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As the causative agent of cattle brucellosis, Brucella abortus commonly exhibits smooth
phenotype (by virtue of colony morphology) that is characteristically sensitive to specific
Brucella phages, playing until recently a major role in taxonomical classification of the
Brucella species by the phage typing approach. We previously reported the discrepancy
between traditional phenotypic typing and MLVA results of a smooth phage-resistant
(SPR) strain Bab8416 isolated from a 45-year-old custodial worker with brucellosis in
a cattle farm. Here, we performed whole genome sequencing and further obtained
a complete genome sequence of strain Bab8416 by a combination of multiple NGS
technologies and routine PCR sequencing. The detailed genetic differences between
B. abortus SPR Bab8416 and large smooth phage-sensitive (SPS) strains were
investigated in a comprehensively comparative genomic study. The large indels between
B. abortus SPS strains and Bab8416 showed possible divergence between two
evolutionary branches at a far phylogenetic node. Compared to B. abortus SPS strain
9-941 (Bab9-941), the specific re-arrangement event in Bab8416 displaying a closer
linear relationship with B. melitensis 16M than other B. abortus strains resulted in the
truncation of c-di-GMP synthesis, and 3 c-di-GMP-metabolizing genes, were present
in Bab8416 and B. melitensis 16M, but absent in Bab9-941 and other B. abortus
strains, indicating potential SPR-associated key determinants and novel molecular
mechanisms. Moreover, despite almost completely intact smooth LPS related genes,
only one mutated OmpA family protein of Bab8416, functionally related to flagellar and
efflux pump, was newly identified. Several point mutations were identified to be Bab8416
specific while a majority of them were verified to be B. abortus ST2 characteristic.
In conclusion, our study therefore identifies new SPR-associated factors that could play
a role in refining and updating Brucella taxonomic schemes and provides resources for
further detailed analysis of mechanism for Brucella phage resistance.
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INTRODUCTION

Brucellosis is one of the most serious zoonotic infectious diseases
worldwide, and is caused by pathogenic species of Brucella genus.
Up to now, 12 species were defined into the genus Brucella
(Godfroid et al., 2013). Six of them, including B. melitensis,
B. abortus, B. suis, B. canis, B. ovis, and B. neotomae, belong
to the “classical” or “traditional” Brucella species1. Generally, all
Brucella species with nucleotide similarities> 90% are genetically
closely related (Al Dahouk et al., 2010).

Traditional Brucella typing is primarily based on different
phenotypic characteristics (Garcia et al., 1988; Jahans et al.,
1997; Moreno et al., 2002; Sanogo et al., 2013), including
colony morphology, CO2 requirement, H2S production,
substrate utilization, growth on serum dextrose agar dye plate,
agglutination with monospecific sera, Brucella phage lysis
profiles at routine test dilution (RTD) and host preference
(Jones et al., 1968; Morris et al., 1973; Rigby et al., 1989).
The three major species in terms of disease and economic
impact for man, B. melitensis, B. abortus and B. suis are
further subdivided into multiple biovars (bv) based on a range
of phenotypic and serological characteristics. For example,
B. abortus is subdivided into bv 1–6 and 9 (Pappas et al.,
2006). Furthermore, despite the close genetic relationship of
several genetic loci (e.g., 16S rRNA, 98.7%) and a biochemical
profile similar to Ochrobactrum spp., several non-classical
Brucella species like B. microti and B. inopinata are often easily
misidentified using traditional biochemical typing methods
(Scholz et al., 2008a,b). Among these routine phenotypic
characterizations, B. abortus with smooth Lipopolysaccharide
(LPS) was identified to be sensitive to Brucella phages like
Berkeley2 (BK2), Tbilisi (Tb), Weybridge (Wb), and Izatnagar
(Iz) (FAO/WHO, 1986). This useful test is significant for
differentiating B. abortus from other Brucella species (Jones et al.,
1968; Morris et al., 1973).

