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All human behaviors, including the control of energy homeostasis, are ultimately
mediated by neuronal activities in the brain. Neurotrophic factors represent a protein
family that plays important roles in regulating neuronal development, function, and
survival. It has been well established that canonical neurotrophic factors, such as
brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF), play
important roles in the central regulation of energy homeostasis. Recently, a class of
non-canonical neurotrophic factors, represented by mesencephalic astrocyte-derived
neurotrophic factor (MANF), has been discovered. MANF is structurally and functionally
distinct from those canonical neurotrophic factors, hence raising the issue of MANF
being non-canonical. Nonetheless, emerging evidence suggests that MANF is critically
involved in many neuronal activities. Here, we review our current understanding about
the functions of MANF in the brain, with a primary focus on the control of energy
homeostasis.
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MAIN

Obesity is a global pandemic affecting both children and adults. According to Institute for Health
Metrics and Evaluation database, 2.1 billion people, or 29% of the world’s population, were either
overweight or obese in 2013. Obesity is a risk factor for cardiovascular diseases, stroke, type 2
diabetes, high blood pressure and certain types of cancer (Poirier et al., 2006), which imposes
profound economic and health care burdens on the individual and society. Genetic factors are
estimated to account for 67% of variance in body weight and human adiposity (Maes et al., 1997).
More than 150 genetic loci have been associated with the development of obesity, yet these loci only
explain 2% of overall obesity cases (Drong et al., 2012), highlighting an urgent need to expand our
knowledge of the molecular mechanisms leading to obesity.

Obesity arises due to unbalanced energy intake and expenditure, both of which are critically
controlled by a complex system that is comprised of different organs including the liver, pancreas,
muscle, adipose tissues, gastrointestinal tract and brain. Within the system, the brain serves as
a pivotal hub for information integration and processing, as different signals generated by the
peripheral tissues, including leptin produced in the adipose tissues (Zhang et al., 1994), insulin
produced by the pancreas (Woods et al., 1979; Baskin et al., 1999), ghrelin produced by the stomach
(Nakazato et al., 2001), glucagon-like peptide 1 (GLP-1) and peptide YY 3-36 (PYY3−36) produced
by the intestine (Turton et al., 1996; Batterham et al., 2002). These peripheral signals converge into
specific brain regions such as the hypothalamus and brainstem (Schwartz et al., 2000; Wynne et al.,
2005; Morton et al., 2006; Schwartz, 2010), which function to change neuronal activities in these
regions to regulate energy intake and expenditure.

Frontiers in Physiology | www.frontiersin.org 1 November 2018 | Volume 9 | Article 1725

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2018.01725
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2018.01725
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2018.01725&domain=pdf&date_stamp=2018-11-29
https://www.frontiersin.org/articles/10.3389/fphys.2018.01725/full
http://loop.frontiersin.org/people/437242/overview
http://loop.frontiersin.org/people/645728/overview
http://loop.frontiersin.org/people/5015/overview
https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01725 November 27, 2018 Time: 19:55 # 2

Yang et al. MANF and the Control of Energy Homeostasis

Neuronal activities are not merely controlled by secreted
factors from peripheral tissues. Neurotrophic factors, which are
secreted proteins synthesized locally in the brain, signal through
their respective transmembrane receptors and act upon various
neuronal populations. Neurotrophic factors are functionally
versatile, which facilitate neuronal growth, differentiation,
survival, synaptic formation and plasticity during development,
as well as in the mature brain (McAllister et al., 1999; Huang and
Reichardt, 2001; Vicario-Abejon et al., 2002). To date, two types
of neurotrophic factors, including brain-derived neurotrophic
factor (BDNF) and ciliary neurotrophic factor (CNTF), have been
linked to the central control of energy homeostasis, as mutations
in the genes encoding BDNF and its receptor tropomyosin
receptor kinase B (TrkB) are found in patients with severe
obesity (Yeo et al., 2004; Gray et al., 2006; Han et al., 2008),
and administration of CNTF protein leads to body weight loss
in both human and mice (Miller et al., 1996; Gloaguen et al.,
1997). Considering their important and diverse roles in the brain,
it is likely that additional neurotrophic factors are involved in
the regulation of energy homeostasis, so that this process can be
manipulated in a highly precise and regulated manner.

