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Review Article
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Objective: To review and summarize the characteristics of the tumor immune microenvironment (TIME) 
in EGFR-mutated non-small cell lung cancer (NSCLC) after EGFR-TKI treatment and its role in TKI 
resistance.
Background: Lung cancer is one of the most commonly diagnosed cancer and the leading cause of death 
from cancer in both men and women around the world. Epidermal growth factor receptor tyrosine kinase 
inhibitors (EGFR-TKIs) are considered a first-line treatment for EGFR-mutated NSCLC. However, almost 
all patients eventually develop acquired resistance to EGFR-TKIs, with a median progression-free survival 
(PFS) of 9–14 months. As immunotherapy has developed, it has become apparent that interactions between 
the TIME and tumor cells also affect EGFR-TKI treatment. The TIME comprises a variety of components 
but previous studies of the TIME following EGFR-TKI therapy of NSCLC are inconsistent. Here, we 
reviewed the characteristics of the TIME in NSCLC after EGFR-TKI treatment and its role in TKI 
resistance.
Methods: PubMed, Embase, and Web of Science were searched to July 1, 2021 with the following key 
words: “NSCLC”, “EGFR”, and “immunotherapy”.
Conclusions: The TIME of EGFR-mutated NSCLC is different from that of non-mutated NSCLC, an 
explanation for EGFR-mutated NSCLC displaying a poor response to ICIs. The TIME of EGFR-mutated 
NSCLC also changes during treatment with EGFR-TKIs. The TIME in EGFR-TKI-resistant lung cancer 
can be summarized as follows: (I) compared with EGFR-TKI-sensitive tumors, EGFR-TKI-resistant tumors 
have a greater number of immunosuppressive cells and fewer immune-activated cells, while the tumor 
microenvironment is in an immunosuppressive state; (II) tumor cells and immunosuppressive cells secrete 
multiple negative immune regulatory factors, inhibit the recognition and presentation of tumor antigens and 
the antitumor effect of immune cells, resulting in immune escape; 3.EGFR-TKI-resistant tumors promote 
EMT. These three characteristics interact, resulting in a regulatory signaling network, which together leads 
to EGFR-TKI resistance.
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Introduction

Lung cancer is one of the most commonly diagnosed 
cancer and the leading cause of death from cancer in both 
men and women around the world, with a 5-year survival 
rate of approximately 21% (1). According to global cancer 
statistics, the incidence of lung cancer and mortality in the 
male population ranks first globally for malignant tumors, 
while its incidence in the female population ranks third, 
and mortality ranks second (2). In China, the incidence of 
lung cancer and the mortality rate are highest in the male 
population, while the incidence in females is second, with 
the highest mortality rate (3).

Epidermal growth factor receptor (EGFR), also known 
as ERBB1 and HER1, is a transmembrane tyrosine kinase 
receptor (RTK) and a member of the human epidermal 
receptor (HER) family, representing a crucial component 
of cell signal pathways (4). Overexpression and mutation 
of EGFR can lead to activation of important signaling 
pathways, such as Ras-MAPK, PI3K-Akt, and STAT, 
resulting in increased cell proliferation, angiogenesis, and 
metastasis (5). Approximately 40–80% of patients with non-
small cell lung cancer (NSCLC) have an EGFR mutation or 
it is overexpressed (6). EGFR mutations have been found in 
15% of Caucasian and 30–50% of Asian NSCLC patients 
(7-9). Epidermal growth factor receptor tyrosine kinase 
inhibitors (EGFR-TKIs), classic small molecule inhibitors, 
inhibit the EGFR tyrosine kinase domain reversibly 
through competitive binding with ATP (10). At present, 
EGFR-TKIs commonly used in the clinic include the 
first generation treatments gefitinib and erlotinib, second 
generation afatinib and dacomitinib, and osimertinib, a 
third-generation treatment. Several clinical trials have 
demonstrated that EGFR-TKIs can prolong the survival of 
patients with tumors harboring EGFR-activating mutations 
(11-33). The principal clinical trials are displayed in Table 1.

However, patients initially responding to EGFR-TKIs 
invariably develop resistance, resulting in median progression-
free survival (PFS) of approximately 10 months (11,16,23,30). 

Resistance to EGFR-TKIs is inevitable due to a number 
of mechanisms, including the secondary mutation known 
as T790M (50%) (34), MET amplification (5%), HER-
2 amplification (8%), PI3K mutation (5%), histologic 
transformation (14%) (35,36), and new mutations such as 
EFGR-C797S, EGFR-L792H, and EGFR-G796R (37-39). 
There has been too great a focus in previous studies on drug 
resistance caused by tumor cells, and too little on the tumor 
immune microenvironment (TIME). It is therefore imperative 
that the mechanisms of the TIME are studied regarding 
tumor drug resistance. The TIME comprises numerous cell 
types in addition to cancer cells, including bone marrow-
derived inflammatory cells, lymphocytes, fibroblastic cells, in 
addition to extracellular matrix (ECM) composed of collagen 
and proteoglycans (40,41). The review will describe in detail 
the TIME of EGFR-mutated NSCLC from five perspectives: 
tumor-infiltrating immune cells; cytokines secreted by tumor 
and immune cells; tumor ECM; cancer-associated fibroblasts 
(CAFs); and the tumor vasculature.