Since SPR B. abortus was initially reported in Corbel and
Morris (1974), there have been few studies on this distinct
phenotype over the last four decades. The susceptibility of
smooth B. abortus strains to lysis by Brucella phages is commonly
used to type various Brucella species. We have recently reported
the identification of the first SPR B. abortus strain Bab8416
from a brucellosis patient in China (Kang et al., 2015). The
phage activity of Bab8416 is similar to that of B. melitensis bv
1 strain 16M and showed special biochemical characteristics
distinct from that of all B. abortus biovars. It was not lysed
by Tb, Iz, and Wb phage in 1 × RTD and 104

× RTD, but
lysed by BK2 phage in 1 × RTD and 102

× RTD. Due to
the unusual discrepancy between phenotypic profiles, Bab8416
could not be precisely classified to any of the existing B. abortus
biovars. In this study, we completed the genome sequence of
Bab8416 through a combination of next-generation sequencing
(NGS) and common PCR-based gap closure and investigated
genomic differences between Bab8416 and other Brucella
strains for gene association in corresponding biochemical or
physiological profiles.

1http://www.bacterio.net/brucella.html

MATERIALS AND METHODS

Ethics Statement
This study and the protocol were carried out in accordance
with the recommendations of ethics committee of the local
disease control and Prevention Research Center of the Inner
Mongolia Autonomous Region and Baotou City. The patient
gave written informed consent for participation in this study and
publication of his identifiable information, in accordance with
the Declaration of Helsinki. The detailed information of strain
Bab8416 referred to our previous study (Kang et al., 2015).

Genome Sequencing, Assembly
and Annotation
Using 454 GS-FLX system, a total of 190,817 reads were obtained
with the average length of 566 bp. Twenty-two contigs with
lengths more than 500 bp and average coverage of 33.2X were
obtained by Newbler using default parameters. Using the genome
of B. abortus 9-941 as a reference, the order of the contigs
was sorted and gap closure using common PCR was performed
with ContigsScape (Tang et al., 2013). To fix the homopolymer
sequencing errors systemically caused by 454 GS-FLX sequencing
system, another 180 bp Paired End (PE) library was constructed
and sequenced by the Illumina Hiseq 2000 system. Genome
sequencing results were refined by short reads using Pilon with
default parameters (Walker et al., 2014). The coding genes
were predicted by Prodigal (Hyatt et al., 2010) and these genes
were annotated by BLAST against NCBI non-redundant (NR),
COG, KEGG, TrEMBL, Swissprot databases with e value cutoff
of 1e-5 and GO terms assigned to the annotated genes using
BLAST2GO pipeline (Conesa et al., 2005). The tRNAs were
detected by tRNAscan-SE (v1.23) (Schattner et al., 2005) and
rRNAs were identified by blasting homologous rRNA sequences
against the Bab8416 genome.

Whole Genome Collinear Analysis
Firstly, oriC site was identified in both references and Bab8416
genome using Ori-Finder 2 and was set to be the first base
of Bab8416 genome (Luo et al., 2014). Then, whole genome
sequence alignments between these two genomes were processed
by MUMmer 3.23 package (Kurtz et al., 2004).

Brucella MLVA Typing and MLST Typing
Multiple-locus variable number tandem repeat analysis (MLVA)
assay was employed and the markers were obtained by PCR
(Jiang et al., 2013b). The MLVA markers of Bab8416 were
compared to the MLVA database2. The multilocus sequence
typing (MLST) schemes of Brucella species using 9 conserved
housekeeping genes were performed as previously described
(Whatmore et al., 2007).

SNP Calling
All the draft genomes were linked to be two pseudo chromosomes
by taking B. abortus 9–941 genome as a reference and the

2http://mlva.u-psud.fr/brucella/
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sequences were gaped with ‘NNNNN.’ The SNPs were firstly
identified by Mauve (Darling et al., 2010) using the genome
sequences in this study and after “N” removed, the remaining
SNP were finally exported for further analysis.

