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Abstract

Larvae of the pest Protaetia brevitarsis are used to treat infections in traditional Chinese
medicine. However, genomic information about this non-model species is currently lacking.
To better understand the fundamental biology of this non-model species, its transcriptome
was obtained using next generation sequencing and then analyzed. A total of 7.62 Gb of
clean reads were obtained, which were assembled into 169,087 transcripts corresponding
to 142,000 annotated unigenes. These unigenes were functionally classified according to
Gene Ontology (GO), euKaryotic Ortholog Groups of proteins (KOG), and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) annotations. A total of 41,921 unigenes were assigned
to 56 GO terms, 21,454 unigenes were divided among 26 KOG categories, and 16,368 uni-
genes were assigned to 32 KEGG pathways. In addition, 19,144 simple sequence repeats
(SSRs) were identified. Furthermore, several kinds of natural antimicrobial peptides and
proteins, 4 histones with potential antimicrobial activity, and 41 potential antimicrobial pep-
tide sequences were identified. These data are the first reported whole transcriptome
sequence of P. brevitarsis larvae, which represents a valuable genomic resource for study-
ing this species, thus promoting the utilization of its medical potential.

Introduction

The beetle species Protaetia brevitarsis Lewis is widely distributed in China, and it is a pest of
plants, including vegetable crops. In traditional Chinese medicine, its larvae are used to treat
microbial infections. However, very little research has been conducted on this species. More-
over, there is also no genomic data from this non-model organism.

Transcriptome data represent an essential type of genome data and offer an opportunity to
explore the genomes of non-model organisms. Owing to the rapid development of next gener-
ation sequencing (NGS) technologies, such as the Illumina sequencing platform, the transcrip-
tomes of non-model organisms can be characterized quickly, inexpensively, and accurately [1,
2]. Accordingly, the transcriptomes of many non-model organisms have been characterized by
NGS, such as the green odorous frog Odorrana margaretae [3], the inland robust scorpion
Urodacus yaschenkoi [4], the land snail Koreanohadra kurodana [2], the Chinese red-headed
centipede Scolopendra subspinipes mutilans [5], and several luminescent beetle species [6].
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The P. brevitarsis larvae live on the ground and feed on rotten food. This type of habitat and
diet lead them to encounter many different kinds of pathogenic microbes, which has imposed
strong selective pressures on their immune systems. The insect immune system is composed
of two elements: cellular defense responses and humoral defense responses [7]. Insect antimi-
crobial components secreted by the insect humoral immune system, especially antimicrobial
peptides and proteins (AMPs), play an important role in defense against microorganisms,
which may be the molecular basis of the anti-infection effects of P. brevitarsis larvae used in
medicine. Many insect AMPs have been identified, characterized, and categorized according
to familiar sequences and structures, including linear-form, disulfide bridges, and proline- or
glycine-rich regions [8]. Additionally, AMPs from insects also show great potential as anti-
infection agents [9].

In this study, the transcriptome profile of P. brevitarsis larvae was constructed using the
[Mlumina sequencing platform. After de novo transcriptome assembly, bioinformatic analyses
were conducted to annotate the functional direction of the assembled sequences. The analyses
focused on P. brevitarsis larvae AMPs. This research provides the first large-scale transcrip-
tome data from P. brevitarsis larvae, which improves the current understanding and medical
utilization of this species while enabling the discovery of important functional genes.

Materials and methods
Ethics statement

All animal collection and utility protocols were approved by the Henan University of Science
and Technology of Biology Animal Use Ethics Committee.

Insect collection

The Protaetia brevitarsis Lewis larvae used in this study were obtained from a breeder in
Henan, China. After being washed in 0.9% saline, the samples were immediately frozen in liq-
uid nitrogen and stored at -80°C until use.

c¢DNA library construction, Illumina sequencing, de novo assemble, and
gene annotation

Total RNA was extracted using TRIzol reagent (Life Technologies, Carlsbad, CA, USA),

and cDNA library construction and Illumina sequencing of the samples using an Illumina
HiSeqTM 2000 sequencer (Illumina, San Diego, CA, USA) were performed by Novogene Bio-
informatics Technology Co., Ltd. (Beijing, China).