We present the following article in accordance with 
the Narrative Review checklist (available at https://dx.doi.
org/10.21037/tlcr-21-572).

Tumor-infiltrating immune cells

The majority of research on the TIME at present 
has  focused on tumor-inf i l trat ing immune cel l s . 
Almost all  immune cell types can be found in the 
tumor microenvironment, including tumor-associated 
macrophages (TAMs), dendritic cells (DCs), natural killer 
cells (NKs), B lymphocytes (B cells), T lymphocytes 
(T cells), marrow-derived suppressor cells (MDSCs), 
neutrophils, etc. (42). Immune cells play an important role 
in shaping the TIME in EGFR-mutant lung cancer by 
secreting cytokines and activating signal pathways (Figure 1).

TAMs

Macrophages originate from progenitors in the bone 
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Table 1 Clinical trials of EGFR-TKI in EGFR mutated NSCLC

Authors
Numbers of 

patients
Groups

mOS 
(month)

P value
mPFS 

(month)
P value ORR P value

Mok TS (11) 261 Gefitinib 10 <0.001 71.20% <0.001

Carboplatin + paclitaxel 7 47.30%

Maemondo M (12) 230 Gefitinib 30.5 <0.001 10.8 <0.001 73.70% <0.001

Carboplatin + paclitaxel 23.6 5.4 30.70%

Sun JM (14) 33 Gefitinib 15.7 <0.01 87.50% <0.01

Pemetrexed 2.9 38.90%

Mitsudomi T (15) 172 Gefitinib 9.2 <0.0001 62.10% <0.0001

Docetaxel 6.3 32.20%

Wu YL (16) 217 Erlotinib 26.3 0.607 11 <0.0001 62.70% <0.0001

Gemcitabine + cisplatin 25.5 5.5 33.60%

Zhou C (17,18) 154 Erlotinib 22.8 0.2663 13.1 <0.0001 83% <0.0001

Standard chemotherapy 27.2 4.6 36%

Rosell R (21) 174 Erlotinib 19.3 0.87 9.7 <0.0001

Standard chemotherapy 19.5 5.2

Wu YL (23) 364 Afatinib 11 <0.0001 66.90% <0.0001

Cisplatin + gemcitabine 5.6 23%

Sequist LV (24) 345 Afatinib 11.1 P0.001 56% 0.001

Cisplatin + pemetrexed 6.9 23%

Wu YL & Mok TS (26,27) 452 Dacomitinib 34.1 0.0438 14.7 <0.0001 75% 0.2224

Gefitinib 26.8 9.2 70%

Soria JC & Ramalingam SS 
(28,29)

556 Osimertinib 38.6 0.046 18.9 <0.001 80% 0.24

Gefitinib 31.8 10.2 76%

Mok TS (30) 419 Osimertinib 10.1 <0.001 71% <0.001

Pemetrexed + carboplatin/
cisplatin

4.4 31%

EGFR, epidermal growth factor receptor; TKI, tyrosine kinase inhibitor; NSCLC, non-small cell lung cancer; mOS, median overall survival; 
mPFs, median progression free survival; ORR, objective response rate.

marrow and enter the peripheral blood. During homeostasis 
and inflammation, they migrate into tissues and differentiate 
into macrophages following exposure to local growth 
factors, proinflammatory cytokines, and microbial products. 
Macrophages have multiple functions in tumors (43). 
Studies have found that the number of CD68+ and CD204+ 
TAMs in EGFR-mutant NSCLC tumor tissues is less 
than that observed in tumors with wild-type EGFR, with a 
superior prognosis (44). Furthermore, EGFR-mutated lung 
cancer with high levels of infiltrating CD204+ TAMs was 

