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Abstract. Using primary culture methods, we show 
that purified astrocytes from embryonic mouse or rat 
central nervous system (CNS) can be induced to pro- 
duce interferon (IFN) activity when pretreated with a 
standard IFN-superinducing regimen of  polyribonu- 
cleotide, cycloheximide, and actinomycin D, whereas 
IFN activity was not inducible in neuronal cultures 
derived from mouse CNS. Astrocyte IFN displays in- 
ductive, kinetic, physicochemical, and antigenic prop- 
erties similar to those of  IFN-a/13, but is dissimilar to 
lymphocyte IFN (IFN-3,). Treatment of  pure astrocy- 
tic cultures or astrocytes cultured with neurons with 
astrocyte IFN or IFN-a/~ induced a dramatic increase 

in the expression of  H-2 antigens on a subpopulation 
of astrocytes. Neither neurons nor oligodendroglia ex- 
pressed detectable levels of  H-2 antigens when ex- 
posed to astrocyte IFN, IFN-a/$, or to IFN-t~. Injec- 
tion of astrocyte IFN or IFN-a//3 directly into brains 
of newborn mice indicated that H-2 antigens were 
also induced in vivo. None of  the IFNs (astrocyte, a /  
t3, or/~) tested induced Ia antigens on CNS cells in 
vitro or in vivo. Since H-2 antigens have a critical role 
in immune responses, astrocyte IFN may initiate and 
participate in immune reactions that contribute to im- 
munoprotective and immunopathological responses in 
the CNS. 

T 
HE central nervous system (CNS) 1 has classically been 
thought to be an immunologically privileged site in 
that: (a) it lacks lymphatic drainage (32); (b) the CNS 

cells express low levels of antigens encoded by the major 
histocompatibility complex (MHC) which function to both 
initiate and effect immune responses (8, 20); and (c) it is 
protected by the blood-brain barrier which is impermeable to 
many substances, including the known classes of interferons 
(IFN a, ~, and 3') (5, 22, 30, 35). 

The brain has been shown to produce high levels of IFN 
when injected with viruses (1, 35) or polyribonucleotides (6), 
but neither the CNS cell types that produce high levels of IFN 
nor the function of brain IFN has been determined. IFNs are 
a heterogenous group of proteins that are largely defined by 
their ability to protect cells against viral infection (17, 28). 
Three classes of IFN have been discovered which are the 
primary IFN products of three cell types: leucocytes, IFN-a, 
fibroblasts, IFN-B, and lymphocytes, IFN-3" (2). Recent work 
has shown that IFN-3", a T cell lymphokine, induces a dra- 
matic increase in the expression of MHC antigens on normal 
and leukemic human myeloid cells (2 l), on neural cell lines 
(23), and on brain cells in vitro and in vivo (41, 42). All major 

1. Abbreviations used in this paper." CPE, cytopathic effect; CNS, central 
nervous system; GC, galactocerebroside; GFAP, glial fibrillary acidic protein; 
la, immune response associated; IFN, interferon; MHC, major histocompati- 
bility complex; poly rl-rC, polyriboinosinic-polyribocytidylic acid; TT, tetanus 
toxin; VSV, vesicular stomatitis virus. 

types of brain cells, including neurons, astrocytes, oligoden- 
drocytes, and microgiia, showed enhanced MHC expression 
in response to IFN-3, (41, 42). 

The MHC in the mouse, termed H-2, codes for a variety of 
cell surface glycoproteins involved in the immune response. 
Two classes of molecules can be distinguished: class I trans- 
plantation antigens (H-2 K, D, and L) are present on most 
cells of the body, but these antigens are undetectable on 
normal brain cells (8). H-2 antigens mediate immune reac- 
tions of cytotoxic T cells (44). Class II, the immune response 
associated (Ia) antigens, are found predominantly on B cells, 
macrophages, and dendritic cells, and function to present 
foreign antigens to regulatory T lymphocytes. Approximately 
1-2% of CNS cells have been reported to be Ia +, but the 
nature and origin of these cells has not been established (14, 
36). IFN-3, modulation of MHC antigens on neurons and/or 
glia might enable normally sequestered immunoincompetent 
cells of the brain to participate in T cell-mediated responses, 
and may play an important role for brain diseases that have 
an immunological component. However, this cooperation of 
brain and immune cells appears to involve passage of T cells 
across the blood-brain barrier, so that they enter the brain 
and release lymphokines as IFN-3", which normally cannot 
pass the blood-brain barrier (5, 22, 30, 35). 

