 4).

Oscillator decompisition method (OSC-DECOMP)

To extract the underlying oscillators from the bivariate time series of oxy- and deoxy-Hb on

each channel, we applied the oscillator decompisition method (OSC-DECOMP) [16, 17]. The

MATLAB code is available online at http://www.stat.t.u-tokyo.ac.jp/*t-matsuda/software.

html. Here, we briefly review this method. See S1 Appendix for background on state space

models and time series decomposition.

Fig 3. Estimated projection pattern between each time series and each oscillator. (A) Bipartite graph representation. The thickness of each line

indicates the amplitude modulation. The color and text of each line represent the phase modulation. (B) (C) (D) The projection pattern for three

oscillators.

https://doi.org/10.1371/journal.pcbi.1009985.g003
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Let y = (yt,j) (t = 1, . . ., N; j = 1, . . ., J) be a J-dimensional time series data of length N with

sampling period Δt. The current fNIRS data corresponds to J = 2, N = 1800 and Δt = 0.1 s.

OSC-DECOMP assumes that there are K oscillators underlying y, each of which is represented

by a point on a two-dimensional plane that rotates around the origin with random fluctuation

(Fig 1B). Let ðxðkÞt;1 ; x
ðkÞ
t;2 Þ be the coordinate of the k-th oscillator at time t. Then, the stochastic

dynamics of this oscillator is modeled as

xðkÞtþ1;1

xðkÞtþ1;2

0

@

1

A ¼ ak

cosð2pfkDtÞ � sinð2pfkDtÞ

sinð2pfkDtÞ cosð2pfkDtÞ

 ! xðkÞt;1

xðkÞt;2

0

@

1

Aþ
vðkÞt;1

vðkÞt;2

0

@

1

A; ð1Þ

where 0< ak< 1, 0� 2πfkΔt� π and ðvðkÞt;1 ; v
ðkÞ
t;2 Þ is an isotropic Gaussian noise with mean zero

and variance s2
k :

vðkÞt;1

vðkÞt;2

0

@

1

A � N
0

0

 !

;
s2

k 0

0 s2
k

 ! !

:

Since the 2 × 2 matrix in the right hand side of (1) represents the rotation through an angle

2πfkΔt about the origin, the parameter fk is interpreted as the frequency of the k-th oscillator.

The parameter ak is viewed as the regularity of the k-th oscillator in the sense that the

Fig 4. Arrangement of fNIRS measurement channels. Circles indicate 94 measurement channels. Eighteen circles

filled in gray (L1 to L9 and R1 to R9) show the channels used in the present analysis. For reference, some landmarks

(black dots) of the international 10/20 system are shown.

https://doi.org/10.1371/journal.pcbi.1009985.g004
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waveform of xðkÞt;1 (or xðkÞt;2 ) is closer to the sinusoidal curve for ak closer to one. Also, the parame-

ter s2
k specifies the power of the k-th oscillator because the stationary variance of xðkÞt;1 (or xðkÞt;2 ) is

s2
k=ð1 � a2

kÞ. The phase of the k-th oscillator is defined by argðxðkÞt;1 þ xðkÞt;2

ffiffiffiffiffiffiffi
� 1
p

Þ, where arg(z) is

the argument of the complex number z (Fig 1B).

By using the K oscillators, the observed time series y = (yt,j) is modeled as

yt;j ¼
XK

k¼1

ðcjk;1x
ðkÞ
t;1 þ cjk;2x

ðkÞ
t;2 Þ þ wt;j; ð2Þ

where wt;j � Nð0; t2Þ are independent Gaussian noise. Namely, the observation yt,j is assumed

to be the sum of the K inner products of the vectors (cjk,1, cjk,2) with the oscillator coordinates

ðxðkÞt;1 ; x
ðkÞ
t;2 Þ and observation noise wt,j. Recall that the inner product A � B of two vectors A and B

is given by

A � B ¼ kAk � kBk � cos �;

where kAk is the length (norm) of A and ϕ is the angle between A and B. Therefore, the obser-

vation model (2) means that the k-th oscillator is superposed on the j-th time series with ampli-

tude multiplied by ðc2
jk;1 þ c2

jk;2Þ
1=2

and phase delayed by arg(cjk,1 + icjk,2) (Fig 2E and 2F). In

order to ensure parameter identifiability, we fix (c1k,1, c1k,2) = (1, 0) for k = 1, . . ., K.

The pair (1) and (2) forms a Gaussian linear state space model [20, 21]. Therefore, the pos-

terior distributions of the oscillator coordinates ðxðkÞt;1 ; x
ðkÞ
t;2 Þ given y1, . . ., yN are Gaussian and

their mean and covariance can be computed by the Kalman smoother algorithm (see S1

Appendix for details). Thus, we apply the Kalman smoother to compute the time series of K
oscillators with credible intervals. To extract oscillators in a data-driven manner, the model

parameter

yK ¼ ða1; . . . ; aK ; f1; . . . ; fK ; s2
1
; . . . ; s2

K ; c21;1; c21;2; . . . ; cJK;1; cJK;2; t2Þ

is estimated by the maximum marginal likelihood:

ŷK ¼ arg max
yK

log pðy1 . . . ; yN j yKÞ:

The confidence intervals can be also constructed. See S1 Appendix for details. In addition, the

number of oscillators K is determined by minimizing the Akaike Information Criterion (AIC)