found to be highly aggressive with poor prognosis (45). In 
an additional study, it was observed that the resistance of 
lung cancer to EGFR-TKIs was correlated with the tumor 
infiltration of CD68+ TAMs and S100A9+ MDSCs, causing 
resistance through the NF-κB pathway (46). Two major 
macrophage subpopulations with different functions include 
the classically activated or inflammatory (M1) phenotype 
and the alternatively activated or anti-inflammatory (M2) 
type. M1 macrophages exhibit robust anti-tumoral activity 
whereas M2 macrophages promote tumor formation and 
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Figure 1 Immune cells in the TIME of EGFR mutant lung cancer. The number of neutrophils, MDSCs, and CD68+ and CD204+ TAMs 
(M2) in EGFR-TKI-sensitive lung cancer is less than that in EGFR-TKI-resistant lung cancer. However, the number of MHC II+ DC 
and NK cells in EGFR-TKI-sensitive lung cancer is more than in EGFR-TKI-resistant lung cancer. S100A9+ MDSCs transform into M2 
type TAMs by activation of the RELB gene, while TAMs (M2) induce EGFR-TKI resistance via the NF-κB pathway. EGFR-TKI-resistant 
lung cancer cells express CD47 which blocks the phagocytosis and antigen presentation by DCs. Up-regulation of ULBP1, 2, and MICA 
expression on tumor cells and NKG2D on NK cells can promote NK cytotoxicity toward tumor cells. B cells are present within a TLS 
associated with good prognosis. B cells also differentiate into plasma cells, producing specific antibodies and recognizing tumor-associated 
antigens. Breg weakens the response of T cells and NK cells, facilitating the immune-suppressive activity of regulatory T cells (Tregs) by 
secreting immunosuppressive factors. The number of T cell-like CD39+ and CD8+ or PD-1+ and TIM3+ T cells in EGFR-mutant lung 
cancer are fewer than in wild-type EGFR lung cancer. T cell apoptosis is caused by an EGFR mutation that increases the expression of PD-
L1 via the p-ERK1/2/p-c-jun pathway. The number of Tregs in EGFR-mutant NSCLC was fewer than in non-EGFR mutant NSCLC. 
EGFR signaling activates cJun/cJun N-terminal kinase and reduces interferon regulatory factor-1. The former increases CCL22 expression, 
which recruits CD4+ regulatory T cells, and the latter decreases CXCL10 and CCL5 expression, which induces CD8+ T cell infiltration. 
EGFR mutations also decrease the expression of MHC-I via the MEK-ERK pathway. TIME, tumor immune microenvironment; EGFR, 
epidermal growth factor receptor; MDSC, marrow-derived suppressor cell; TKI, tyrosine kinase inhibitor; MHC, major histocompatibility 
complex; NK, natural killer; TAM, tumor-associated macrophage; DC, dendritic cell; NSCLC, non-small cell lung cancer.

progression (47). CD68+ and CD204+ TAMs are M2 
macrophages. It has been found that the proportion of M2 
macrophages in EGFR-TKI resistant lung cancer is higher 
than in EGFR-TKI sensitive lung cancer (48). Therefore, it 
can be inferred that EGFR-TKI resistance is related to M2-
type TAMs, and that reducing the number of M2 TAMs 
may reverse EGFR-TKI resistance.

DCs

DCs are unique immune cells that link the innate and 
adaptive immune response. They are considered the 

most effective type of antigen-presenting cell, playing an 
important role in the process of tumor antigen recognition 
and presentation (49). It has been found that the proportion 
of major histocompatibility complex class II (MHC-II)-
positive DCs in EGFR-TKI sensitive tumors is higher 
than in EGFR-TKI resistant tumors (50). Another study 
found that lung cancer with the EGFR mutation inhibits 
the maturation of DCs and induces the production of 
anergic DCs that represses antitumor immunity through 
exosomes (51). Analysis of NSCLC transcriptomic datasets 
reveal selective overexpression of CD47 in patients with 
the EGFR mutation. EGFR-TKIs significantly reduce 
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CD47 expression on the surface of pre-apoptotic cells, 
favoring more efficient engulfment of cancer cells by 
DCs. CD47 expression becomes up-regulated following 
the development of EGFR-TKI resistance, and blockade 
of this protein using a specific monoclonal antibody 
increases the clearance of EGFR-TKIs resistant cells by  
phagocytes (52). Therefore, EGFR-TKI resistance is 
associated with decreased numbers of DCs and their 
dysfunction.

NK cells

NK cells are lymphocytes of the innate immune system that 
monitor the cell surface of autologous cells for aberrant 
expression of MHC-I molecules and cell stress markers, 
which play an important role in the antitumor immune 
response (53). The study found that patients with a high 
number of NK cells had greater overall survival (OS) and 
PFS. The number of NK cells was found to increase after 
EGFR-TKI treatment (54). For EGFR-TKI resistant lung 
cancer, up-regulation of ICAM1 was found to induce drug 
resistance, while NK92-CD16 cells combined with the 
EGFR antibody were found to reverse drug resistance (55). 
Another study found that gefitinib greatly enhanced NK 
cell cytotoxicity toward lung cancer cells with the EGFR 
L858R+T790M resistance mutation. Gefitinib has been 
shown to block immune escape by up-regulation of the 
expression of the NKG2D ligands ULBP1, ULBP2, or 
MICA on tumor cells and NKG2D on NK cells in a co-
culture system (56). A combination of EGFR-TKIs and 
NK cell adoptive immunotherapy possibly represents an 
effective strategy for EGFR-TKI resistant lung cancer.