In this paper, we show that cells (astrocytes) within the CNS 
produce IFN that is biologically and antigenically similar to 
IFN-a/B. Astrocyte IFN is a potent inducer of H-2 antigen 
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expression on a subpopulation of astrocytes. These results 
suggest that astrocyte IFN has an important role in defending 
the brain against viruses and in the generation of immune 
responses in the CNS. 

Materials and Methods 

Cell Cultures 
,4strocytic Cultures. Cerebral cortices were dissected from embryonic CBA/J 
mice (E-19), freed of meninges, and dissociated by gentle repetitive pipetting. 
The cell suspensions were plated on collagen-polylysine coated tissue culture 
dishes. Loosely adherent oligodendrocytes were preferentially removed by 
gently pipelting a stream of medium across the surface of the cells. Cultures 
were grown to confluence in N5 medium (18) that contained 5% horse serum, 
then treated with l 0  -~ M cytosine arabinoside for 48 h to kill rapidly dividing 
cells. 

Neuronal Cultures. Neuronal cultures were obtained by dissociation of 15- 
d CBA/J mouse embryo brains. The tissue was disrupted into a cell suspension 
by gentle trituration and the cells were grown on collagenopolylysine coated 
tissue culture dishes in N5 medium that contained 5% neurutrophic factor 
from horse serum as described (18). 

Immunohistochemical Procedures 
Cell cultures were immunohistochemically labeled as described by Keane et al. 
(19). For immunolabeling of the cell surface (tetanus toxin [TT], A2B5, 
galactocerebroside [GC], H-2, and la), cultures were treated with antibody to 
cell surface antigens, washed in N5 medium, and exposed to fluorochrome- 
coupled second antibody. Cells were fixed in 10% buffered formalin. For 
labeling of intracellular antigens (neurofilaments, glial fibrillary acidic protein 
[GFAP]), cells were fixed in 10% buffered formalin, permeabilized with 95% 
ethanol at -20"C, and exposed to antibodies to intracellular antigens. The 
cultures were washed in N5 medium and treated with fluorochrome-coupled 
second antibodies. Cells were then mounted in 50% glycerol/phosphate-buff- 
ered saline (PBS) and visualized in a Nikon diaphot epifluorescence microscope 
equipped with the appropriate filters. 

Antibodies and Toxins 
Expression of H-2K k and Ia antigens on CBA/J (H-2K k, D k) mouse neurons, 
astrocytes, and oligodendrocytes was detected by double immunobistochemical 
labeling of cells using anti-H-2K k monoclonal antibodies from cell line l 1-4-1 
(American Type Culture Collection, Rockville, MD) and anti-la monoclonal 
antibodies from cell line 14-4-4S (American Type Culture Collection). Specific- 
ity of binding was evaluated in control labelings using monoclonal antibodies 
(34-1-2S) of the same class (IgG 2a), but specific for a different haplotype (H- 
2K d, I~). Rabbit anti-neurofilament (43) was a gift of Dr. S.-H. Yen (Albert 
Einstein University), rabbit anti-GFAP (10) was a gift of Dr. L. Eng (California 
Institute of Technology), and rabbit-anti-GC (31) was a gift of Dr. K. Fields 
(Albert Einstein University). All rabbit antisera were used at a 1:150 dilution. 
Mouse monoclonal antibodies to the neuronal marker, A2B5 (9) (a gift of Dr. 
M. Nirenberg, NIH), and mouse monoclonal antibodies of H-2 and Ia antigens 
were used at a 1:200 dilution. Rabbit antibodies were visualized with either 
tetramethylrhodamine- or fluoresceinisothiocyanate-conjugated goat antibod- 
ies to rabbit immunoglobulins (IgA, IgG, IgM, heavy and light chains, Cappel 
Laboratories, Cochranville, PA). Mouse antibodies were visualized with tetra- 
methylrhodamine- or fluorescein isothiocyanate-conjugated goat immunoglob- 
ulins to mouse immunoglobulins (Cappel Laboratories). Antibodies and stain- 
ing procedures for GC, GFAP, and TT receptors were according to previously 
described procedures (19). 