[22]. Specifically, we fit the state space model (1) and (2) with K = 1, . . ., Kmax and then select

K by

K̂ ¼ arg min
K

AICðKÞ;

where

AICðKÞ ¼ � 2 log pðy1 . . . ; yN j ŷKÞ þ 2ððJ þ 2ÞK þ 1Þ:

Testing of common oscillator hypothesis

We fitted the state space model (1) and (2) with J = 2 to the bivariate time series of oxy- and

deoxy-Hb on each channel. This model is based on the assumption that the two time series

originate from common oscillators. Whereas this assumption seems reasonable for the fNIRS

data, there is another possibility that each time series originates from its own oscillators and
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thus develops independently with each other. Namely, we can consider the state space model

(1) and (2) with J = 1 [16] for each time series, which provides another model for the fNIRS

data. Thus, we tested the null hypothesis that these two time series models have the same good-

ness-of-fit to the data. We used the following Linhart-type test [23] to determine the signifi-

cance of the AIC difference.

A statistical model for time series data y1, . . ., yN is given by a probability distribution

pðy1; . . . ; yN j yÞ ¼ pðy1 j yÞpðy2 j y1; yÞ � � � pðyN j y1; . . . ; yN� 1; yÞ;

where θ is an unknown parameter to be estimated from data. Consider two candidate models

p(1)(y1, . . ., yN j θ(1)) and p(2)(y1, . . ., yN j θ(2)). Let ŷð1Þ and ŷð2Þ be the maximum likelihood esti-

mates of θ(1) and θ(2), respectively. Then, the AIC of these models are

AICð1Þ ¼ � 2 log pð1Þðy1; . . . ; yN j
^
y
ð1Þ
Þ þ 2 � dimðyð1ÞÞ;

AICð2Þ ¼ � 2 log pð2Þðy1; . . . ; yN j
^
y
ð2Þ
Þ þ 2 � dimðyð2ÞÞ:

Let

lð1Þt ¼ log pð1Þðyt j y1; . . . ; yt� 1; ŷ
ð1ÞÞ;

lð2Þt ¼ log pð2Þðyt j y1; . . . ; yt� 1; ŷ
ð2ÞÞ;

be the log-likelihood of one-step ahead prediction, where lð1Þ1 ¼ pð1Þðy1 j ŷ
ð1ÞÞ and

lð2Þ1 ¼ pð2Þðy1 j ŷ
ð2ÞÞ are defined from the stationary distributions of the models. Motivated

by Linhart’s test [23], we construct the test statistic as

z ¼
1

2
ffiffiffiffi
N
p

AICð1Þ � AICð2Þ
ðS11 þ S22 � 2S12Þ

1=2
;

where

m ¼
1

N

XN

t¼1

lð1Þt

lð2Þt

0

@

1

A; S ¼
1

N

XN

t¼1

ðlð1Þt � m1Þ
2

ðlð1Þt � m1Þðl
ð2Þ
t � m2Þ

ðlð1Þt � m1Þðl
ð2Þ
t � m2Þ ðlð2Þt � m2Þ

2

0

@

1

A:

Under the null hypothesis that the two models have the same goodness-of-fit to the data, the

distribution of z is approximately the standard normal N(0, 1). Therefore, the p-value is calcu-

lated as

p ¼ 2ð1 � FðjzjÞÞ;

where F is the cumulative distribution function of the standard normal distribution. Thus, the

null hypothesis is rejected if p is smaller than the significance level α. For verification, we also

applied the Wilcoxon signed-rank test to ðlð1Þ1 ; . . . ; lð1ÞN Þ and ðlð2Þ1 ; . . . ; lð2ÞN Þ, which does not

require the normality assumption on z.

Frequency-specific functional connectivity

Finally, we investigated the frequency-specific functional connectivity based on the result of

OSC-DECOMP.

As a result of OSC-DECOMP, we obtained a bivariate time series for each oscillator. To

evaluate the correlation between two oscillators, we employed canonical correlation analysis,

which is a statistical method for investigating the relationship between two sets of random var-

iables. The (first) canonical correlation coefficient between two random vectors X 2 Rn
and
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Y 2 Rm is defined as

r ¼ max
a 2 Rn

b 2 Rm

Corr½a>X; b>Y�;

where Corr denotes the Pearson correlation coefficient and (a, b) 6¼ (0, 0). This problem is

reduced to the generalized eigenvalue problem:

O SXY

SYX O

 !
a
b

 !

¼ 2r
SXX O
O SYY

 !
a
b

 !

;

where SXX, SXY, SYX, SYY are submatrices of the covariance matrix of (X, Y), given by

Cov½ðX;YÞ; ðX;YÞ� ¼
SXX SXY

SYX SYY

 !

:

The canonical correlation coefficient r is regarded as a measure of the linear dependence

between X and Y.

To determine the functional connectivity for target frequency bands, we first selected an

oscillator with a frequency fk in the target frequency band on each channel. If there was more

than one oscillator in the target frequency band, we selected the oscillator with the maximum

power. Next, for each pair of channels, we calculated the (first) canonical correlation coeffi-

cient between the selected oscillators. Namely, we substituted the empirical covariance matrix

of the oscillators into the preceding formula. We then considered the channel pairs with a

canonical correlation coefficient that exceeded the threshold as functionally connected. Thus,

we obtained a network of frequency-specific functional connectivity.