Indeed, emerging studies suggest that mesencephalic
astrocyte-derived neurotrophic factor (MANF), a recently
identified neurotrophic factor, could also serve as a regulator
of food intake and body weight. Given that both the protein
structure and functional mechanisms of MANF are different
from most other neurotrophic factors, whether MANF is truly a
neurotrophic factor remains a matter of debate. In this review,
we refer MANF as a non-canonical neurotrophic factor. We
begin with an overview of MANF as a neuroprotective molecule;
we then present the recent evidence supporting the role of
MANF in mediating energy homeostasis and compare MANF
with BDNF and CNTF, the two neurotrophic factors that have
been extensively studied; we also discuss the latest research
about the endogenous functions of MANF in the brain, and
argue that besides promoting neuronal survival, MANF could
possess additional roles in mediating neuronal development and
activities.

MANF: A NEW ADDITION TO THE
NEUROTROPHIC FACTOR FAMILY

Mesencephalic astrocyte-derived neurotrophic factor was
initially discovered in the conditioned medium from ventral
mesencephalic cell line 1 (VMCL1), in 2003 (Petrova et al.,
2003). Being considered as a non-canonical neurotrophic factor,
MANF exhibits several major distinctions comparing to other
previously known neurotrophic factors: (1) most canonical
neurotrophic factors evolved early in vertebrate history, whereas
MANF represents a much more ancient protein species, as
MANF homologs are found in invertebrates, such as fruit
fly Drosophila melanogaster (Palgi et al., 2009), nematode
Caenorhabditis elegans (Bai et al., 2018) and sponge Suberites
domuncula (Sereno et al., 2017); (2) MANF does not share
any protein sequence homology with canonical neurotrophic
factors. In fact, the N-terminus of MANF is homologous to

saposin-like proteins (Parkash et al., 2009), and the C-terminus
resembles SAF-A/B, Acinus and PIAS (SAP) proteins (Hellman
et al., 2011), suggesting two distinct functions (Lindahl et al.,
2017); (3) like canonical neurotrophic factors, MANF is able
to work extracellularly to regulate cellular signaling cascades
(Yang S. et al., 2014; Zhang et al., 2017a,b; Tseng et al., 2018),
potentially through an unidentified transmembrane receptor.
But more intriguingly, MANF is also localized intracellularly
in the endoplasmic reticulum (ER), and functions as an ER
stress response protein (Mizobuchi et al., 2007; Apostolou et al.,
2008). In fact, through interacting with glucose-regulated protein
78 (GRP78), an ER chaperone, most of intracellular MANF is
retained in the lumen of ER (Oh-Hashi et al., 2012). Upon ER
stress, the interaction is attenuated, and MANF is released to the
extracellular space (Glembotski et al., 2012). The dual functional
locations make MANF a unique target for research, which may
shed light on novel therapeutic strategies that are previously
inaccessible to canonical neurotrophic factors.

Early functional studies about MANF are focused on its role
in Parkinson’s disease (PD), as genetic knockdown or knockout
of manf in zebrafish or fruit fly lead to defective development
of the dopamine system (Palgi et al., 2009; Chen et al., 2012),
and administration of purified MANF protein or viral vectors
expressing MANF has beneficial effects in both cellular and
animal models of PD (Petrova et al., 2003; Zhou et al., 2006;
Voutilainen et al., 2009; Hao et al., 2017). Endogenous MANF
protein is abundantly expressed in the rodent brain, as well
as non-neuronal tissues, such as liver, salivary gland and testis
(Lindholm et al., 2008). Emerging evidence indicates that MANF
is protective in a broad range of disease conditions, including
cerebral ischemia (Airavaara et al., 2009; Yu et al., 2010; Matlik
et al., 2018), myocardial infarction (Glembotski et al., 2012),
Spinocerebellar ataxia type 17 (Yang S. et al., 2014; Guo et al.,
2018), and retinal degeneration (Neves et al., 2016; Lu et al.,
2018). Although the exact mechanism remains elusive, both
extracellular and intracellular MANF forms are believed to
contribute to the protective effects. Several lines of evidence
support the extracellular functions of MANF: in cultured cells,
addition of recombinant MANF protein into the culture medium
is able to activate pro-survival signaling pathways, including
PKC, AKT/GSK3β, AMPK/mTOR and STAT3 pathways (Yang
S. et al., 2014; Zhang et al., 2017a,b; Tseng et al., 2018); in
fruit fly and mouse, administration of recombinant MANF
protein ameliorated retinal degeneration caused by various
damaging stimuli, and the protective capacity could be derived
from immune modulation (induction of alternative activation of
microglia) (Neves et al., 2016); in rodent models of PD and stroke,
administration of recombinant MANF protein reduced neuronal
death (Airavaara et al., 2009; Voutilainen et al., 2009; Yang W.
et al., 2014). A major obstacle to advance our knowledge about
extracellular MANF is that the identity of its plasma membrane
receptor remains unknown, although different mechanisms have
been proposed to account for the cellular uptake of MANF
(Henderson et al., 2013; Bai et al., 2018). There are also several
studies supporting the intracellular functions of MANF: MANF
is enriched in the ER and is induced by unfolded protein response
(UPR) (Mizobuchi et al., 2007; Apostolou et al., 2008); upon UPR