Myeloid-derived suppressor cells (MDSCs)

MDSC arise from the bone marrow and support tumor 
progression by the promotion of tumor cell survival, 
angiogenesis, invasion of healthy tissue by tumor cells, and 
metastases (57). There are two large groups of MDSCs, 
termed granulocytic or polymorphonuclear MDSCs 
(PMN-MDSCs), phenotypically and morphologically 
s imi l a r  to  neu t roph i l s ,  and  monocy t i c  MDSCs 
(M-MDSC), phenotypically and morphologically similar to  
monocytes (58). It has been found that the presence of a 
high number of MDSCs in EGFR-mutant lung cancer was 
correlated with poor prognosis, and a reduction in MDSC 
numbers able to improve prognosis (59). In addition, the 
numbers of S100A9-positive MDSCs in EGFR-TKI-

resistant lung cancer were found to be higher than in 
healthy donors. Further study has found that this type of 
MDSC can be transformed into an M2 TAM by activation 
of the RELB gene, thus promoting the proliferation 
and metastasis of tumors and resulting in EGFR-TKI 
resistance (46). Few studies have so far been published on 
the mechanism by which MDSCs participate in EGFR-
TKI resistance. Whether inhibition of MDSCs can reverse 
EGFR-TKI resistance requires additional study.

Neutrophils

Neutrophils represent the largest cohort of immune cells 
and in humans are generally considered a non-complex 
front-line defender of the innate immune system. Recent 
studies have demonstrated that neutrophils are also 
associated with the anti-tumor immune response (60). 
Several studies have shown that a low neutrophil-to-
lymphocyte ratio was a good prognostic factor in EGFR-
mutant NSCLC patients receiving EGFR-TKI treatment 
(61-63). Another study demonstrated that intratumoral 
neutrophil density was lower in EGFR-mutant NSCLC 
in comparison with non-EGFR mutant NSCLC (64). Few 
studies have reported on the mechanism and relationship 
between neutrophils and EGFR-TKI resistance. Whether 
neutrophils are related to EGFR-TKI resistance requires 
additional study.

B cells

B cells are an important element of the human adaptive and 
humoral immune response. Studies have demonstrated that 
B cells play an important role in the anti-tumor immune 
response (65). According to analysis using data from the 
TCGA database, the abundance of tumor-infiltrating B cells 
(TIBs) is significantly higher in NSCLC with the EGFR 
mutation (66). Studies have found that B cells are usually 
found within an ectopic tissue called the tertiary lymphoid 
structure (TLS), the existence of which is associated with 
good prognosis (67). The principal function of B cells is 
participation in the humoral immune response. In lung 
tissue, B cells differentiate into plasma cells, which produce 
specific antibodies and recognize tumor-associated antigens 
(67,68). In addition, activated TIBs can activate tumor-
infiltrating T cells (TITs) by being presenting them with 
tumor antigens and activation of the TIT anti-tumor  
effect (69). However, regulatory B cells (Bregs), a subtype 
of B cells, can inhibit immunity and promote tumor 
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proliferation and metastasis (70). It has been found that 
Bregs can weaken the response of T cells and NK cells and 
facilitate the immune-suppressive activity of regulatory T 
cells (Tregs) by up-regulation of immunoregulatory ligands 
through secretion of immunosuppressive factors such as IL-
10 and TGF-β (71). The relationship between B cells and 
EGFR-TKIs is complex and requires additional study.

T cells

T cells are an important component of the human adaptive 
and cellular immune response. They play an important 
role in the anti-tumor immune response and are the most 
studied immune cell in the TIME (72). T cells consist 
of different subpopulations, including naïve T cells that 
can respond to new antigens, memory T cells that are 
activated from previous antigens and maintain long-term 
immunity, and regulatory T cells that regulate the immune 
response (72). With the breakthrough of immunotherapy 
in the cancer treatment, oncologists began to explore 
whether immunotherapy could be applied to EGFR mutant 
NSCLC. Unfortunately, clinical evidence showed that most 
of the patients with EGFR-mutated NSCLC would not 
benefit from the immunotherapy (73-75). It has been found 
that the percentage of TITs in EGFR-mutant NSCLC was 
lower than in non-EGFR mutated-NSCLC, while a low 
percentage of TITs is predictive of poor prognosis (76). 
Another study found that the number of CD8+ CD39+ T 
cells in EGFR mutant-NSCLC patients was less than that 
in wild-type EGFR NSCLC patients. The study suggested 
that CD39+ T cells were associated with a positive effect of 
immune checkpoint inhibitors (ICIs) (77). Furthermore, it 
was found that the number of CD8+ TIT cells in EGFR-
mutant NSCLC was less than that in wild-type EGFR 
NSCLC (78), and the proportion of PD-L1+ or PD-1+ 
in the CD8+ T cell population was also less than non-
EGFR mutant NSCLC (79,80). This was also confirmed 
by animal experiments of genetically engineered mice with 
the EGFR mutation. The study found that the number of 
CD8+ TITs in mice with the EGFR mutation was less than 
in mice with wild-type EGFR or other gene mutations (81). 
These studies partially explained the poor efficacy of EGFR 
mutant NSCLC when using ICIs. T cell immunoglobulin 
and mucin domain containing protein 3 (TIM3) is a 
member of the TIM family. Studies have found that the 
number of TIM3+ T cells in EGFR-mutant NSCLC 
tumors is fewer than in wild-type EGFR tumors, while T 
cells that are TIM3 positive can be CD8+ T cells, CD4+ T 