Gene Family Identification and
Phylogenetic Analysis
Thirty-nine available Brucella reference genomes were utilized
to perform comparative genomic and phylogenetic analyses,
including all known Brucella species and all of seven biovars
of B. abortus. Three strains with lower contig numbers and
high coverage in each biovar of B. abortus were selected. All
genes of the selected strains were ortholog clustered by PGAP
(Zhao et al., 2012), a pipeline for pan-genome analysis, and
genes with both coverage and identity higher than 90% were
considered to be the same ortholog cluster. Hence, a total of
2,014 single copy gene families were identified and a super
gene was constructed for phylogenetic analysis by combining all
sequences of these genes into one ortholog cluster. A maximum
likelihood phylogenetic tree was constructed by Phyml 3.0
(Guindon et al., 2010) using HKY85 nucleotide substitution
model with a bootstrap value of 1000. In addition, in order to
investigate the regions of differences (RD) from pan-genome
analysis, we further added 200 B. melitensis genomes and 197
B. abortus genomes for detailed screening and characterization
by using BLASTN program.

Virulence Factor Screening
We downloaded all the virulence factor from Virulence Factors
Database (VFDB) (Chen et al., 2005), and we aligned all the
protein sequences of the strain Bab8416 to the VFDB using
BLASTP program available at NCBI server (ncbi-blast-2.7.1+)
with both coverage and identity higher than 80%.

Data Access
The genome sequence and annotations were submitted to
GenBank database with accession number CP008774–CP008775.
All the reference genomes used in this paper were obtained from
PATRIC (Wattam et al., 2017).

RESULTS AND DISCUSSION

Genome Features
The genome size of strain Bab8416 is 3.2 Mb, and it consists of
two circular chromosomes: a large chromosome of 2,116,946 bp
and a smaller one of 1,156,123 bp. The average GC content of
two chromosomes was 57.22% (Crasta et al., 2008; Tsolis et al.,
2009). A total of 3,295 Coding DNA sequences (CDSs) have been
computationally predicted. The summarized message of Bab8416
genome is showing in Figure 1. The average length of CDS was
856 bp and 2,272 CDSs (68.95%) were assigned definite biological
function as well as 1,023 (31.05%) are hypothetical proteins.
Figure 2 is showing GO function class of the annotated genes.

FIGURE 1 | The atlas of Brucella abortus SPR strain Bab8416 genome. The outer black circle shows coordinates. Moving inward, the next two circles show forward
and reverse strand CDS, respectively, with colors representing the functional classification, the next circle shows Bab8416 specific synonymous (red) and
non-synonymous (blue) SNP, followed by the Bab8416 unique insertions (dark orange) and deletions (maroon), then is the tRNA (orange) and rRNA (deep pink).
The final two are GC-content and GC-skew by using a 10-kb window and overlap at 1,000bp.
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FIGURE 2 | Cog class of Brucella abortus 8416 function genes. The result
was export with e-value of 1e-5.

Inconsistent Phenotypic and
Molecular Typing Results
Except for resistance to phage Iz, Tb, and Wb shown in Table 1,
the physiological and biochemical profiles of strain Bab8416 was
more closely related to smooth B. abortus bv 9 (Morris et al.,
1973). In addition, electron microscopy was used to investigate
phage Tb/Bab8416 interaction (Figure 3); absorption but no lysis
of host bacteria was observed. Here, we performed additional
MLVA typing (Le Fleche et al., 2006; Al Dahouk et al., 2007; Van
Belkum, 2007; Valdezate et al., 2009). While no 100% match could
be found in MLVA database, the top 20 matches consistently with
B. abortus bv. 3 (Figure 4).

Without coincident results in both traditional phenotyping
and modern MLVA genotyping, we further employed MLST
method (Whatmore et al., 2007). Twenty-seven Brucella sequence
types (STs) were initially identified and more STs have been
found (Whatmore et al., 2016). Bab8416 was identified as an
ST2 in this study.

FIGURE 3 | The electron microscope photo of interaction between Brucella
phage and Brucella abortus SPR strain Bab8416. Brucella phages Tb phages
were found successfully to adhere on the surface of B. abortus strain
Bab8416 but failed to lyse the strain. Red arrows are showing the dissociative
Tb or Tb binding to strain 8416.

Phylogenetic Analysis
Determining the evolutionary context of Bab8416 is essential
for a detailed comparative genomic analysis and to account for
the inconformity of the former two typing results from different
strains and isolates of Brucella (Crasta et al., 2008). A total of
2,014 single copy genes were identified within 25 B. abortus
strains with three strains in each biovar and B. melitensis str.
16M as one outgroup being used to build a maximum likelihood
phylogenetic tree (Figure 5). Many strains within the same biovar
are not closely genetically related; conversely, several strains in
different biovars have been shown to be closely related. This
finding indicates that traditional physiological and biochemical
typing designations of biovars within B. abortus do not reflect
genetic linkage patterns.