De novo transcriptome assembly was conducted using the program Trinity [1]. Gene anno-
tation was based on searches of various public databases, including NCBI Nr (non-redundant
protein sequences), NCBI Nt (non-redundant nucleotide sequences), Pfam (Protein family),
KOG (euKaryotic Ortholog Groups of proteins), Swiss-Prot (a manually annotated and
reviewed protein sequence database), KO (Kyoto Encyclopedia of Genes and Genomes Ortho-
log database), and GO (Gene Ontology). SSR markers were isolated from the transcriptome
using MISA (http://pgrc.ipk-gatersleben.de/misa/misa.html).

A detailed description of cDNA library construction, Illumina sequencing, the de novo
assemble and gene annotation is given in S1 File.

Potential AMP sequences identification

To identify more potential AMPs and peptide sequences with potential antimicrobial activity
in the transcriptome of P. brevitarsis larvae, the assembled unigenes were also BLASTed with
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known AMPs from The Antimicrobial Peptide Database (APD) [10], Collection of Anti-
Microbial Peptides (CAMP) [11], and the Linking Antimicrobial Peptides (LAMP) database
[12] using BLAST 2.2.31+ with a sequence similarity cutoff of 80%.

Results and discussion

Transcriptome sequencing and de novo assembly

The P. brevitarsis larvae cDNA library was sequenced using the Illumina HiSeqTM 2000
sequencer, ultimately obtaining 50,796,336 clean reads with 98.09% Q20 and 42.88% GC con-
tent after the removal of adaptor sequences, ambiguous nucleotides, and low-quality
sequences. The clean reads were assembled into 169,087 transcripts, which corresponded to
142,000 unigenes. A summary of sequencing and assembly results was presented in Tables A
and B in S1 File, and the unigene sequences was presented in S2 File. The clean data had been
deposited into the Sequence Read Archive (SRA) database of the National Center for Biotech-
nology Information (NCBI) under the accession number PRJNA516097.

Functional annotation of unigenes

After public databases were used for sequence similarity searches, 56,937 unigenes (40.09% of
all unigenes) were successfully matched to annotations in at least one database (Table C in S1
File), which is similar to rates reported in other beetle species [13-15], indicating that a large
number of species-specific genes, noncoding gene regions, and non-conserved domains could
not be matched to annotated genes or that chimeric sequences had occurred as a result of
assembly errors [16]. Among the annotated unigenes, 25.87% (36,743) had significant matches
in the Nr database, 9.07% (12,881) in the Nt database, 11.52% (16,368) in the KO database,
20.23% (28,727) in the Swiss-Prot database, 28.52% (40,511) in the PEFAM database, 29.52%
(41,921) in the GO database, and 15.1% (21,454) in the KOG database. Furthermore, there
were 4,618 unigenes (3.25%) annotated in all seven databases.

The E-value distribution and similarity distribution of the annotated unigenes in the Nr
database identified 49.2% (Fig 1A) of annotated sequences as having strong homology (E-
value less than 1E-30), with 77.8% (Fig 1B) of the annotated sequences having a similarity
index higher than 60%. The top-hit species distribution showed that 27.1% (Fig 1C) of P. brevi-
tarsis larvae unigene sequences matched with sequences from red flour beetle Tribolium casta-
neum. This overlap of unigenes was lower than that for other beetle species, such as the pine
shoot beetle Tomicus yunnanensis (62.48%), the salt marsh beetle Pogonus chalceus, and the
nipa palm hispid Octodonta nipae (72.6%) [17-19]. However, this value was similar with
respect to the seven-spot ladybird beetle Coccinella septempunctata (28.5%) [15]. In the NCBI
protein database, the number of protein sequences from T. castaneum and the mountain pine
beetle Dendroctonus ponderosae were 42,319 and 49,666, respectively. But, only 3.4% of P. bre-
vitarsis larvae unigene sequences matched with those of D. ponderosae. It was indicated that
Protaetia brevitarsis Lewis had near evolution distance with T. castaneum.