Results

Oscillator decomposition of synthetic data

Before presenting the results on real data, we first validate the performance of OSC-DECOMP

on synthetic data with comparison to the conventional method with bandpass filtering. For

more experiments, see [16, 17].

We generated bivariate time series from the state space model (1) and (2) with J = 2, K = 3,

N = 1800, Δt = 0.1s and

ða1; a2; a3Þ ¼ ð0:99; 0:99; 0:4Þ; ðf1; f2; f3Þ ¼ ð0:03; 2; 2Þ;

ðs2
1
; s2

2
; s2

3
Þ ¼ ð0:01ð1 � a2

1
Þ; 0:01ð1 � a2

2
Þ; 0:01ð1 � a2

3
ÞÞ;

ðc21;1; c21;2Þ ¼ ð0:5 cos 230�; 0:5 sin 230�Þ;

ðc22;1; c22;2Þ ¼ ð� 1; 0Þ; ðc23;1; c23;2Þ ¼ ð0:2; 0Þ; t2 ¼ 10� 6:

This parameter setting is motivated from the property of infant fNIRS data found in the next

subsection. For this data, OSC-DECOMP correctly detected K̂ ¼ 3 oscillators by minimizing

AIC and their frequencies were f̂ 1 ¼ 0:0343 Hz, f̂ 2 ¼ 2:0016 Hz and f̂ 3 ¼ 2:0421 Hz. Fig 5

summarizes the result.

Conventionally, oscillation components in time series data are extracted by using the bandpass

filters. Here, we compare the accuracy of OSC-DECOMP and bandpass filtering in reconstruct-

ing the first oscillation component (time series of the first coordinate of the first oscillator).

Note that the second and third oscillators are difficult to separate by the bandpass filter because

their spectra significantly overlap. For bandpass filtering, we used the MATLAB function
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bandpass with passband 0.01–0.1 Hz. The mean squared error in reconstructing the first oscilla-

tion component was 5.1 × 10−4 for OSC-DECOMP and 5.6 × 10−3 for bandpass filtering. Thus,

OSC-DECOMP extracts the oscillation component more accurately than bandpass filtering.

We also compare the accuracy of OSC-DECOMP and bandpass filtering in estimating the

phase difference between two time series (e.g. oxy- and deoxy-Hb). For the same reason as the

previous paragraph, we focus on the phase difference for the first oscillator, which is 230˚. For

OSC-DECOMP, the estimate of the projection vector was ðĉ21;1; ĉ21;2Þ ¼ ð� 0:275; � 0:417Þ and

thus the estimate of the phase difference is argðĉ21;1 þ
ffiffiffiffiffiffiffi
� 1
p

ĉ21;2Þ ¼ 236:54�. In addition, by

using the Hessian of the negative log-likelihood at the maximum likelihood estimate (observed

Fisher information [24]) and the delta method [25], the 95% confidence interval of the phase dif-

ference was obtained as [230.03˚, 243.05˚]. We used an extension of the Kalman filter algorithm

to compute the Hessian [26]. See S1 Appendix for details. For bandpass filtering, the phase dif-

ference in 0.01–0.1 Hz at every time point was computed by applying the Hilbert transform to

the filtered signals. From these samples of angular variables, the point estimate and 95% confi-

dence interval of the mean direction were computed by using the MATLAB toolbox CircStat

[27], which implements the usual procedures for the von Mises distribution [28]. The results

were 209.86˚ and [205.70˚, 214.02˚]. Thus, OSC-DECOMP provides more accurate point esti-

mates and confidence intervals of the phase difference than bandpass filtering.

Fig 6 shows the noise sensitivity of OSC-DECOMP. It plots the mean squared error of

OSC-DECOMP in estimating the first oscillation component with respect to the variance τ2 of

observation noise. It demonstrates that the estimation accuracy of OSC-DECOMP is almost

constant as long as τ2 is smaller than 10−3.

Oscillator decomposition of infant fNIRS data

To investigate the oscillatory changes in the 18-ch fNIRS data (3 minutes) taken from 21 sleep-

ing 3-month-old infants, we applied OSC-DECOMP to the bivariate time series of oxy- and

deoxy-Hb on each channel.

Fig 5. (A) Synthetic data. (B) Estimated oscillation components.

https://doi.org/10.1371/journal.pcbi.1009985.g005
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Fig 7 presents one example, in which four oscillators with frequencies 0.028, 1.84, 1.87, 3.74

Hz are extracted. The results are shown for the first 20 seconds. The first oscillator is consid-

ered to reflect hemodynamic changes in response to brain activity, whereas the second and

third oscillators are interpreted as mirroring noise and cardiac pulse waves, respectively, as

will be explained below. The second oscillator superposes on oxy- and deoxy-Hb with almost

the same power, whereas the third and fourth oscillators superpose less on deoxy-Hb com-

pared to oxy-Hb. Given that the frequency of the fourth oscillator is twice that of the third

oscillator, the fourth oscillator is considered to be the harmonic of the third oscillator. Fig 8

shows the results for the entire 3 minutes and Fig 9 shows the estimated projection pattern. Fig

10 shows the spectrogram and specta. In Fig 10B, in addition to the periodogram of the raw

data, the spectral density functions of the fitted oscillators (ARMA(2,1) model) and their sum

are also plotted. See [16] for mathematical details. For oxy-Hb, both spectrogram and periodo-

gram have two peaks around 0 Hz and 2 Hz, which correspond well to the first and second/

third oscillators, respectively. For deoxy-Hb, only the peak around 0 Hz is clear. Thus, the

spectrogram and spectra do not provide enough information to extract common oscillators

underlying oxy- and deoxy-Hb time series. In particular, it is difficult to figure out that there

are two types of oscillators with different projection patterns around 2 Hz by visual inspection.