TABLE 1 | Physiological and biochemical typing details of B. abortus Bab8416 compared with other standard strains.

Monospecific

No Growth characteristics sera Phages at RTD Interpretation

CO2 requirement H2S production TH BF A M Tb Wb Iz BK2

1 − + + + − + − − − + B. abortus 8416

2 ± + + + + − + + + + B. abortus 3a

3 − + + + − + + + + + B. abortus 9

4 − − + + − + − − + + B. melitensis 16M

TH, Thionin at 20 µg/ml (1/50,000); BF, Basic fuchsin at 20 µg/ml (1/50,000), Phages: Tb, Tbilisi; Wb, weybridge; BK2, Berkeley type 2; Fi, Firenze; RTD, Routine test
dilution; +, positive; −, negative.
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FIGURE 4 | MLVA typing results of B. abortus strain Bab8416.

FIGURE 5 | Phylogenetic tree of Brucellae. The phylogenetic tree was based on the 601 core genes of strains used in this analysis and it was constructed by using
the maximum likelihood method with bootstrap value 1000. Black arrow is showing the phylogenetic cluster of B. abortus strain 8416.
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TABLE 2 | Genome features of these strains used in comparative analysis.

Strains Genome status Biovar Contig CDS

B. abortus 8416 Complete – 2 3295

B. abortus 9-941 Complete 1 2 3085

B. abortus 104M WGS – 92 3303

B. abortus 2308-A WGS 1 9 3072

B. abortus 544 WGS – 9 3120

B. abortus NCTC 8038 WGS – 10 3044

B. abortus Tulya WGS 3 10 3261

Comparative Genomics
As draft genomes often generate low resolution results in studies
measuring genetic variation, we conducted a comparative
genomic analysis using complete genomes as previously
described (Ricker et al., 2012; Zhang et al., 2012). B. abortus
strain 9-941 (Bab9-941) was a typical SPS strain with the
complete genome published. Here, we chose Bab9-941 as a
reference for comparative genomic analysis and the genome
features of B. abortus used and were listed in Table 2.

Chromosome Arrangement
In comparison with Bab9-941, a large fragment (420 kb) re-
arrangement in small chromosome of Bab8416 was found by
using MUMmer (Figure 6). Re-arrangements in Brucella species

have been previously reported (Sieira et al., 2000; Jiang et al.,
2013a), however, this one proved to be exceptional. Compared
with other B. abortus genomes observed here, the re-arrangement
in Bab8416 was specific and displayed a closer linear relationship
with B. melitensis 16M than the other B. abortus genomes. As
mentioned above, Bab8416 shared the same phage typing status
with B. melitensis bv 1 strain 16M; strongly similar genomic
structures were also shown to exist between these two strains.

Nevertheless, neither IS elements nor tRNA operons usually
responsible for genome re-arrangement were detected in the
terminal region of the Bab8416 re-arrangement sequence. Three
genes, BMEII0292, BMEII0293, and BMEII1009, were truncated
or incomplete at the terminal fragment in other B. abortus
strains. Both BMEII0292 and BMEII1009 contain a GGDEF
domain that enables them to generate the cyclic di-GMP
(c-di-GMP), a kind of secondary messenger central in regulating
bacteria adaptive responses. In addition, analysis of protein-
protein interactions using STRING database (Franceschini et al.,
2013) indicated that BMEII0293 encodes a hypothetical protein
that is tightly associated with the synthesis and degradation
of c-di-GMP. In B. melitensis, 11 c-di-GMP-metabolizing
proteins had been inferred to regulate c-di-GMP metabolism
(Petersen et al., 2011). The structure of these 11 genes were
verified to be intact in Bab8416, but BMEII0929, BMEII0292
and BMEII1009, were found absent in Bab941 and some
B. abortus strains.

FIGURE 6 | Genome arrangement of Brucella abortus strain Bab8416 small Chromosome. The four complete B. abortus genomes, including B. abortus Bab8416,
were compared to B. abortus Bab9-941 and arrangements only appeared in small Chromosome of B. abortus Bab8416.
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TABLE 3 | ORFs related to deletions in B. abortus str.8416 compared to B. abortus 9–941 genome.