GO categories were used to classify the functions of the unigenes, and the classification of
GO categories was conducted using the GOseq R package based on the Wallenius non-central
hyper-geometric distribution [20]. According to GO annotation, 41,921 unigenes were classi-
fied into three main GO categories: biological process, cellular component, and molecular
function (Fig 2). Among the biological process terms, 25 level-2 categories were identified, and
cellular process and metabolic process were the most abundant terms. For cellular compo-
nents, 20 level-2 categories were identified, and cell, cell part, and organelle were the most
abundant groups. For molecular function, 11 level-2 categories were identified, and the genes
that were associated with binding and catalytic activities were the most represented. Similar

PLOS ONE | https://doi.org/10.1371/journal.pone.0214001 March 21,2019 3/16


https://doi.org/10.1371/journal.pone.0214001

@ PLOS | O N E Transcriptome analysis of Protaetia brevitarsis Lewis larvae

9.9%

7.7%

9.4%
H 0 B 1e-45~1e-30
E 0~1e-100 O 1e-30~1e-15
B 1e-100~1e-60 O 1e-15~1e-5
O 1e-60~1e-45
46.5%
0.3%
10.5%

20.8%
B 18%~40% O 80%~95%
B 40%~60% B 95%~100%

B 60%~80%

6.9%

1.9%

58.2%
B Tribolium castaneum O Entamoeba invadens
B Aedes aegypti W Acanthamoeba castellanii
B Dendroctonus ponderosae O other

Fig 1. E-value distribution, similarity distribution, and top-hit species of Protaetia brevitarsis Lewis Larvae
unigenes blast against Nr database. A: E-value distribution; B: Similarity distribution; C: Top-hit species.

https://doi.org/10.1371/journal.pone.0214001.9001
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Fig 2. Histogram of the gene ontology (GO) classification of the Protaetia brevitarsis Lewis Larvae unigenes. Each annotated sequence could be assigned to
more than one GO term.

https://doi.org/10.1371/journal.pone.0214001.9002

gene GO classification distributions had also been reported in transcriptomic studies of other
beetles [17, 21, 22]. To further predict putative protein functions, a KOG analysis was per-
formed. Based on our results, 21,454 unigenes were divided into 26 categories (Fig 3), and the
largest category was ‘general functional prediction only’ (16.02%), followed by ‘posttransla-
tional modification, protein turnover, chaperones’ (14.38%), ‘signal transduction mechanism’
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Fig 3. Histogram of the KOG (euKaryotic Ortholog Groups of proteins) classification of the Protaetia brevitarsis Lewis Larvae unigenes.

https://doi.org/10.1371/journal.pone.0214001.g003
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Fig 4. Histogram of the KEGG Pathway classification of the the Protaetia brevitarsis Lewis Larvae unigenes. A: Cellular process, B: Environmental information
processing, C: Genetic information processing, D: Metabolism, E: Organismal system.

https://doi.org/10.1371/journal.pone.0214001.9004

(12.40%), and ‘translation, ribosomal structure and biogenesis’ (12.04%). The KEGG [23] data-
base was used to identify potential biological pathways represented in the P. brevitarsis larvae
transcriptome, and the classification of KEGG pathways was performed using KOBAS soft-
ware [24]. A total of 16,368 unigenes were classified into five categories, including cellular pro-
cesses, environmental information processing, genetic information processing, metabolism,
and organismal systems, and then assigned to 32 sub-terms (Fig 4). Among the pathways,
translation (2391 unigenes) and signal transduction (2207 unigenes) were most highly repre-
sented. Similar gene KEGG classifications distributions had also been found in coconut leaf
beetle Brontispa longissima [25]. These annotations provide a valuable resource for future
research on specific processes, functions, and pathways in P. brevitarsis and related species.