Fig 6. Noise sensitivity of OSC-DECOMP.

https://doi.org/10.1371/journal.pcbi.1009985.g006
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OSC-DECOMP can separate these oscillators in a data-driven manner by statistical model fit-

ting and model selection with AIC.

Fig 11 summarizes the properties of the extracted oscillators for the 21 infants and 18 chan-

nels. Fig 11A presents a histogram of the number of extracted oscillators. Five to seven

Fig 7. (A) Infant fNIRS (20 seconds). Red: oxy-Hb; blue: deoxy-Hb. (B) Four oscillation components in oxy-Hb. (C) Four oscillation components in

deoxy-Hb. (D) Phase of the extracted oscillators.

https://doi.org/10.1371/journal.pcbi.1009985.g007
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oscillators were extracted in most cases. Fig 11B and 11C shows a histogram of the frequency

of the extracted oscillators. There are three peaks near 0.01–0.1 Hz, 1.6–2.4 Hz, and 3.6–4.4

Hz. The first peak is considered to reflect brain activity, whereas the second peak is interpreted

as cardiac pulse waves or mirroring noise, as will be explained below. The third peak is

regarded as the harmonic of the second peak. Fig 11D and 11E shows scatter plots of the fre-

quency and power of the extracted oscillators. The power tends to be smaller for higher

frequencies.

Fig 12 presents the projection pattern of the oscillators with frequencies of 0.01–0.1 Hz or

1.6–2.4 Hz. For oscillators with a frequency of 0.01–0.1 Hz, the phase difference between oxy-

and deoxy-Hb is approximately 230 degrees (Fig 12A), which is consistent with the findings by

Fig 8. (A) Infant fNIRS (3 minutes). Red: oxy-Hb; blue: deoxy-Hb. (B) First oscillation component in oxy- (upper) and deoxy-Hb (lower). (C) Phase of

the first oscillator.

https://doi.org/10.1371/journal.pcbi.1009985.g008
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[14]. The norm of the projection vector on deoxy-Hb is distributed in the range of 0.5 to 0.7

(Fig 12B), which indicates that these oscillators superpose less on deoxy-Hb compared to oxy-

Hb. Since the slow oscillations between 0.01 Hz and 0.1 Hz are likely to reflect hemodynamic

changes in response to the spontaneous activity of the brain, they are referred to as “brain

oscillators.” Regarding the oscillators with a frequency range of 1.6–2.4 Hz, which coincide

with the frequency of cardiac pulses, the phase difference has two peaks at 0 degrees and 180

degrees (Fig 12C). Fig 12D shows that the norm of the projection vector on deoxy-Hb is

approximately 0.2 for oscillators with a phase difference of approximately 0 degrees, whereas it

is approximately one for oscillators with a phase difference of approximately 180 degrees.

Therefore, there are two types of oscillators in the frequency band of 1.6–2.4 Hz. The first type

is superposed on oxy- and deoxy-Hb with almost the same phase, and its effect on oxy-Hb is

approximately five times larger than that on deoxy-Hb. The second type is superposed on oxy-

and deoxy-Hb with almost the same power and opposite phase. The in-phase changes in oxy-

and deoxy-Hb can be generated by cardiac pulses because the associated oscillatory changes in

the blood volume produce simultaneous changes in both oxy- and deoxy-Hb. In contrast, the

anti-phase changes in oxy- and deoxy-Hb can be generated by measurement noise. According

to the Lambert–Beer law [29], oxy- and deoxy-Hb changes are calculated as

DODðlÞ ¼ ðεoðlÞDCe
o þ εdðlÞDCe

dÞL;

where ΔOD(λ) is the change in optical density measured at a given wavelength λ, DCe
o and DCe

d

are estimated changes in concentration of oxy- and deoxy-Hb, respectively, εo(λ) and εd(λ) are

the extinction coefficients of oxy- and deoxy-Hb at a given wave length λ, respectively, and L is

the optical pathlength. However, the detected intensities of the two wavelengths of light

include measurement noise in addition to changes due to absorption by chromophores as

DODðlÞ ¼ ðεoðlÞDCr
o þ εdðlÞDCr

dÞLþ NðlÞ;

Fig 9. Estimated projection pattern for infant fNIRS data in Figs 7 and 8.

https://doi.org/10.1371/journal.pcbi.1009985.g009
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where DCr
o and DCr

d are real changes in concentration of oxy- and deoxy-Hb, respectively, and

N(λ) is applied noise at a given wave length λ. Then, we obtain the following equation as

εoðlÞDCe
o þ εdðlÞDCe

d ¼ εoðlÞDCr
o þ εdðlÞDCr

d þ NðlÞ=L:

For measurements of ΔOD(λ) at two wavelengths the above equation are given by

εoðl1ÞDCe
o þ εdðl1ÞDCe

d ¼ εoðl1ÞDCr
o þ εdðl1ÞDCr

d þ Nðl1Þ=L;

εoðl2ÞDCe
o þ εdðl2ÞDCe

d ¼ εoðl2ÞDCr
o þ εdðl2ÞDCr

d þ Nðl2Þ=L:

Fig 10. (A) Spectrogram of infant fNIRS data in Fig 8. Upper: oxy-Hb; lower: deoxy-Hb. (B) Periodogram (black), spectral density functions of the

fitted oscillators (red) and their sum (blue) for infant fNIRS data in Fig 8. Upper: oxy-Hb; lower: deoxy-Hb.

https://doi.org/10.1371/journal.pcbi.1009985.g010
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Fig 11. (A) Histogram of the number of extracted oscillators. (B) (C) Histogram of the frequency of extracted oscillators.