Frontiers in Physiology | www.frontiersin.org 2 November 2018 | Volume 9 | Article 1725

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01725 November 27, 2018 Time: 19:55 # 3

Yang et al. MANF and the Control of Energy Homeostasis

FIGURE 1 | The functions of neurotrophic factors in the hypothalamus. (A) BDNF expressing neurons are found in the PVN, DMH, and VMH of the hypothalamus.
BDNF functions in these regions to reduce food intake and increase energy expenditure, in a non-cell-autonomous manner. (B) The receptor for CNTF is found in the
PVN and ARC of the hypothalamus. Administration of CNTF alters neuronal activities in the ARC, but not in the PVN. The outcome of CNTF administration is
reducing food intake and increasing energy expenditure. (C) MANF is expressed in the PVN, DMH, VMH, and ARC of the hypothalamus. Increasing MANF
expression in the hypothalamus, or specifically in the ARC leads to increased food intake, in a cell-autonomous manner, as administration of recombinant MANF
protein does not change food intake. The function of MANF in other regions of the hypothalamus remains to be established. Arrows with solid lines, experimental
evidence is currently available; arrows with dotted lines, experimental evidence is currently lacking. PVN, paraventricular hypothalamus; DMH, dorsomedial
hypothalamus; VMH, ventromedial hypothalamus; ARC, arcuate nucleus.

and ER stress, MANF could be either secreted to the extracellular
space (Oh-Hashi et al., 2012; Hartley et al., 2013), or enter
the nucleus to suppress the transcriptional activities of NF-κB
pathway (Chen et al., 2015).

MANF AS A REGULATOR OF ENERGY
HOMEOSTASIS

Energy homeostasis is achieved by balanced energy intake
and expenditure. As the first neurotrophic factor known to
be involved in the control of energy homeostasis, BDNF is
believed to play a crucial role in both processes. Two-day food
restriction was able to selectively reduce Bdnf mRNA level
in the ventromedial nucleus of hypothalamus (VMH) in mice
(Xu et al., 2003), an area known to regulate energy intake.
Intracerebroventricular infusion of recombinant human BDNF
decreased food intake in rats (Lapchak and Hefti, 1992), whereas
genetic deletion of Bdnf gene in the VMH or the paraventricular
nucleus of hypothalamus (PVH), another brain area related to
energy intake, led to hyperphagia and obesity in mice (Unger
et al., 2007; An et al., 2015). Nonetheless, it remains to be
determined where the BDNF expressing neurons project to,
and how BDNF functions to suppress food intake. On the
other hand, injection of BDNF protein into either the VMH

or PVH increased energy expenditure in rats, via escalating
heat production and resting metabolic rate (Wang et al., 2007,
2010). These results are further corroborated by the finding that
deletion of Bdnf gene in the PVH reduced energy expenditure
in mice, via decreasing locomotor activity and thermogenesis
(An et al., 2015). Again, the neural circuits that mediate the
effect of BDNF on energy expenditure remain to be elucidated,
although it has been found that the BDNF expressing neurons
in the medial and posterior PVH could project to the spinal
cord and promote adaptive thermogenesis through polysynaptic
connections to brown adipose tissues (An et al., 2015). Taken
together, BDNF functions to counteract obesity through reducing
energy intake and enhancing energy expenditure.