SSR detection from the assembled unigenes

As SSR markers are highly polymorphic, co-dominant in their inheritance, highly specific in
their amplification, and repeatable in their genotyping, they are widely used in genetic studies
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to analyze genetic diversity and biological evolution [26]. And transcriptome sequencing using
NGS technologies has greatly accelerated the process of discovering molecular markers in
non-model organisms [27].

In this study, a minimum of ten repeat numbers for mononucleotide repeats was selected,
six for dinucleotide repeats, and five for tri-, tetra-, penta-, and hexa-nucleotide repeats. Thus,
19,144 SSRs were isolated from 13,933 sequences, with 3,136 sequences containing more than
one SSR. Additionally, 1,522 SSRs were found in the compound form. Among the identified
SSRs, mononucleotide repeats accounted for the highest percentage (13,550 SSRs, 70.77%) fol-
lowed by trinucleotide repeats (3888, 20.30%), dinucleotide repeats (1575, 8.24%), and tetranu-
cleotide repeats (110, 0.62%). A similar distribution of repeat units were also found in the nipa
palm hispid beetle Octodonta nipae [28]. Frequency of SSRs based on the number of repeat
units in Protaetia brevitarsis Lewis Larvae was provided in Table D in S1 File. The five most
frequent motif types in the transcriptome were A/T (13,195 SSRs, 68.92%), AAT/ATT (1207,
6.30%), AGG/CCT (1001, 5.23%), AT/AT (861, 4.50%), and AAG/CTT (669, 3.49%). These
SSR markers will be useful for assessing genetic diversity and population structure in P. brevi-
tarsis and related species.

AMPs

Drug-resistant bacterial pathogens have caused significant health problem worldwide [29, 30].
AMPs have become a particularly promising class of candidates for overcoming this problem,
as they have unique modes of action that differ from those of classical antibiotics and are diffi-
cult for bacteria to develop resistance to [31, 32].

Natural AMPs play an important role in immune systems, and they protect multicellular
organisms by controlling and/or combating pathogens by killing microbes directly or through
functions related to diverse immunomodulatory activities [33]. A greatest diversity of AMPs
have been identified in different kinds of insects, including beetles [34, 35]. In this study, sev-
eral kinds of natural AMPs were identified in the P. brevitarsis larval transcriptome.

Lysozymes. Lysozymes are a group of enzymes with antibacterial activity that ubiqui-
tously exist in diverse organisms, including invertebrates and vertebrates. They can catalyze
the hydrolysis of B-1,4-glycosidic bonds between N-acetylglucosamine and N-acetylmuramic
acid in the peptidoglycan of bacterial cell walls, which causes bacterial cell lysis and thereby
prevents bacterial infections [36]. Based on structural and functional features, lysozymes are
categorized into three major groups in the animal kingdom: invertebrate-type (i-type) lyso-
zymes, chicken-type (c-type) lysozymes, and goose-type (g-type) lysozymes [37]. The c- and g-
type lysozymes are found in various vertebrate and invertebrate species [38]. And the g-type
lysozymes have a transglycosylase SLT domain (Bacterial lytic transglycosylases Domain)
which contains three conserved catalytic binding sites, three conserved substrate binding sites,
and six conserved cysteine residues. In this study, five of these unigenes (c16827_g1,
c82138 gl,c85114_gl, c89942_g2, c91216_g2) were annotated as i-type lysozymes, which is
similar to the number found in the beetles Harmonia axyridis and Meligethes aeneus [39]. As
shown in Fig 5, the unigene c16827_gl shares 41.77% identity with the i-type lysozyme
(XP_022920100.1) from the beetle Onthophagus Taurus (Fig 5A), c82138_gl shares 59.87%
identity with the i-type lysozyme (XP_023027517.1) from the beetle Leptinotarsa decemlineata
(Fig 5B), ¢85114_gl shares 50.00% identity with the i-type lysozyme (ALM25916.1) from the
beetle Harmonia axyridis (Fig 5C), and c89942_g2 and ¢912216_g2 share 46.71% and 48.50%
identity with the i-type lysozyme (ALM25918.1) from the beetle Harmonia axyridis (Fig 5D).
Two of these unigenes (c87216_g2, c89288_g1) were annotated as c-type lysozymes, and they
shared 51.15% and 31.49% identity with a c-type lysozyme (BBE27867.1) from Locusta
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Fig 5. Alignment of the amino acid sequences of putative lysozymes from Protaetia brevitarsis Lewis Larvae with known sequences. XP_022920100.1: i-type
lysozyme from Onthophagus Taurus. XP_023027517.1: i-type lysozyme from Leptinotarsa decemlineata. ALM25916.1 and ALM25918.1: i-type lysozyme from