(D) (E) Scatter plot of the frequency and power of the extracted oscillators.

https://doi.org/10.1371/journal.pcbi.1009985.g011
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Fig 12. (A) Histogram of phase difference (0.01–0.1 Hz). (B) Scatter plot of phase difference and norm of the projection

vector (0.01–0.1 Hz). (C) Histogram of phase difference (1.6–2.4 Hz). (D) Scatter plot of phase difference and norm of

projection vector (1.6–2.4 Hz). (E) Histogram of power of pulse wave. (F) Histogram of the power of the mirroring noise.

https://doi.org/10.1371/journal.pcbi.1009985.g012
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A few lines of algebra indicates that

DCe
o ¼ DCr

o � Eðεdðl2ÞNðl1Þ � εdðl1ÞNðl2ÞÞ;

DCe
d ¼ DCr

d þ Eðεoðl2ÞNðl1Þ � εoðl1ÞNðl2ÞÞ;

where E = 1/(εo(λ2)εd(λ1) − εo(λ1)εd(λ2))L. This shows that the measurement noise for each

wavelength is transformed to noisy signals of oxy- and deoxy-Hb with opposite sign. Thus, the

first type is referred to as a “pulse wave oscillator,” and the second type as a “mirroring noise

oscillator.” Fig 12E and 12F presents the histogram of the power of these two types of oscilla-

tors. Fig 13 summarizes these findings.

In the oscillator model (1), the parameter ak 2 (0, 1) specifies the width of the spectral peak

at the frequency fk. Namely, the width of the spectral peak is smaller for ak closer to one. Fig 14

shows the distribution of ak for each type of oscillators. It indicates that the spectral peak is

very sharp for the brain oscillators and pulse wave oscillators. In other words, the waveform is

close to sinusoidal for these oscillators. It implies that the brain oscillators cannot be inter-

preted as non-oscillatory drift, although its frequency is close to zero. On the other hand, for

the mirroring noise oscillators, the parameter ak is concentrated around 0.4. Thus, the mirror-

ing noise is considered to be non-sinusoidal.

Testing of common oscillator hypothesis

To verify that the time series of oxy- and deoxy-Hb on each channel originate from common

oscillatory activity, we compared the Akaike Information Criterion (AIC) of two state space

models. Fig 15A shows the histogram of the AIC difference, wherein we have 378 data points

corresponding to the 18 channels of 21 infants. This shows that the AIC is smaller for the

model with common oscillators in all cases. By using the extension of Linhart’s test (see

Material and methods), these AIC differences were found to be significant with p< 10−16 in all

cases. The Wilcoxon signed-rank test, which does not require the normality assumption on

the test statistic, also demonstrated that these AIC differences were significant with p< 10−12

in more than 90% cases. Therefore, the assumption that common oscillators underlie the oxy-

and deoxy-Hb time series is indeed supported by the experimental data. For comparison, we

applied the same analysis to pairs of oxy- and deoxy-Hb data that were randomly shuffled

across the subjects. The result is shown in Fig 15B. In this case, the AIC is larger for the model

with common oscillators in all cases except for three.

Frequency-specific functional connectivity

Finally, we examined the frequency-specific functional connectivity using the canonical corre-

lation coefficients as explained in Material and Methods. We considered that this method

revealed spatial synchrony when oscillators of pulse waves and mirroring noise were analysed.

For each of the three oscillators shown in Fig 13, we focused on the oscillator with the highest

power. The average number of infants with oscillators was as follows: brain oscillators = 20.2

per channel, pulse wave = 20.7 per channel, and mirroring noise = 14.6 per channel. The num-

ber of infants with mirroring noise was lower compared to the other two oscillators because

this noise was not always mixed with the fNIRS signal. Fig 16 shows the frequency distribution

of the oscillators. For brain oscillators (0.01–0.1 Hz), oscillators with frequencies between 0.02

Hz and 0.03 Hz were most often observed, and the number decreased as the frequency

increased (mean: 0.029 Hz, mean frequency range between 18 channels: 0.024–0.037 Hz).

Although the oscillators of the mirroring noise (1.6–2.4 Hz, antiphase) exhibited frequencies

between 2.1 Hz and 2.2 Hz (mean: 2.075 Hz, mean frequency range: 2.068–2.084 Hz), the
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distribution of the pulse waves did not have such a peak (mean: 1.993 Hz, mean frequency

range: 1.853–2.074 Hz). Friedman’s tests for the brain oscillators did not show significant dif-

ferences in the frequencies between the channels after Bonferroni correction was performed

for multiple comparisons. However, there were significant differences between the two-chan-

nel pairs in the tests for pulse waves (L5 and L9, p< 0.05; L5 and R8, p = 0.005) and mirroring

noise (L3 and R3: p< 0.05; L9 and R3: p< 0.05). Fig 17 shows the average of the canonical cor-

relation coefficients for the 21 infants. The results for the brain oscillators are presented in Fig

17 (upper). When the threshold is set to 0.7 or 0.6, there are primarily two types of connec-

tions: homologous connectivity (inter-hemispheric connectivity between homologous regions)

and short-distance ipsilateral connectivity. In addition, when the threshold was set to 0.5,

long-distance ipsilateral connectivity between the frontal and temporal/occipital regions was

also found. These results are similar to previously reported findings for adult participants [30].