Ciliary neurotrophic factor belongs to the interleukin 6 (IL-
6) cytokine family (Heinrich et al., 2003). Originally discovered
as a pro-survival factor for chick ciliary ganglion neurons (Adler
et al., 1979), CNTF mRNA and protein are not only expressed
in neuronal tissues, but also widely distributed in non-neuronal
tissues, including heart, lung, liver, kidney and testis (Ohta et al.,
1995, 1996). Similar to MANF, CNTF is localized intracellularly,
and is secreted to the extracellular space during cell injury (Lin
et al., 1989; Stockli et al., 1989; Rudge et al., 1992). CNTF is
essential for the survival of motor neurons (Masu et al., 1993),
hence has been tested as a therapy for amyotrophic lateral
sclerosis (ALS). However, quite unexpectedly, CNTF treatment in

Frontiers in Physiology | www.frontiersin.org 3 November 2018 | Volume 9 | Article 1725

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01725 November 27, 2018 Time: 19:55 # 4

Yang et al. MANF and the Control of Energy Homeostasis

TABLE 1 | Comparison of BDNF, CNTF, and MANF in energy homeostasis.

Name Protein structure Expression pattern Overall function in energy
homeostasis

Important studies/findings

BDNF N-terminal signal peptide; followed
by a common, basic consensus
sequence of the furin type;
C-terminal conserved sequence of
nerve growth factor (NGF) domain.

High expression in the brain,
low expression in non-neuronal
tissues.

Reduce food intake, increase
energy expenditure.

BDNF is enriched in the ventromedial
hypothalamus (VMH); brain administration of
BDNF reduces food intake (Xu et al., 2003).

Deletion of BDNF in the VMH and dorsomedial
hypothalamus (DMH) leads to hyperphagia
(Unger et al., 2007).

Deletion of BDNF in the paraventricular
hypothalamus (PVH) leads to hyperphagia and
reduced energy expenditure (An et al., 2015).

CNTF Lacks a signal peptide; resembles
alpha-helical cytokine family which
is characterized by a bundle of four
anti-parallel helices.

High expression in the brain,
heart, lung, liver, kidney and
testis.

Reduce food intake, increase
energy expenditure.

Brain administration of CNTF reduces food
intake and adiposity (Gloaguen et al., 1997).

Germline deletion of CNTF does not lead to
hyperphagia or obesity (Masu et al., 1993).

MANF N-terminal signal peptide; followed
by a domain homologous to
saposin-like proteins (SAPLIPs);
C-terminus homologous to
SAF-A/B, Acinus and PIAS (SAP)
protein superfamily.

High expression in the brain,
liver, salivary gland and testis.

Increase food intake, no effect
on energy expenditure.

MANF is enriched in the ARC, VMH and PVH;
deletion of MANF in the hypothalamus leads to
reduced food intake; overexpression of MANF
in the hypothalamus leads to hyperphagia
(Yang S. et al., 2014).

ALS patients led to marked body weight loss (Miller et al., 1996).
This phenomenon has been reproduced in mice, as systemic
administration of CNTF reduced hyperphagia and obesity in
mice deficient with functional leptin (ob/ob mice) or leptin
receptor (db/db mouse) (Gloaguen et al., 1997). The mechanism
underlying the effect of CNTF is believed to be partially from
the leptin signaling, as both leptin and CNTF activate the Janus
tyrosine kinase–signal transducers and activators of transcription
(JAK–STAT) signaling (Vaisse et al., 1996; Peterson et al., 2000),
especially the STAT3 transcription factor, which is a key molecule
involved in energy balance (Bates et al., 2003). Nonetheless, null
mutations of Cntf were not associated with either hyperphagia or
obesity in mice or human (Takahashi et al., 1994; DeChiara et al.,
1995), indicating that the endogenous function of CNTF might
not be related to energy homeostasis.

Compared with the neurotrophic factors described above,
evidence supporting the involvement of MANF in energy
homeostasis is only beginning to emerge (Figure 1 and Table 1).
MANF is abundantly expressed in the brain (Lindholm et al.,
2008). In rats, the expression of MANF is particularly high
during early development (between postnatal day 3 and 5)
in the brain, but gradually declines as the brain matures.
Nonetheless, high expression of MANF sustains into adulthood
in selected brain regions, including hypothalamus, the brain
region that crucially regulates energy homeostasis (Wang et al.,
2014). Interestingly, an exome sequencing study identified
MANF as a potential causative gene for a 22-year-old woman
patient with type 2 diabetes mellitus, hypothyroidism, primary
hypogonadism, short stature, mild intellectual disability, obesity,
deafness, high myopia, microcephaly and partial alopecia
(Yavarna et al., 2015). More clinical data are needed to firmly

establish the link between MANF and obesity development in
human.