cells, or NKT cells (82).
When comparing patients before and after EGFR-

TKI treatment, studies have found that the total number 
of T cells, and the number of CD4+ and CD8+T cells in 
patients with the EGFR mutation were not significantly 
different, but the ratio of CD4+/CD8+ T cells increased, 
a high ratio being associated with poor prognosis (54). 
Studies have found that T cell apoptosis was caused by the 
EGFR mutation which increased the expression of PD-
L1 through the p-ERK1/2/p-c-jun pathway. EGFR-TKIs 
prevent T cell apoptosis and inhibit tumor proliferation 
by decreasing the expression of PD-L1 through inhibition 
of the EGFR pathway (83). Another study found that the 
number of Tregs in EGFR-mutant NSCLC was less than 
in non-EGFR mutant NSCLC, due to EGFR signaling 
causing activation of cJun/cJun N-terminal kinase and 
reducing the quantity of interferon regulatory factor-1. The 
former increased CCL22 expression, which recruits CD4+ 
regulatory T cells, and the latter decreased CXCL10 and 
CCL5 expression, which induce CD8+ T cell infiltration. 
EGFR-TKIs can reverse this phenomenon by inhibiting 
the EGFR signaling pathway (84). The anti-tumor response 
of T cells occurs as a result of the recognition of the tumor 
antigen presented by MHC-I. Studies have found that the 
EGFR mutation decreases the expression of MHC-I via the 
MEK-ERK pathway. EGFR-TKIs increase the expression 
of MHC-I by inhibiting the EGFR pathway, and recruit T 
cells to the tumor. Therefore, the number of CD8+ T cells 
in the tumor following EGFR-TKI treatment is greater 
than prior to treatment (85).

A classification based on PD-L1 and CD8-positive 
tumor-infiltrating lymphocyte (TIL) status has been 
proposed. The outcomes of patients with negative PD-L1 
expression and a high CD8+ TIL count were found to be 
significantly superior to patients that did not. In patients 
with positive PD-L1 and high numbers of CD8+ TIL, the 
rate of EGFR mutation was significantly lower than in the 
non-EGFR mutation (86). Moreover, for positive PD-L1 
and high CD8+TIL NSCLC with the EGFR mutation, the 
prognosis after EGFR-TKI therapy is poor, but this type 
of NSCLC is likely to respond to ICI (87,88). A different 
study found that the proportion of PD-L1 positive T cells 
in the peripheral blood of patients with the EGFR mutation 
was less than in patients without the EGFR mutation. 
However, the proportion of PD-L1+ T cells in the 
peripheral blood of patients with the EGFR mutation was 
significantly higher after EGFR-TKIs treatment. Moreover, 
PD-L1+ T cells are positively correlated with the poor 
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response of EGFR-TKIs (89). For uncommon EGFR-
mutant tumors, including G719X, L861Q, S768I, and Ex20 
ins, PD-L1 expression in tumor cells was higher than in 
common EGFR mutant tumors. Moreover, the proportion 
of CD8+ TIL in uncommon EGFR-mutant tumors was 
greater than in common EGFR mutant tumors. Patients 
with high PD-L1 expression and abundant CD8+TIL 
exhibit a poor response to EGFR-TKIs, but respond better 
to ICIs (90). Many studies have been published in which the 
mechanisms of EGFR-TKI resistance are diverse in patients 
with the EGFR mutation. Therefore, therapeutic strategies 
involving T cells represent a promising field of research for 
reversal of EGFR-TKI resistance.

Cytokines secreted by tumor and immune cells

Cytokines are small molecular proteins with diverse 
biological properties, and are synthesized and secreted by 
both immune and non-immune cells following stimulation, 
including interleukins, interferon, members of the tumor 
necrosis factor superfamily, colony-stimulating factors, 
chemokines, growth factors, etc. (91). They play an 
important role in tumor inhibition, proliferation, and 
metastasis (Figure 2). Studies have found that in EGFR-
mutant lung cancer, alveolar macrophages downregulate 
surface expression of MHC-II and costimulatory molecules, 
they exhibit increased production of CXCL1, CXCL2, 
and IL1 receptor antagonist, and display increased levels of 
phagocytosis. EGFR-TKIs decrease the number of alveolar 
macrophages in EGFR-mutant lung cancer (92). It has been 
found that EGFR-TKIs induce PD-L1 protein degradation 
in EGFR-mutated NSCLC cells via the GSK3β and 
ubiquitin protease pathways, contributing to T cell 
activation (93). In addition, EGFR mutations can upregulate 
amphiregulin (AREG) which maintains Treg suppression 
via the EGFR/GSK-3β/Foxp3 axis. Furthermore, inhibition 
of EGFR by EGFR-TKIs restores GSK-3β activity and 
attenuates Treg cellular function (94).