Superinduction of lFN 
Superinduction was done by preincubating astrocytes or neurons with 

polyriboinosinic-polyribocytidylic acid (poly rl-rC) (50 ~g/ml) and cyclohexi- 
mide ( 10 ~g/ml) for 6 h and with acfinomycin D (1 ug/ml) for the final 2 h of 
the induction period (15, 29, 34). Astrocytic cultures were washed thoroughly 
with N5 medium that contained 5% horse serum, and then incubated with N5 
medium for 24 h. Neuronal cultures were washed thoroughly with N5 medium 
that contained 5% neurotrophic fraction from horse serum (18), and then 
incubated in N5 medium for 24 h. Neuronal cultures were also treated with 
other lFN-inducing regimens using either phytohemagglutinin (5-500 ug/ml) 
(40) or B-lipopolysaccharide (5-500 ~g/ml) (26) for 6 h. No measurable IFN 
activity was obtained from neurons, even after the superinducing regimen. 

Cytopathic Effect (CPE) Assay 
IFN activity was m~asured by the CPE assay that is based on dye (crystal violet) 
incorporation into fixed cells (3, 11). Mouse L929 cells were plated in 96-well 
Costar microtiter dishes (Costar, Cambridge, MA) at a density of I x 104 cells/ 
ml and grown to confluence for 24 h. L929 cells were then incubated with 
medium from superinduced astrocytes or neurons for 24 h, and then infected 
with vesicular stomatitis virus (VSV, Indiana strain) that normally lyses these 
cells. After 24 h of infection, L929 cells were washed with N5 medium, fixed, 
and stained with 0.5% crystal violet, washed with distilled water, and air-dried. 
Crystal violet stain was eluted by addition of ethylene glycol monoethyl ether 
to each well and absorbance (OD59o) determined in a Titertek Multiscan 
Photometer. IFN activity was determined by cell survival, calculated as percent 
dye uplake (3, 11). For each experiment, log dilutions of standard mouse IFN- 
a//3 (Lee BioMolecular, Inc.) were co-assayed with superinduced astrocyte or 
neuronal conditioned medium samples to determine the titer of IFN. 

Neutralization Assays 
Mouse astrocyte IFN (500 U/ml) was incubated with rabbit antiserum against 
mouse IFN-a//3 (Lee BioMolecular, Inc.) or IFN-3, (a gift from Dr. S. Baron, 
University of Texas, Galveston) with neutralizing specific activity varying from 
200 to 5,000 neutralizing U/ml for 3 h at 37"C and the antibody-IFN mixture 
tested for antiviral activity in the CPE assay (3, 11). 

Induction of H-2 Antigens in the Brain 
l-d-old CBA/J mice were injected intracerebrally with 50 U oflFN-a//3, IFN- 
/3, astrocyte IFN, or control supernatants from uninduced astrocyte cultures 
showing no IFN activity. After various periods of time, cell suspensions and 
fresh-frozen cryostat sections (10 urn) of brains were prepared and assayed for 
the expression of H-2 and la antigens by indirect immunofluorescence proce- 
dures. 

Results 

Purified astrocytic and neuronal cultures used in these studies 
are shown in Figs. 1 and 2, respectively. The cell types present 
were assessed immunohistochemically with cell-type specific 
antibody markers. The majority of cells (>99%) in cortical 
astrocytic cultures displayed a flattened, sheet-like morphol- 
ogy (Fig. 1 a), and stained with antibodies to GFAP (Fig. I b), 