The most direct support for the role of MANF in controlling
energy homeostasis comes from a recent study on mice (Yang
et al., 2017): MANF was found to be enriched in different
nuclei in mouse hypothalamus, including the arcuate nucleus
(ARC), VMH and PVH; two-day food restriction significantly
increased MANF expression in the hypothalamus; increasing or
decreasing MANF expression selectively in the hypothalamus
led to hyperphagia or hypophagia, respectively. MANF appeared
to specifically regulate energy intake, while leaving energy
expenditure unaffected. In terms of mechanistic studies, MANF
was shown to function in the ER to mediate insulin response, a
signaling pathway known to regulate energy homeostasis in the
brain (Vogt and Bruning, 2013), via influencing the activity of a
kinase named PIP4k2b. Taken together, these results demonstrate
that the activity of MANF leads to enhanced energy intake
and functions opposite to BDNF and CNTF. Nonetheless, there
remain several open questions that are critical for elucidating the
exact role of MANF in the hypothalamus: what is the specific
function of MANF in each hypothalamic region or neuronal type;
are there any other intracellular or extracellular mechanisms that
account for the hyperphagic effect of MANF? It has been well
established that obesity could cause ER stress (Ozcan et al., 2004),
and hypothalamic ER stress leads to leptin/insulin resistance and
hyperphagia (Zhang et al., 2008; Ozcan et al., 2009). Given that
MANF protects against ER stress, it appears counterintuitive that
increased MANF expression in the hypothalamus is associated
with hyperphagia. Nonetheless, in most cases, the up-regulation
of MANF during ER stress was caused by acute treatment,
such as ER stress inducing chemicals, or ischemic and epileptic
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insults (Apostolou et al., 2008; Lindholm et al., 2008). It remains
unknown whether MANF is up-regulated under chronic ER
stress conditions, such as during the development of obesity.

It is worth noting that MANF seems to be closely linked
to the insulin signaling, as germline knockout of Manf in
mice led to a progressive reduction of pancreatic β cells,
the type of cell responsible for the synthesis and storage of
insulin (Lindahl et al., 2014). On the other hand, addition
of recombinant MANF protein was able to protect human
pancreatic β cells against stress-induced cell death (Hakonen
et al., 2018). Homozygous Manf knockout mice showed retarded
body growth, which is in agreement with the obesity phenotype
found in a transgenic mouse model overexpressing MANF
(Yang et al., 2017). Intriguingly, brain specific knockout of
Manf during early development, which is mediated by Cre
recombinase driven by Nestin promoter, did not result in any
obvious phenotypes (Lindahl et al., 2014). It is possible that
certain compensatory mechanisms exist during development.
Indeed, a similar phenomenon was found in BDNF studies:
deletion of Bdnf in the adult PVH caused much more robust
hyperphagia and obesity than deletion of Bdnf in the PVH during
embryonic development using Cre recombinase driven by Sim1
promoter (Balthasar et al., 2005; An et al., 2015).

CONCLUSION AND FUTURE
PERSPECTIVES

As discussed above, researchers have begun to reveal the potential
roles of MANF in mediating energy homeostasis. The functional
mechanisms of MANF remain largely unclear. Especially, the
dual modes of action both inside and outside of the cell add
an additional layer of complexity, which at the same time,
offer an exciting research opportunity. It is highly desirable
to identify the plasma membrane receptor for MANF, so that

we could get a clear picture about the signaling pathways
controlled by MANF. It is equally important to clarify the
intracellular molecular mechanisms of MANF, not only in the
ER, but potentially in other cellular organelles or structures. In
addition, identification of the neuronal types and the related
neural circuits that MANF acts upon would provide much needed
information not only to expand our understanding of the central
control of energy homeostasis, but also to design therapeutic
approaches to combat the development of obesity. MANF is
widely distributed throughout the brain (Lindholm et al., 2008;
Yang et al., 2017), and it affords protection to neurons in different
brain regions, such as the cortex, cerebellum and substantia nigra
(Voutilainen et al., 2009; Yang S. et al., 2014; Tseng et al., 2018).
Notably, the expression of MANF appears to be higher in the
developing brain (Wang et al., 2014). These results suggest that
MANF could possess important cell type-dependent functions
in brain regions other than the hypothalamus, especially during
early development. Indeed, a recent study indicates that MANF
could promote neurite extension and neuronal migration in
the developing cortex (Tseng et al., 2017). Continual efforts
are needed for us to build a comprehensive image about the
neurobiology of MANF in the brain.
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