Region Associated Gene Gene length %

BAB9-941 coordinate length genes length in RD region Gene functions

Chr1 Deletion 80475..80812 338 BruAb1_0072 2,271 14.88% Hypothetical protein

Deletion 85269..85303 35 BruAb1_0075 750 4.82% Amino acid efflux LysE family protein

Deletion 88412..88434 23 BruAb1_0079 384 0.52% Hypothetical protein

RD1 287585..295517 7,933 BruAb1_0284 1,767 100.00% Phage integrase family site specific recombinase

BruAb1_0286 195 100.00% Hypothetical protein

BruAb1_0287 618 100.00% Resolvase family site-specific recombinase

BruAb1_0289 228 100.00% Hypothetical protein

BruAb1_0290 285 100.00% Hypothetical protein

BruAb1_0291 261 100.00% Hypothetical protein

BruAb1_0292 390 100.00% Hypothetical protein

Deletion 375984..376015 32 BruAb1_0371 1,128 2.84% ABC transporter substrate-binding protein

Deletion 1040055..1040246 193 BruAb1_1057 1,596 4.04% DEAD/DEAH box helicase

Deletion 1774700..1774731 32 BruAb1_1803 405 8.21% 30S ribosomal protein S16

Deletion 1795037..1795098 62 BruAb1_1825 711 8.90% Hypothetical protein

Chr2 Deletion 156432..156703 272 BruAb2_0168 5,952 17.87% Outer membrane transporter

RD2 158847..159637 791

RD3 376963..382403 4,088 BruAb2_0377 1,335 62.76% FAD-binding oxidoreductase

BruAb2_0378 420 100.00% Hypothetical protein

BruAb2_0379 1,011 100.00% Epimerase

BruAb2_0380 1,455 100.00% Aminotransferase

Deletion 620905..620941 37 BruAb2_0616 1,143 3.25% Major facilitator family transporter

RD4 701096..701938 843 BruAb2_0690 477 100.00% IS711, transposase orfB

BruAb2_0691 312 100.00% Transposase orfA

Deletion 711185..711248 64 BruAb2_0698 1,296 7.27% Branched-chain alpha-keto acid dehydrogenase
subunit E2

TABLE 4 | ORFs in insertions in B. abortus 8416 compared to B. abortus 9-941 genome.

Region Associated Gene ORF length %

BAB8416 coordinate length ORFs length in Insertions Gene Function

Chr1 15707..15843 137 BAB8416_I0012 1155 11.86% ABC transporter, substrate-binding protein

374342..374383 42 BAB8416_I0362 2019 2.08% Xanthine dehydrogenase, molybdenum binding subunit

643653..643790 138 BAB8416_I0630 1104 12.50% ATP/GTP-binding site motif A

1035800..1037009 1210 BAB8416_I1044 651 100.00% Diguanylate cyclase/phosphodiesterase domain

1040674..1040705 32 BAB8416_I1049 480 6.67% Multidrug resistance protein A

1409719..1409750 32 BAB8416_I1431 195 16.41% FIG00450652: hypothetical protein

Chr2 4629..4760 132 BAB8416_II0007 912 14.47% Nucleoside ABC transporter, permease protein 2

10010..10058 49 BAB8416_II0012 726 6.75% 4’-phosphopantetheinyl transferase entD

231155..231181 27 BAB8416_II0234 570 4.74% Nitric oxide reductase activation protein NorE

248732..248754 23 BAB8416_II0253 828 2.78% Various polyols ABC transporter, ATP-binding component

459512..459556 45 BAB8416_II0463 1335 3.37% Branched-chain alpha-keto acid dehydrogenase,
E1 component, alpha subunit

572539..572616 78 BAB8416_II0569 1203 6.48% Acetyl-CoA acetyltransferase

849446..849532 87 BAB8416_II0843 1107 7.86% RND efflux membrane fusion protein

942069..942905 837 BAB8416_II0941 1047 46.51% Putative Heme-regulated two-component response regulator