Figure 1. (a and b) Astrocytes from mouse cerebral cortex viewed 
with (a) phase contrast and (b) GFAP staining. Bar, 20 um. 
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a specific marker for astrocytes(4). The remaining cells (< 1 %)
were either fibrous astrocytes, identified by binding of anti-
bodies to GFAP, TT (27) and monoclonal antibodies toAM
(9), or oligodendrocytes as evidenced by binding of anti-GC,
a marker for oligodendroglia (31) .
Neuronal cultures were obtained by dissociation of 15-d

CBA/J mouse embryo brains (Fig. 2) . The neuronal nature
of the majority of cells (95%) was confirmed by their ability
to fire action potentials (18) and to bind antibodies to NF
(Fig. 2, a and b), TT (Fig. 2, c and d), and AM (Fig. 2, e
and f) . The remaining cells (5%) in the neuronal cultures
were astrocytes as evidenced by staining with anti-GFAP
antibodies (Fig . 2, g and h) . Astrocytes cultured in the pres-
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Figure 2. Phase-contrast micrographs
(a, c, e, and g) of neuronal cultures
that were stained with antibodies
against neurofilament (b), TT (d),
A2B5 antigen (f), or GFAP (h). Bar,
20 Am .

ence of neurons assume a process-bearing morphology, much
like that of neurons (Fig . 2, g and h), whereas astrocytes
cultured alone have a flattened, sheet-like appearance (Fig. 1,
a and b) (13) .
Astrocytic and neuronal cultures were superinduced by a

6-h exposure to poly rl-rC (50 kg/ml) and cycloheximide (10
jig/ml) (Fig. 3a). For the final 2 h of the induction period,
actinomycin D (1 jAg/ml) was added. Cultures were exten-
sively washed and then incubated from 1 to 24 h in a N5
medium that contained 5% horse serum . IFN antiviral activ-
ity in the collected medium was assayed by its ability to
protect cells against VSV infection in the CPE assay . Super-
induction ofastrocyte IFN yielded from 500 to > 10,000 U/
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Figure 3. (a) Interferon antiviral activity (log scale) superinduced in
mouse astrocyytc or neuronal conditioned medium (CM) . (b) Kinetics
ofIFN superinduction by poly rl-rC, cycloheximide, and actinomycin
D in astrocytes. IFN produced by astrocytes was collected at 3-h
intervals after the superinduction followed by extensive washing of
cells with N5 medium between collection periods . Astrocyte IFN
activity in each sample was measured by the CPE assay as described
in Materials and Methods.

ml IFN activity (Fig . 3a). No measurable IFN activity was
detected in either uninduced astrocyte cultures or purified
neuronal cultures treated with the same superinduction regi-
men or with other IFN-inducing protocols using phytohe-
magglutinin (a T cell mitogen) or B-iipopolysaccharide (a B
cell mitogen) (Fig . 3a) . Thus, it appears that IFN activity is
produced by astrocytes, but not by neurons .

Fig . 3 b shows the kinetics of astrocyte IFN induction . After
the termination of the 6-h induction period, IFN produced
by astrocytes was collected at 3-h intervals (up to 24 h)
followed by extensive washing with fresh media between
collection points . The aliquots ofastrocyte-conditioned media
collected at each 3-h interval were then assayed for antiviral
activity by the CPE assay . Induction of astrocyte IFN activity
was rapid with the highest levels produced during the first 3
h after the 6-h induction period . IFN activity gradually de-
clined so that no measurable astrocyte IFN activity remained
15 h after the induction period . The kinetics ofastrocyte IFN
induction are similar to those reported for IFN-a and IFN-(3,

but not for IFN--t which is induced much more slowly (29,
34).
Table I shows physical and biological properties displayed