It has been found that Axl kinase is overexpressed 
in EGFR-TKI resistant NSCLC, and is positively 
correlated with the expression of genes encoding immune 
checkpoint molecules (CD274, CTLA4), chemokine 
receptors (CXCR4, CXCR6), and chemokines (CXCL16). 
Chemokines can induce tumor invasion and metastasis. 
Inhibition of Axl kinase activity can reduce the expression 
of these chemokines (95). In addition, studies have found 
that overexpression of hepatocyte growth factor (HGF) 
induces EMT through the HGF-MET pathway, resulting 

in EGFR-TKI resistance (96-104). MiR-1-3p and miR-
206 can reverse HGF-induced EGFR-TKI-resistant 
lung cancer through inhibition of c-Met signaling and 
EMT (105). Overexpression of PD-L1 is a mechanism of 
primary EGFR-TKI resistance. Studies have found that 
this resistance occurs by induction of EMT via the TGF-β/
Smad3 pathway. Inhibition of the TGF-β/Smad3 pathway 
reverses EGFR-TKI resistance (106-108). Moreover, 
activation of the TGF-β/Smad2 pathway induces EMT 
and EGFR-TKI resistance by increasing the expression 
of CXCR4 (108,109). An additional study found that 
TGF-β can also induce EMT and EGFR-TKI resistance 
by increasing the expression of PKCα (110). In addition, 
TGF-β1 can induce EGFR-TKI resistance by activating the 
Akt-ERK pathway, increasing the expression of MIG6, and 
decreasing the expression of PTEN (111,112).

It has been found that overexpression of IL-6 in 
EGFR-mutant NSCLC was correlated with EGFR-TKI 
resistance (113). In addition, activation of the adrenergic β2 
receptor can induce EGFR-TKI resistance by increasing 
the expression of IL-6 (114). In NSCLC patients with the 
EGFR mutation, the study found that high levels of IL-
6, VEGF, and HGF in serum were associated with a poor 
response to EGFR-TKI treatment. Dynamic changes in 
these cytokines in blood during TKI treatment predicted 
the efficacy of EGFR-TKIs (115,116). Studies have found 
that RNF25 promotes EGFR-TKI resistance in EGFR-
mutant NSCLC cells by inducing ERK reactivation 
through the expression of IL6 via the NK-κB signaling 
pathway, while inhibition of RNF25 or the NF-κB and 
ERK pathways can reverse EGFR-TKI resistance (117). In 
addition, studies have found that overexpression of miR-762 
induced by IL6 promotes EGFR-TKI resistance in NSCLC 
by post-transcriptional repression of active BCR-related 
protein (ABR) (118). Not only is it IL-6 that can induce 
EGFR-TKI resistance, but IL-8 can also induce EGFR-
TKI resistance by EMT through activation of the MAPK 
signaling pathway (119).

Integrin-linked kinase (ILK) regulates interactions 
between tumor cells and the extracellular environment, 
activating signaling pathways, and promoting cell 
proliferation, migration, and EMT. SHP2 is critical for 
the activation of the RTK signaling pathway. Studies have 
found that ILK and SHP are highly expressed in EGFR-
TKI resistant NSCLC (120). Other studies have found 
that secreted phosphoprotein 1 (SPP1) is significantly 
increased in EGFR-TKI resistant lung cancer cells, and 
inhibition of SPP1 increases sensitivity of lung cancer cells 
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Figure 2 Cytokines in the TIME of EGFR-mutant lung cancer. EGFR-TKIs can induce PD-L1 protein degradation via the GSK3β and 
ubiquitin protease pathways, contributing to T cell activation. EGFR mutation can up-regulate amphiregulin (AREG), which maintains 
Treg suppressive function via the EGFR/GSK-3β/Foxp3 axis. Axl kinase, genes encoding immune checkpoint molecules (CD274, CTLA4), 
chemokine receptors (CXCR4, CXCR6), or chemokines (CXCL16) are overexpressed in EGFR-TKI resistant NSCLC. Overexpression 
of hepatocyte growth factor (HGF) induces EMT via the HGF-MET pathway, resulting in EGFR-TKI resistance. PD-L1 induces EMT 
via the TGF-β/Smad3 pathway. Activation of the TGF-β/Smad2 pathway can also induce EMT by increasing the expression of CXCR4. 
Furthermore, TGF-β can induce EMT and EGFR-TKI resistance by increasing the expression of PCKα, activation of the Akt-ERK 
pathway, increasing MIG6 expression, and decreasing PTEN expression. Adrenergic β2 receptors can induce EGFR-TKI resistance by 
increasing the expression of IL-6. RNF25 promotes EGFR-TKI resistance by inducing ERK reactivation by the expression of IL6 via the 
NK-κB signaling pathway. ILK, SHP, SPP1, and IGF1R are highly expressed in EGFR-TKI-resistant NSCLC. CXCR7 can promote 
EGFR-TKI-resistance by the EMT of tumor cells through activation of the MAPK-ERK pathway via β-arrestin. TIME, tumor immune 
microenvironment; EGFR, epidermal growth factor receptor; TKI, tyrosine kinase inhibitor; NSCLC, non-small cell lung cancer; EMT, 
epithelial mesenchymal transition.