BAB8416_II0942 1233 14.27% L-2-hydroxyglutarate oxidase

Deletions and Insertions
Compared with SPS Bab9-941, 49 indels (≥20 bps), including 25
deletions and 24 insertions, were found in the Bab8416 genome
(Tables 3, 4). A 16.5 kb region is absent from Bab8416 genome
and a 3.2 kb region appears to be unique. Only four large

regions (>500 bp) were represented by deletions, one Region of
Differences (RD) 1 in chromosome I and three (RD2–RD4) in
small chromosome. Genes lost in these regions are determined
by referencing the annotation of B. abortus 9–941. The details of
deletions and associated ORFs are shown in Table 3.
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Eight genes, BruAb1_0284-0292, were located in RD1 region.
BruAb1_0284 and BruAb1_0287 are specific recombinases,
belonging to phage integrase and resolvase families, respectively.
BruAb1_0285 and BruAb1_0288 were annotated as pseudo genes
and the others were labeled hypothetical proteins. In addition, we
further detected the RD1 region in 200 B. melitensis genomes and
197 B. abortus genomes by using BLASTn. In all of B. melitensis
200 strains we could not found any sequence similar with RD1.
While 127 out of 197 B. abortus strains could be found the
sequences with identity higher than 99% and coverage over
90% (Supplementary Table S4). These evidences above showed
that RD1 was exclusively specific to B. abortus and the insert
event should occur after the differentiation of the most recent
common ancestor of B. abortus 9–941 and Bab8416. RD2 and
another small deletion are involved in the locus of an outer
membrane transporter, BruAb2_0168. An earlier study confirmed
that this locus was conserved between B. abortus (Halling et al.,
2005), but variation is present in Bab8416. RD3 contains four
genes, BruAb2_0377 to BruAb2_0380. BruAb2_0377 encodes
FAD-binding oxidoreductase. BruAb2_0378 was defined as a
hypothetical protein. BruAb2_0379 encodes an epimerase that
catalyzes the transformation of dTDP-glucose to dTDP-4-oxo-
6-deoxy-D-glucose. BruAb2_0380 encodes an amino transferase
that participates in arginine and proline metabolism, metabolic
pathways and biosynthesis of secondary metabolites. Two
intact genes and one partial gene are encoded by RD4.
The two complete genes, BruAb2_0690 and BruAb2_069,
encode transposase.

Inserted regions specific to Bab8416 are shown in Table 4.
Among the 20 Bab8416 specific regions, six regions are located
at intergenic spacer (IGS) and fifteen ORFs are involved in
the other 14 insertions. All of these ORFs are annotated with
known functions.

Variant ORFs
The variant ORFs were identified by BLASTn method. The
results are shown in Table 5. In consideration of the prediction
discrepancy and the restriction of software, we searched these

TABLE 5 | Classification of B. abortus strain Bab8416 specific SNPs
associated ORFS.

Function class ORF numbers

Amino acid transport and metabolism 5

Carbohydrate transport and metabolism 3

Cell envelope biogenesis, outer membrane 3

Cell motility and secretion 3

Coenzyme metabolism 2

Function unknown 1

General function prediction only 2

Inorganic ion transport and metabolism 7

Lipid metabolism 1

Nucleotide transport and metabolism 1

Transcription 3

Translation, ribosomal structure and biogenesis 5

Not in COGs 27

ORFs within these five genomes. BLASTn results showed that
144 Bab9-941 ORFs were found deleted or incomplete in Bab8416
and 129 Bab8416 ORFs were found to be Bab8416 specific. These
deletions may be partly responsible for the unusual Brucella
phage status of Bab8416.

SNPs
A total of 1,373 SNPs were identified between Bab8416 and
Bab9-941. Using B. abortus 9–941 as a reference, 336 SNPs were
intergenic and 1,036 SNPs were located in the ORFs. In addition,
518 genes-encoding proteins showed amino acid changes caused
by 632 non-synonymous SNPs. As the SNP number was large,
we inferred that these markers appeared in Bab8416 could be the
characteristics of ST2. Since no other complete genomes of ST2
were available, we chose to utilize the existing draft genomes. In
consideration of insuring the quality of sequencing and assembly,
only the draft genomes with contig numbers less than 12 were
selected. The MLST typing results of these genomes are shown
in Supplementary Table S1. Fifteen out of 95 genomes were
identified to be ST2. We tested the SNPs between the 16 ST2
genomes and found that overwhelming majority (95.05%) of
former identified SNPs were verified to be potential markers of
ST2 strains and only 68 SNPs appeared to be Bab8416 specific.
The detailed SNP annotations are present in Supplementary
Table S2 and the Bab8416 specific SNP involved genes are
presented in Supplementary Table S3.