Fig 17 (middle) shows the results for pulse wave oscillators. The correlation is much larger

regardless of the channel locations, and most channels are connected even when the threshold

is set to 0.7. Fig 17 (lower) shows the results for the mirroring noise oscillators. The correlation

between the channels is extremely small, and no connection appears even when the threshold

is set to 0.4.

To evaluate the aforementioned visual inspections, we categorized channel pairs into the

following four groups (Fig 18A) based on a previous study [31]: (i) short-range connectivity

(16 pairs), (ii) contralateral-transverse connectivity (25 pairs), (iii) ipsilateral-longitudinal con-

nectivity (20 pairs), and (iv) control (92 pairs). Control connectivity consisted of pairs other

than (i), (ii), and (iii). Fig 18B shows averaged values of coefficients within each group. The

averaged values of the pulse waves and those of the mirroring noise were the highest and the

lowest, respectively, and the values of the brain oscillators were intermediate. They were

mostly higher than 0.4. This result indicates that the pulse wave is superposed on most chan-

nels with similar frequencies and phases, but the presence of mirroring noise in the signal

depends on the measurement channel. Regarding brain oscillators, Friedman’s test revealed

that short-range and contralateral-transverse connectivities were significantly larger than ipsi-

lateral-longitudinal and control connectivities, which support the aforementioned assertions.

Fig 13. Projection pattern of three types of oscillators in infant fNIRS.

https://doi.org/10.1371/journal.pcbi.1009985.g013
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The threshold of 0.7 in Fig 17, represents short-range connectivity; the threshold of 0.6 exhibits

short-range and contralateral-transverse connectivities; the threshold of 0.5, which shows

short-range, contralateral-transverse, and a part of the ipsilateral-longitudinal and control con-

nectivities, and the threshold of 0.4 exhibits most connectivities.

For comparison, Fig 19 shows the functional connectivity computed by the correlation

coefficients for oxy-Hb and deoxy-Hb in the frequency range 0.01–0.1 Hz. For both oxy-Hb

and deoxy-Hb, short-range and contralateral connectivities are stronger than other types of

connectivities. Thus, the network structure is similar to the functional connectivity of brain

Fig 14. (A) Scatter plot of the frequency fk and parameter ak of the extracted oscillators. (B) Histogram of the parameter ak for the brain oscillators. (C)

Histogram of the parameter ak for the pulse wave oscillators. (D) Histogram of the parameter ak for the mirroring noise oscillators.

https://doi.org/10.1371/journal.pcbi.1009985.g014
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oscillators in Fig 17. The value of the correlation coefficients is larger in oxy-Hb than deoxy-

Hb, which is compatible to previous studies. They tend to take smaller values than the canoni-

cal correlation coefficients shown in Fig 17. It may be due to the denoising effect of OSC-DE-

COMP. It is an interesting future work to explore this more.

Comparison with empirical mode decomposition

Here, we compare OSC-DECOMP with the empirical mode decomposition (EMD) [32].

EMD is a method for analyzing nonlinear and nonstationary time series data by decomposing

them into several oscillatory components called the “intrinsic mode functions.” By applying

the Hilbert transform, the instantaneous frequency of each intrinsic mode function is com-

puted. Thus, the time-frequency distribution of signal amplitude is obtained and it is called the

Hilbert spectrum or Hilbert–Huang transform.

Fig 20 shows the intrinsic mode functions (IMF) obtained by EMD (MATLAB function

“emd”) for the infant fNIRS data in Fig 7A. In this case, EMD detected seven and eight compo-

nents in oxy-Hb and deoxy-Hb, respectively. The first IMF seems to correspond to the pulse

wave oscillator. The other IMFs have lower frequencies.

EMD is an algorithm for decomposing univariate nonstationary time series data into sev-

eral mode functions by focusing on the local properties of the signal. It does not aim at extract-

ing common oscillators in multivariate time series data. On the other hand, OSC-DECOMP

extracts oscillators from both univariate and multivariate stationary time series data based on

statistical models. It is an interesting future work to extend OSC-DECOMP to nonstationary

data.

Discussion

In this study, we investigated the oscillatory activity in infant fNIRS data by using the oscillator

decompisition method (OSC-DECOMP) [16, 17]. Five to seven oscillators were extracted on

most channels and their frequency distribution had three peaks at 0.01–0.1 Hz, 1.6–2.4 Hz and

Fig 15. Histogram of AIC difference for (A) same channel and (B) different channels.

https://doi.org/10.1371/journal.pcbi.1009985.g015
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3.6–4.4 Hz. The first peak was considered to reflect brain activity and the phase difference

between oxy- and deoxy-Hb for the oscillators were at approximately 230 degrees. The second

peak involved two types of in-phase and anti-phase oscillations of oxy- and deoxy-Hb. The for-

mer and latter are attributed to cardiac pulse waves and mirroring noise. The third peak was

regarded as the harmonic of the second peak. By comparing the Akaike Information Criterion

(AIC) of the two state space models, we verified that the time series of oxy- and deoxy-Hb on

each channel originate from common oscillatory activity. We also applied the results of OSC-

DECOMP to investigate the frequency-specific functional connectivity.