Harmonia axyridis. BBE27867.1: c-type lysozyme from Locusta migratoria. ADV36303.1: g-type lysozyme from Physella acuta; Catalytic residues and the substrate
binding sites of g-type lysozymes are marked with black pentagon (3k) and black triangle (¥), respectively; and white triangles (57) show the six conserved cysteine

residues.

https://doi.org/10.1371/journal.pone.0214001.9005

migratoria (Fig 5E). One of these unigenes (c124211_g1) was annotated as a g-type lysozyme,
and it shares 71.21% identity with a g-type lysozyme (ADV36303.1) from Physella acuta (Fig
5F), which has shown activity against both E. coli and MRSA [40].
Defensin. Defensins are small, cationic, and cysteine-rich peptides that include 3-4 intra-
molecular disulfide bonds. Hundreds of insect defensins have been identified since the first
defensins were reported in the flesh fly Sarcophaga peregrina [41] and the black blowfly Phor-
mia terraenovae [42]. They are mainly active against Gram-positive bacteria, and some are also
active against Gram-negative bacteria as well as fungi [43]. In this study, one of these unigenes
(c23254_gl) was annotated as a defensin, and two (c158345_g1, c79927_g1) were annotated as
defensin-like proteins. As shown in Fig 6, the unigene c23254_g1 shares 89.16% identity with
defensin-3 (AFD01290.1) from Pinus sylvestris (Fig 6A), c158345_gl shares 56.52% identity

AEGRMCKTPSGKFKGYCVSSTNCKNVCRTEGFPYGSCDFHVTSRKCYCYKPCP,
AEGRMCKTPSGKFKGYCVSSTNCKNVCRTEGFPINGSCDEHVTSRKCYCYKPCP,

mag vg 1 a fllvllvitigmm vq aegrmcktpsgkfkgycvsstncknvertegfp gscdfhvtsrkcycykpep

A signal
AFD01290. 1 GSP AIFLLVLLVITIGMMEYVQW
c23254 gl G| ABFLLVLLVITIGMM®A]

B

AJQ21502. 1 M LGFLI VFLIS@%ESREV@AIS@NHFEVN@ HCL L SIBGINYCDSHNVCHCR]
c158345 gl . [YVTLFF LIVC K GIAR INHCLFNGIESGEICDSHNVCHCRY

fk vgl gte ap 1 tce gaig lg tac hclf g g cdshnvcher

C

XP 021821153.1 UISIINBINYVAIRYR Fl LLLAAAG\IMGPMVALARTCLSQS[\RP KGTCVSTTNCASVCQTEGFPGGHCRGFRRRCFCTKHC
79927 gl MERSMRLESTAFVFFLLLAAAGMMGPMVAEARTCESQSNRFKGTCVSTTNCASVCQTEGFPGGHCRGFRRRCECTKHC
mersmrlfstafvfflllaaagmmgpmvaeartcesqsnrfkgtcvsttncasveqtegfpgghergfrrrefetkhe