to EGFR-TKIs, decreasing the possibility of invasion (121). 
Overexpression of type 1 insulin-like growth factor receptor 
(IGF1R) is associated with EGFR-TKI resistance. Studies 
have found that overexpression of IGF1R can promote 
EGFR-TKI resistance by inducing EMT in tumor cells, 
and inhibition of IGF1R can reverse EMT in tumor cells 
and sensitivity to EGFR-TKIs (122). CXCR7, an atypical 
G protein-coupled receptor, can promote EGFR-TKI 
resistance by the EMT of tumor cells through activation 
of the MAPK-ERK pathway via β-arrestin (123). Multiple 
studies have been published in which the relationship 
between cytokines and EGFR mutation with EGFR-TKI 
resistance has been investigated, involving complex and 
diverse signaling pathways, classified generally as tumor 
EMT. Therefore, inhibitors targeting multiple pathways of 

EMT may represent an appropriate research direction for 
investigating the reversal of EGFR-TKI resistance.

ECM

ECM is the non-cellular component present within all 
tissues and organs, and provides not only essential physical 
scaffolding for the cellular constituents but also initiates 
crucial biochemical and biomechanical cues required 
for tissue morphogenesis, cellular differentiation, and 
homeostasis (124). Interactions between EGFR-mutated 
NSCLC tumor cells and the ECM are important in tumor 
development (Figure 3A). EGFR mutations can increase 
the expression of twist, snail, and other genes during tumor 
development, resulting in the induction of epithelial-
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Figure 3 The ECM, CAFs, and vasculature in the TIME of EGFR-mutant lung cancer. (A) The ECM in the TIME of EGFR-mutant lung 
cancer. EGFR-mutant lung cancer cells overexpress twist and snail, which induces EMT. They also overexpress MMP9, which destroys the 
ECM barrier. EGFR-TKI-resistant lung cancer cells highly express integrin-β1. (B) CAFs in the TIME of EGFR-mutant lung cancer. In 
EGFR-TKI-sensitive lung cancer, CAFs highly express CD200. In EGFR-TKI-resistant lung cancer, CAFs highly express HGF and IGF-
1, which induce tumor cell overexpression of ANX2 and EMT. They also express podoplanin. (C) The vasculature in the TIME of EGFR-
TKI-resistant lung cancer. HGF expression promotes the activation of MET, which stimulates the production of VEGFR. Activation of 
c-MYC and overexpression of HIF-α also induces EGFR-TKI resistance. ECM, extracellular matrix; CAF, cancer-associated fibroblast; 
TIME, tumor immune microenvironment; EGFR, epidermal growth factor receptor; EMT, epithelial mesenchymal transition; MMP-9, 
matrix metalloproteinase-9; HGF, hepatocyte growth factor; IGF-1, type 1 insulin-like growth factor.
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mesenchymal transition (EMT) that promotes tumor cell 
invasion and metastasis. EGFR-TKIs can inhibit EMT and 
prevent tumor cell invasion and metastasis (125,126). The 
activation of EGFR in tumor cells also increases the activity 
of matrix metalloproteinase-9 (MMP-9), which promotes 
the destruction of the ECM barrier and the invasiveness 
of tumor cells (127,128). Over recent years, studies have 
found that the composition of the ECM is associated 
with EGFR-TKI resistance. The ECM of EGFR-TKI 
resistant tumor cells have a high expression of integrin-β1, 
a collagen receptor, resulting in a large quantity of collagen 
surrounding tumor cells. EGFR-TKI-sensitive cell lines 
display EGFR-TKI resistance following their co-culture 
with integrin β-1 extracted from drug-resistant cell lines, 
with inhibition of integrin β-1 expression reversing EGFR-
TKI resistance (129). The ECM is the location of tumor, 
stromal, and immune cell interactions. The ECM contains 
multiple cytokines, proteins, and other soluble substances 
and so plays an important role in drug resistance. This 
suggests that there are multiple research avenues regarding 
the ECM to be studied in the future.