LPS Synthesis
Lipopolysaccharide is tightly associated with the virulence of
pathogens and the efficiency of corresponding vaccines. Brucella
with rough lipopolysaccharide (R-LPS) was lysed by Brucella
phage R/C, and is host specific (Hammerl et al., 2017). In Brucella,
genes essential in synthesizing LPS and developing a smooth
phenotype have been located at the Wbk region of chromosome I
(Godfroid et al., 2000; Gonzalez et al., 2008; Zygmunt et al., 2009).
Inactivation of formyltransferase (wbkC) gene is the significant
factor that contributes to rough phenotype (Lacerda et al.,
2010). BLASTn results showed that none of these genes were
deleted/missing in Bab8416. Four non-synonymous mutations
were identified in Bab8416 LPS genes, only one (BruAb1_1699)
was found not belonging to ST2. This gene encodes an OmpA
family protein, which is tightly related to flagellar protein
production and also related to the efflux pump.

Virulence Factors
Bab8416 was isolated from a patient with clinical brucellosis,
indicating that this strain was virulent. The presence of 23
Brucella virulence factors confirmed by VFDB was tested in the
Bab8416 isolate. Bab8416 was found to have a full complement of
these loci. BLASTp results showed that eleven genes were 100%
identical, eight genes had point mutations, and short deletions
were found in the other four genes with only one deletion
being present in VFG2217. In addition, compared to BAB1_0069,
a putative outer membrane protein considered to be a virulence
factor, a 133 amino acid deletion is present in this locus of
Bab8416. We inferred these changes might exert some influence

Frontiers in Microbiology | www.frontiersin.org 8 May 2019 | Volume 10 | Article 917

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00917 May 3, 2019 Time: 16:8 # 9

Li et al. Genomic Characterization of SPR str.8416

on the virulence of Bab8416 but not that much to cause high level
attenuation as it is still a pathogenic bacterium.

CONCLUSION

Combining NGS sequencing technology and comparative
genomics analysis, the complete genome sequence of B. abortus
SPR strain Bab8416 was obtained and specific genetic
characteristics of B. abortus SPR were comprehensively
investigated in this study. Study of smooth LPS related genes
showed that Bab8416 does share same LPS key genes with other
B. abortus SPR strains, which supported veracity of previous
phenotype screening results. The gold standard for Brucella
characterization is still based on specific properties of the
bacteria. None of the available molecular typing methods covers
all currently known species and biovars of the genus Brucella
(Hammerl et al., 2017). The difference between biotyping and
genotyping of some special strain need further analysis not
only on genomic but protein expressive level, because the host
strains co-evolute with their special phages. The importance
of individual amino acids of the tail collar protein for the host
range of the Brucella phages has not yet been investigated. To
avoid diverging lysis patterns, examine the phage genomes by
sequencing were recommended if the lysis results are inconsistent
on the same indicator strains (Hammerl et al., 2017).

Bab8416 has a genetic profile different from that typically
found in most B. abortus strains. The arrangement sequences
in small chromosome resulted in the truncation of c-di-GMP
synthesis. The indels within SPS and SPR B. abortus showed
that two evolutionary branches might have diverged at a far
phylogenetic node. Plentiful point mutations were identified to
be Bab8416 specific while the majority of the point mutations
were verified to be ST2 characteristic of B. abortus. While few
Bab8416 SNPs were identified, SNPs might still exert a significant

influence on phage typing status. Despite the unique genetic
characteristics of Bab8416 uncovered in this study, full details
of its resistance to phage have not yet been elucidated at the
genomic level. Our findings established some novel molecular
mechanisms underlying Brucella sensitivity to brucellapages
that might contribute to improving our understanding on
Brucella phenotyping.
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