100%
89. 16%

100%
56. 52%

100%
100%

Fig 6. Alignment of the amino acid sequences of putative defensin and defensin-like proteins from Protaetia brevitarsis Lewis Larvae with known sequences.
AFDO01290.1: defensin-3 from Pinus sylvestris. AJQ21502.1: defensin-like 1 protein from Mytilus galloprovincialis; XP_021821153.1: defensin-like protein from Prunus

avium.

https://doi.org/10.1371/journal.pone.0214001.9006
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with defensin-like 1 protein (AJQ21502.1) from Mytilus galloprovincialis (Fig 6B), and the
€79927 gl sequence was identical to a defensin-like protein (XP_021821153.1) from Prunus
avium (Fig 6C).

PBSIP. The antibacterial peptide PBSIP was previously reported in Protaetia brevitarsis
seulensis [44]. In this study, two unigenes (c10173_gl, c75132_g1) were annotated as matching
the antibacterial peptide PBSIP, sharing 96.83% and 73.81% sequence identity with PBSIP
(ABP97093.1) from Protaetia brevitarsis seulensis (Fig 7A), respectively.

Attacin. Attacins are glycine-rich immune proteins originally isolated from the moth
Hyalophora cecropia, and they have a broad antibacterial range, particularly for Gram-negative
bacteria [43]. In this study, one unigene (c85759_gl) was annotated as attacin, and it has
52.35% identity with attacin 2 (AHH34163.1) from Microdera dzhungarica (Fig 7B).

Coprisin. Coprisin is a cysteine-rich peptide isolated from the dung beetle Copris triparti-
tus, and it has exhibited broad-spectrum activity against both Gram-positive and Gram-nega-
tive bacteria [45]. In this study, three unigenes (c31180_gl, c541_gl, c90139_g6) were
annotated as coprisin, with 50.00%, 45.00%, and 62.50% identity shared with coprisin
(ABP97087.1) from Copris tripartitus (Fig 8A), respectively.

Coleoptericin-like protein. Coleoptericin-like proteins, including coleoptericin, acalolep-
tin, holotricin, and rhinocerosin, are glycine- and proline-rich AMPs with bactericidal activity
against Gram-positive and Gram-negative bacteria. In this study, two unigenes (c83917_g1,
c83917_g2) were annotated as holotricin, and they share 93.70% and 99.21% identity with
Holotricin-2 (Q25054.1) from Holotrichia diomphalia (Fig 8B), respectively. Additionally, one
fragment of a coleoptericin gene (c65461_gl) was similar to coleoptericin A (BAB40436.1)
trom Trypoxylus dichotomus.

Thaumatin-like proteins. Thaumatin-like proteins (TLPs) are polypeptides that share
sequence similarity with thaumatin, a sweet-tasting protein originally identified from the fruit
of the West African rain forest shrub Thaumatococcus daniellii [46]. TLPs are widely distrib-
uted in organisms, including fungi, animals, and plants [47]. They exhibit antifungal activity
via membrane permeabilization [48], B-glucan binding and degradation [49], inhibition of
enzymes [50], and apoptosis [51]. In this study, three unigenes (c114799_g1, c81196_gl1,
c82522_g1) were annotated as thaumatin-like protein. The unigene c114799_g1 shares 56.84%
identity with a thaumatin-like protein (ANC28051.1) from Polyporus umbellatus (Fig 9A),
c81196_gl shares 92.65% identity with a thaumatin-like protein (P50694.1) from Prunus
avium (Fig 9B), and c82522_g1 shares 93.48% identity with a thaumatin-like protein
(AJW67289.1) from Pinus massoniana (Fig 9C). Additionally, two fragments of peritrophin-
like genes (c119696_g1 and c94535_g1) were also identified, with c119696_g1 and c94535_gl
being identical to a thaumatin-like protein (PQQO05260.1) from Prunus yedoensis var. nudiflora
and a thaumatin-like protein (ABE01396.1) from Camellia sinensis, respectively.