Advantages of OSC-DECOMP

Neural oscillations are relevant in many brain functions [33]. For example, the electroencepha-

logram (EEG) time series is composed of several oscillation components (e.g., alpha, beta, and

gamma), and each oscillation component has its physiological role. Conventionally, neural

oscillation analysis is conducted by applying band-pass filters to the time series data [34]. The

outputs of the band-pass filters are assumed to represent the target oscillation components.

For example, the output of a filter with a pass-band of 8–13 Hz is considered as the alpha com-

ponent. Although such conventional methods are widely used and easy to implement, there

are several associated limitations [35]. In particular, the band-pass filter is often selected

Fig 16. Histogram of the frequency of the oscillators used in the functional connectivity analysis.

https://doi.org/10.1371/journal.pcbi.1009985.g016
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arbitrarily, and this affects the final result. For example, even the definition of the alpha band

seems to vary among studies, such as 8–13 Hz and 9–12 Hz.

In contrast, OSC-DECOMP extracts the oscillation components in a data-driven (objective)

manner using a statistical modeling approach. Both the number and frequencies of underlying

oscillators are determined based on data. When applied to multivariate time series data, this

method also estimates the projection pattern between each time series and each oscillator,

which describes the amplitude and phase modulation. Thus, even if there are oscillators with

very close frequencies, OSC-DECOMP can separate them correctly if their projection patterns

are sufficiently different. The current result on pulse wave and mirroring noise can be inter-

preted as a typical example of this. Therefore, OSC-DECOMP enables the investigation of the

common oscillators that underly multivariate time series in a data-driven manner. Several

studies have focused on the phase difference between the band-pass filtered signals of oxy- and

deoxy-Hb. For example, [14] investigated the phase difference at a frequency of 0.05–0.1 Hz in

infant fNIRS data and discussed its relationship with preterm birth. Our findings may provide

a foundation for such investigations of phase differences. It should also be noted that the

framework of state-space models naturally leads to real-time phase estimation [36].

Oscillators underlying infant fNIRS data

The present study based on OSC-DECOMP demonstrated that the brain, pulse wave, and mir-

roring noise oscillators can be extracted from the fNIRS signals obtained from the cranium of

sleeping infants. In the time domain, fNIRS signals with slow components between 0.01 Hz

and 0.1 Hz generally include hemodynamic and oxygenation changes in response to brain

activity, similarly to fMRI [37–39]. The present study revealed that oscillators with frequencies

between 0.02 Hz and 0.03 Hz were most common, as shown in Fig 11B and 11D. Furthermore,

the phase difference between oxy- and deoxy-Hb chambers was approximately 230 degrees, as

shown in Fig 12A and 12B, which reflects complex mechanisms for hemodynamics and oxy-

genation [14]. This method can serve as a new approach for studying brain activation and con-

nectivity using the decomposed oscillators of fNIRS signals. In addition to the changes

Fig 17. Frequency-specific functional connectivity or spatial synchrony. The numbers at the top represent the

correlation coefficients of the thresholds. Upper: 0.01–0.1 Hz, middle: 1.6–2.4 Hz (in-phase), lower: 1.6–2.4 Hz

(antiphase).

https://doi.org/10.1371/journal.pcbi.1009985.g017
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Fig 18. Mean correlation coefficients of each infant for the four types of functional connectivities. (A) Short range (red),

contralateral transverse (green), ipsilateral longitudinal (blue), and control (black) connectivities. (B) Red, green, blue, and black

lines indicate individual data for short-range, contralateral transverse, ipsilateral longitudinal, and control connectivity, respectively.
���� p< 0.001, ��� p< 0.005, �� p< 0.01, and � p< 0.05 after Bonferroni correction for multiple comparisons.

https://doi.org/10.1371/journal.pcbi.1009985.g018
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induced by brain activity, the slow components of fNIRS signals are subject to systemic influ-

ences such as heart rate and blood pressure [40]. Although it was not proven that the brain

oscillator was purely neurogenic in the present study, data-driven decomposition of the oscil-

lator will simplify the procedure for determining if some oscillation components are associated

with systemic oscillations.

Fig 19. Functional connectivity in the frequency range 0.01–0.1 Hz computed by correlation coefficients. The numbers at the top represent the

correlation coefficients of the thresholds. Upper: oxy-Hb, lower: deoxy-Hb.

https://doi.org/10.1371/journal.pcbi.1009985.g019

Fig 20. (A) Intrinsic mode functions in the oxy-Hb. (B) Intrinsic mode functions in the deoxy-Hb.

https://doi.org/10.1371/journal.pcbi.1009985.g020
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For frequencies higher than 0.1 Hz, fNIRS signals include components associated with res-

piration (-0.3 Hz) and heartbeat (-1 Hz), in the case of adults [41]. In the present study,

although distinct oscillators corresponding to respiration were not observed, the conspicuous

oscillators caused by cardiac pulse waves were extracted at approximately 2 Hz, as shown in