by astrocyte IFN . Astrocyte IFN is sensitive to trypsin diges-
tion, which suggests that it is a protein . Astrocyte IFN activity
is stable at both pH 2.0 for at least 24 h and at 56°C for 3 h,
characteristic properties of IFN-a and IFN-a, but not IFN--y .
Since the antiviral protection conferred by IFN-a, 0, and y is
species- and cell-specific, we tested host cell specificity of
mouse astrocyte IFN on several different fibroblast cell lines
often used in the CPE assay (Table I) . Antiviral activity was
greatest on homologous mouse cell lines (-75% of VSV-
infected L929 cells were protected from viral infection),
whereas little or no protection was conferred on human
foreskin fibroblasts or rat kidney fibroblasts . Additionally,
induced IFN from neonatal Sprague-Dawley rat cortical as-
trocytes protected -70% of VSV-infected rat kidney fibro-
blasts, but afforded little or no protection for VSV-infected
human foreskin fibroblasts or mouse L929 fibroblasts (data
not shown) . These results show that the antiviral protection
conferred by astrocyte IFN is species-specific. The response
to inducers, kinetics of induction, and physical properties of
astrocyte IFN are similar to those reported for IFN-a and
IFN-, but not for IFN-y (29, 34) .
To test whether astrocyte IFN is antigenically similar to

other IFN classes, medium conditioned by superinduced as-
trocytes was incubated with dilutions of rabbit antiserum
against mouse IFN-a/(3 or IFN-y (Table II) . After a 3-h
incubation ofantibody and astrocyte IFN mixtures, the astro-
cyte IFN antiviral activity was measured by the CPE assay.
Antiserum against mouse IFN-a/# effectively neutralized as-
trocyte IFN antiviral activity, while antiserum against mouse
IFN-y did not . Thus, astrocyte IFN is antigenically similar to
IFN-a/,a and dissimilar to IFN-y .

Table I. Physical and Biological Properties ofAstrocyte IFN

Mouse astrocyte IFN was superinduced and collected as described in Materials
and Methods. Three (0.5 ml) aliquots were taken. One sample was treatedwith
trypsin (0 .25%) for 3 h and the reaction stopped with 0.25% soybean trypsin
inhibitor . The second sample was acidified (pH 2.0) with 1 .0 N HCl for 24 h
and then neutralized to pH 7.0 with 1.0 NNaOH. The third sample was heated
to 56°C for 3 h and then cooled to 37 °C. IFN activity in all three samples was
then assayed for antiviral protection on mouse L929 fibroblasts in the CPE
assay. Samples containing 0.25% trypsin and 0.25% soybean trypsin inhibitor
did not affect viability (crystal violet uptake) of uninfected mouse L929 fibro-
blasts . Cross-species activity ofmouse astrocyte IFN was tested on mouse L929
cells, human foreskin fibroblasts, and rat kidney fibroblasts. L929 cells, human
foreskin fibroblasts (1 x 10` cells), and rat kidney fibroblasts (2 .5 x 104 cells)
were seeded in 96-well Costar microtiter dishes and grown to confluence.
Antiviral activity conferred by mouse astrocyte IFN on each cell type was
measured by the CPE assay. Each mean (± SD) is based on six values (n = 6).
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Table H. Neutralization of Astrocyte IFN Activity with IFN- 
a/B or IFN-7 Antiserum 

Percent neu- 
tralization as- 

IFN-a/~ antiserum Astrocyte IFN trocyte IFN 

neutralizing U/ml U/ml 
0 545 +- 90 0 

200 330 + 60 34 
500 185 -+ 80 63 

2,000 0 _ 0 100 
3,000 0 + 0 100 
5,000 0 + 0 100 

IFN-,~ antiserum Astrocyte IFN 

Percent neu- 
tralization as- 
trocyte IFN 

neutralizing U/ml U/ml 
0 565 _+ 95 0 

200 550 + 110 0 
500 610 _ 125 0 

2,000 590 _+ 80 0 
3,000 555 _+ 105 0 
5,000 625 +__ 130 0 

Mouse astrocyte IFN (500 U/ml) was incubated with rabbit antiserum against 
mouse IFN-a//3 or IFN-7 (neutralizing specific activity varying from 200 to 
5,000 neutralizing U/ml) for 3 h at 37"C and tested for antiviral activity in 
CPE assay as described in Materials and Methods. Each mean (_+SD) was based 
on eight samples (n = 8). 