Peritrophin. Peritrophin was first isolated from insect intestines, where it was inferred to
protect insects from microorganismal infection [52]. These proteins have a signal sequence
and one of three kinds of peritrophin domains: peritrophin-A domains, peritrophin-B
domains, or peritrophin-C domains. Peritrophin-A domains are also referred to as chitin-
binding type 2 domains [53]. Today, more and more peritrophin-like proteins have also been
found in many organisms [54]. In this study, the unigene ¢72353_g1 was annotated as a
mucin-like peritrophin and shared an identity of 28.21% with a mucin-like peritrophin
(ACN62986.1) from Popillia japonica (Fig 10A). The unigene c¢75073_gl was annotated as
peritrophin and shared an identity of 24.02% with peritrophin (ACN62985.1) from Popillia
japonica (Fig 10B). The unigene ¢77120_g1 was annotated as peritrophin-1-like protein and
shared an identity of 35.51% with the peritrophin-1 (XP_003251779.1) protein from Apis mel-
lifera (Fig 10C).
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Fig 7. Alignment of the amino acid sequences of putative PBSIP protein and Attacin from Protaetia brevitarsis Lewis Larvae with known sequences. A:
putative PBSIP protein; ABP97093.1 is the PBSIP from Protaetia brevitarsis seulensis. B: putative attacin; AHH34163.1: attacin 2 from Microdera dzhungarica.

https://doi.org/10.1371/journal.pone.0214001.9007

Many other proteins and peptide sequence derived from other protein or peptide have also
shown antimicrobial activity [55, 56]. To identify more proteins and peptide sequences with
potential antimicrobial activity, the transcripts were BLASTed against AMP databases (APD,
CAMP, and LAMP) with an identity cut off 80%. Finally, we identified four unigenes that were
annotated as histones and shared high identity with histones with antimicrobial activity in the
database. As shown in Fig 11, the unigene c13753_g1 shares an identity of 85.40% with the
H2A histone (ID in APD: AP02804) from the Pacific white shrimp Litopenaeus vannamei (Fig
11A), which has anti-Gram positive bacteria activity [57]. The unigenes c117375_g1 and
c84048_g2 share identities of 99.03% and 95.15% respectively, with the H4 histone (ID in
APD: AP02807) from American cupped oysters Crassostrea virginica (Fig 11B), which has
anti-Gram negative bacteria activity [58]. The unigene c92891_g1 shares an identity of 81.75%
with the H2B histone (ID in APD: AP02808) from cattle Bos taurus (Fig 11C), which has anti-

A

ABP97087.1  MAKLIAFALVASLCLSMVLCNPLPEEVQEEGLVXAISRANGN) EAK@I (CABHCHABNSSGGSCAN
c90139 gb MAKITIVALIVVMCIAQSLSVPLPEEVEG. SLIRKAJSGMNGLIBNILQ I K& NDSAGNARG AV RRKEHES®KQ
c31180 gl MFKFTVLAEIVAICVMHTLAIPVPEEIEG. STII{OSRMNGN E T LEVILIHNGONASOLIT GRR; D
cb84 gl ....LYFPLLN. . . VFMIVFRILRYFTFLGSI I{A'MYG IBSFE VMESILINHSGONAS®FT GRR G
rgkrvted 1s ganscahca gg ¢C