Fig 11C and 11E. The oscillators included in-phase and anti-phase oscillations of oxy- and

deoxy-Hb, as shown in Fig 12C and 12D. The in-phase changes in oxy- and deoxy-Hb data

can be attributed to blood volume changes induced by pulse waves [11, 42]. The anti-phase

changes in oxy- and deoxy-Hb can be attributed to mirroring noise that is artificially produced

during the calculation of the concentration of two chromophores using two-wavelength

absorption based on the Lambert-Beer equation [29]. The measurement noise in the intensities

of the detected light at each wavelength is transformed to noisy signals of oxy- and deoxy-Hb

with opposite signs. The mirroring changes in oxy- and deoxy-Hb can also be caused by insuf-

ficient separation of chromophore changes due to the wavelength dependence of the light path

length [43, 44]. As we assumed the same optical path length for the two wavelengths, the esti-

mated signals associated with oxy- and deoy-Hb may have cross-talk. This cross-talk is not

confined to the higher frequency range, but can also occur in the lower frequency range. More-

over, a small number of oscillators with a phase difference of 180˚ was observed in the slower

frequency range, as shown in Fig 12B.

fNIRS signals are assumed to reflect changes in hemodynamics and oxygenation in cerebral

tissue. However, those that originate from extracerebral tissue can have an impact on the

fNIRS signals [45]. In the present study, we used data acquired from sleeping 3-month-old

infants using a source-detector distance of 2 cm. A previous study involving infants of the

same age showed that 2 cm is the optimal inter-optode distance for the detection of hemody-

namic changes in response to auditory stimulation [46]. Based on the deep-shallow signal sep-

aration method using multi-distant probes and independent component analysis, it was

further revealed that the deep tissue contribution during sleeping with a 2 cm separation was

66–79% for oxy-Hb changes [47]. Thus, the brain oscillator in the present study primarily

reflects the hemodynamics and oxygenation of cerebral tissue. To gain more detailed informa-

tion exclusive to brain activation by combining decomposition methods of fNIRS signals in

the time domain of oscillations and in the spatial domain of tissue depth, further studies are

required.

Frequency-specific functional connectivity in fNIRS and future studies

In this study, we examined frequency-specific functional connectivity by calculating the

canonical correlation between two oscillators in different channels (Figs 17 and 18). We found

that each of the three types of oscillators (i.e., brain oscillators, pulse waves, and mirroring

noise) showed individual patterns of functional connectivity or spatial synchrony. Conven-

tionally, oscillator analysis and functional connectivity of fNIRS signals utilize the coherence

between band-pass filtered signals [3, 10, 13, 30, 48]. For example, [30] revealed that the con-

nectivity pattern depends on the frequency band, and short-range and long-range connectivi-

ties are manifested in oxy-Hb signals at frequencies below 0.1 Hz. It would be interesting to

investigate the relationship between the proposed oscillator-based method and the conven-

tional coherence-based method. The most obvious difference between the two methods is the

processing of the two types of Hb signals. The conventional method treats the two types of Hb

signals separately, but the proposed method can treat them individually or together. The

deoxy-Hb signals were smaller than oxy-Hb signals, and the measurement noise had a greater

effect on the coherence between the channels in the deoxy-Hb signals compared to the oxy-Hb

signals. As a result, there was a tendency to rely on oxy-Hb signals when summarizing the
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results obtained using the conventional method. Given that the present method uses common

oscillators for the oxy-Hb and deoxy-Hb signals, it has the advantage that the relationship

between the channels can be investigated without limiting the oxy-Hb signals. Moreover,

Welch’s average periodogram method is often used for calculating coherence, which involves

the subjective selection of the window type, window length, and overlap length. In contrast,

the proposed method does not require such selections. This reduces the risk that the analysis

method will eventually bias the results.

The short-range and contralateral-transverse connectivity of the brain oscillators were

higher than the ipsilateral-longitudinal connectivity and the control (Fig 18). These results are

consistent with those of previous studies on infants [31] and adults [30]. The short-range and

contralateral-transverse connectivity reflect functional relationships based on structural con-

nectivity, such as U-fibers beneath the cortical surface and callosal fibers. Although there are

longitudinal fasciculi that connect the anterior and posterior regions, even in infancy [49, 50],

the presented and previously reported results consistently showed relatively low synchroniza-

tion between distant ipsilateral regions. As almost all infants exhibited brain oscillators and the

mean frequency of the oscillators was not significantly different between channels, it is possible

that the phases of the brain oscillators were not the same in the anteroposterior direction, and

the differences caused lower ipsilateral-longitudinal connectivity. This possibility can be exam-

ined if we used a longer time series of fNIRS data in a future study.

In the present study, we first determined the brain oscillators for each measurement chan-

nel. The functional connectivity was then evaluated by calculating the correlation between the

time series of the oscillators. Another way of defining functional connectivity between chan-

nels is to determine whether the change in the oxy-Hb and deoxy-Hb signals in two or more

channels is caused by common oscillatory activity. For example, each of the two channels mea-

sures a set of time series of oxy-Hb and deoxy-Hb signals, and a total of four time series can be

used to investigate the presence of a common oscillator. If there is a low-frequency oscillator

with power above a certain threshold, these two channels can be considered to exhibit signifi-

cant functional connectivity. A functional network can also be defined by establishing whether

there is a common oscillator among multiple channels. This method can be applied to time

series of functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG),

electrocorticography (ECoG), and multi-electrode EEG to clarify functional relationships

across broad brain regions.
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