CAFs

CAFs are an important  component of  the tumor 
microenvironment and are activated by growth factors, 
direct intercellular communication, adhesion molecules, and 
other factors. Dissimilar to normal fibroblasts, CAFs are 
perpetually activated, do not return to a normal phenotype 
or undergo apoptosis, and promote tumor progression (130).  
CAFs play an important role in the malignant progression 
of cancer by releasing growth factors and cytokines which 
stimulate angiogenesis, cell proliferation, invasion, and 
metastasis (130). The function of CAFs in EGFR-TKI 
sensitive lung cancer is different from that in EGFR-
TKI resistant lung cancer (Figure 3B). In vitro and  
in vivo experiments have demonstrated that the expression 
and phosphorylation of ANXA2 in CAFs in EGFR-TKI 
resistant lung cancer are greater due to the secretion of the 
growth factors HGF and IGF-1, and by activation of the 
corresponding receptors c-met and IGF-1R, resulting in the 
induction of EMT in tumor cells and promotion of EGFR-
TKI resistance (131). In addition, CD200-positive CAFs in 
tumor tissues can augment the sensitivity of EGFR-mutant 
tumor cells to EGFR-TKIs (132). An additional study 
found that podoplanin-positive CAFs promote EGFR-TKI 
resistance in tumor cells while inhibition of podoplanin 
expression in CAFs reversed drug resistance (133). A recent 

study found that mesenchymal cells isolated from EGFR-
mutant lung cancer can differentiate into CAFs, promoting 
tumor invasion and metastasis (134). CAFs are therefore 
associated with EGFR-TKI resistance. Whether inhibition 
of CAFs can reverse EGFR-TKI resistance requires 
additional study.

Tumor vasculature

The tumor vasculature is an additional important 
component of the tumor microenvironment.  The 
vasculature of a tumor arises from two different biological 
processes: angiogenesis consisting of the formation of new 
blood vessels from pre-existing vessels and vasculogenesis 
resulting in the formation of new blood vessels by the 
recruitment of circulating endothelial progenitor cells (135). 
Hypoxia inducible factors (HIFs) represent the principal 
signal regulating the process of angiogenesis which induces 
the transcription of genes responsible for the activation 
of angiogenesis (136). Another important regulator is 
vascular endothelial growth factor (VEGF) and its receptor 
(VEGFR), which can stimulate angiogenesis (137). The 
tumor vasculature in EGFR mutant lung cancer is different 
from that in wild-type EGFR lung cancer (Figure 3C). It 
was found that regions in lung adenocarcinoma with an 
EGFR mutation that had poor vasculature were smaller 
than in tumors without the EGFR mutation (138). Another 
study found that tumors with mutations in exon 20 and 
21 of EGFR exhibited high expression levels of VEGFR, 
while those with mutations in exon 19 of EGFR exhibited 
low expression levels of VEGFR (139). For EGFR-TKI 
resistant NSCLC, heat shock protein 90 (Hsp90) inhibitors 
have been found to overcome HGF-triggered resistance 
to EGFR-TKIs by reducing EGFR protein expression 
and tumor angiogenesis (140). Another study found that 
Met activation by HGF stimulated the production of 
vascular endothelial growth factor (VEGF) and facilitated 
angiogenesis, indicating that HGF induces EGFR-TKI 
resistance and angiogenesis. Triple inhibition of EGFR, 
Met, and angiogenesis can usefully control the progression 
of EGFR-mutant lung cancer with HGF-triggered EGFR-
TKI resistance (141). In vivo and in vitro experiments 
with EGFR-TKIs combined with chemotherapy to treat 
EGFR-mutant lung cancer found that it inhibited tumor 
progression and angiogenesis by down-regulation of the 
c-MYC and HIF-α pathways (142). In addition, a clinical 
study of VEGFR2 inhibitor combined with EGFR-TKI 
in the treatment of EGFR mutant NSCLC found that 
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VEGFR2 inhibitor combined with EGFR-TKI was better 
than EGFR-TKI monotherapy (143). The formation of 
a tumor vascular system is associated with EGFR-TKI 
resistance. Whether antiangiogenic therapy can reverse 
EGFR-TKI resistance and the associated mechanisms 
require further investigation.

Conclusions and perspective

In conclusion, the TIME of EGFR-mutated NSCLC 
is different from that of non-mutated NSCLC, an 
explanation for EGFR-mutated NSCLC displaying a 
poor response to ICIs. The TIME of EGFR-mutated 
NSCLC also changes during treatment with EGFR-
TKIs. The TIME in EGFR-TKI-resistant lung cancer 
can be summarized as follows: (I) compared with EGFR-
TKI-sensitive tumors, EGFR-TKI-resistant tumors have 
a greater number of immunosuppressive cells and fewer 
immune-activated cells, while the tumor microenvironment 
is in an immunosuppressive state; (II) tumor cells and 
immunosuppressive cells secrete multiple negative immune 
regulatory factors, inhibit the recognition and presentation 
of tumor antigens and the antitumor effect of immune cells, 
resulting in immune escape; (III) EGFR-TKI-resistant 
tumors promote EMT. These three characteristics interact, 
resulting in a regulatory signaling network, which together 
leads to EGFR-TKI resistance. Inhibition of one does not 
fundamentally reverse EGFR-TKI resistance. Therefore, 
future research on reversal of EGFR-TKI resistance 
requires the development of pan-targeting drugs that 
inhibit the key functions of the entire regulatory signaling 
network, influence immune cell infiltration and immune 
regulatory factors, reverse EMT, and finally reverse EGFR-
TKI resistance.
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