B

Q25054. 1 MMKLVIALCLIGISAAYVVPVYYETYPEDATEDRABMEPQLSPAELHHGS IRERRSLQPGAPSFPMPGNQLPTSVSGNVE
c83917_g2 MMKLVIALCLINISAAYVVPVYYETYPEDATEDIBABAIEPQLSPAELHHGS IRERRSLQPGAPSFPMPGNQLPTSVSGNVE
c83917_gl MMKLVIALCLIGISAAYVVPVYYEIYPEDATEDIJARREPQLSPAELHHGS IRERRSLQPGAPSFPMPGEQLPTSVSGNVE

mmklvialcli isaayvvpvyyeiypedatfd a epqlspaelhhgsirerrslgpgapsfpmpg gqlptsvsgnve

Q25054. 1 KQGRNTIATIWAOHKTDRYDVRGTWTKVVIGPGRISKPNFRIGGSYRW, 100%
c83917_g2 KQGRNTIAT IIAWHKTDRYDVRGTWTKVVGPGISKPNFRIGGSYRW, 99. 21%
c83917_gl KQGRNT IAT IGAIBHKTDRYDVRGTWTKVVRBIGPGISSKPNFRIGGSYRW, 93. 70%

kggrntiati a hktdrydvrgtwtkvv gpg skpnfriggsyrw

Fig 8. Alignment of the amino acid sequences of putative coprisin and coleoptericin-like protein from Protaetia brevitarsis Lewis Larvae with known
sequences. A: putative coprisin; ABP97087.1: coprisin from Copris tripartitus. B: putative coleoptericin-like protein; Q25054.1: Holotricin-2 from Holotrichia
diomphalia.

https://doi.org/10.1371/journal.pone.0214001.9008
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G
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c82522 ¢l
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Fig 9. Alignment of the amino acid sequences of putative Thaumatin-like protein from Protaetia brevitarsis Lewis Larvae with known sequences.
ANC28051.1: thaumatin-like protein from Polyporus umbellatus; P50694.1: thaumatin-like protein from Prunus avium; AJW67289.1: thaumatin-like protein
from Pinus massoniana.

https://doi.org/10.1371/journal.pone.0214001.9009

Gram negative bacteria activity [59], while c86640_g1 and c87143_gl share identities of
86.76% and 88.24%, respectively, with the H3 histone (ID in APD: AP02809) from cattle Bos
taurus (Fig 11D), which has also shown anti-Gram negative bacteria activity [59].
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vsa pp ¢ devi lp dcg ¢ g flm cypg fnal cd pe ac

Fig 10. Alignment of the amino acid sequences of putative peritrophin from Protaetia brevitarsis Lewis Larvae with known sequences. ACN62986.1:
mucin-like peritrophin from Popillia japonica; ACN62985.1: peritrophin from Popillia japonica; XP_003251779.1: peritrophin-1 protein from Apis mellifera.
The chitin-binding domains were lined.

https://doi.org/10.1371/journal.pone.0214001.9010
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Fig 11. Alignment of the amino acid sequences of putative Histones from Protaetia brevitarsis Lewis Larvae with known sequences with antimicrobial
activity. AP02804: histone H2A from Pacific white shrimp Litopenaeus vannamei in the database APD; AP02807: histone H4 from American cupped oysters
Crassostrea virginica in the database APD; AP02808: histone H2B from calf thymus Bos taurus in the database APD; AP02809: histone H3 from calf thymus Bos
taurus in the database APD.

https://doi.org/10.1371/journal.pone.0214001.9011

Furthermore, we also identified 41 peptide sequences (Table E in S1 File) predicted to have
potential antimicrobial activity on the basis of sequence similarity.

Conclusion

This study is the first whole transcriptome analysis of larvae from the non-model species P.
brevitarsis, which accordingly will contribute to the exploration of the species through the
resulting genetic resources and will thus facilitate further comprehensive studies of this species.
Moreover, the natural AMPs, proteins with potential antimicrobial activity, and potential anti-
microbial peptide sequences identified from transcripts in P. brevitarsis larvae provide
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templates for further development of new antimicrobial agents and will promote the utiliza-
tion of the species for its full medical potential.
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