Table III. Induction of MHC Antigens on 48 h Cultured 
CBA/J Brain Cells 

H-2K ~ H-2K d la 

Astrocyte IFN 23 __. 3 0 1 ___ 1 
I F N - a / ~  26 _ 2 0 1 _ 1 
IFN-/3 1 _ 1 0 1 __. 1 
Un induced  1 ___ 1 0 1 _ 1 

Brains of I'd-old CBA/J (H-2K k, I~) mice were removed, freed of meninges, 
and disaggregated by gentle repetitive pipetting. Approximately 1.5 x 10 7 cells 
were recovered from each brain with viability of 85%. Cells were cultured in 
N5 medium that contained 5% neurotrophic factor from horse serum (18). 
After 48 h, cells were treated with 10 U of IFN (a/~,/3, or astroeyte) or left 
untreated (uninduced). After 48 h of lFN treatment, the cells were stained with 
monoclonal antibodies against H-2K k, H-2K d, or Ia antigens. The percentage 
of cells expressing MHC antigens was determined by counting ~1,000 cells, 
and each mean (-+SD) was based on four separate determinations. 

Inducible Expression o f  H-2 Antigens on Brain Cells 
In Vitro 

Since brain cells and many other cell types respond to IFN-7 
by enhancing levels of H-2, and in some cases Ia antigens (41, 
42), we examined brain cells to determine whether MHC 
antigen expression could be induced by astrocyte IFN, IFN- 
a/B, or IFN-/~ (Table III). Single cell suspensions were pre- 
pared from l-d-old CBA/J mice and then treated with differ- 
ent concentrations of IFN (1-500 U/ml). After 48 h of 
exposure to IFN, the expression of MHC antigens was deter- 
mined by indirect immunofluorescence staining using mono- 
clonal antibodies against H-2 and Ia antigens. Treatment with 
astrocyte IFN or IFN-a/~ caused expression of H-2 antigens 
on -25% of the brain cell population, whereas treatment of 
cells with IFN-~ showed H-2 levels similar to uninduced brain 
cell controls (Table III). Detection of the observed fluores- 
cence was specific for H-2 antigens in that monoclonal anti- 
bodies (13-1-2S), specific for a different H-2 haplotype (H- 

2K d, I~), did not bind to brain cells of CBA/J ( H - 2 K  k, D k) 

mice. None of the IFN treatments stimulated the expression 
of Ia antigens. 

Identification o f  Cell Types That Respond to 
Astrocyte IFN 

To determine which CNS cell types respond to astrocyte IFN, 
we double-labeled cells using anti-H2 or Ia monoclonal anti- 
bodies together with cell-type-specific antibodies that identify 
the major CNS cells. 

In neuronal cultures (4 wk old), >95% of the cells are 
neurons and the remaining 5% of the cells are process-bearing 
astrocytes (Fig. 2). When neuronal cultures were treated with 
1, 10, 50, 100, 500, or 1,000 U of astrocyte IFN, IFN-a/#, or 
IFN-#, no detectable levels of H-2 or Ia antigens were found 
on neurons (Fig. 3). However, when we double-labeled the 
population (5%) of process-beating astrocytes in these cul- 
tures, ~45% of the astrocytes showed enhanced expression of 
H-2 antigens in response to treatment with either astrocyte 
IFN or IFN-a/# (Table IV, Fig. 4, a-c). This selective response 
of a subpopulation of astrocytes to IFN-a/~ or astrocyte IFN 
is in contrast to the action of IFN-~, which has been reported 
to enhance the expression of H-2 antigens on all CNS cell 
types (41, 42). 

Since the antiviral activity of astrocyte IFN and IFN-a/~ 
in the CPE assay was neutralized by anti-IFN-a//~, but not by 
anti-IFN-3, antibodies, we tested whether the MHC-inducing 
activity showed a similar neutralization with these antisera 
(Fig. 4, d-i). H-2 inducing activity of astrocyte IFN was effec- 
tively neutralized by anti-IFN-a//3 (Fig. 4, d-f), but not by 
anti-IFN-,y (Fig. 4, g-i) antibodies. Anti-IFN-a/~ also neu- 
tralized the H-2 inducing activity of IFN-a/# (not shown). 
No detectable Ia staining was observed on cells treated with 
any of the IFN classes (Table IV). Thus it appears that 
astrocyte IFN and IFN-a//3 enhance the expression of H-2 
antigens on a subpopulation of astrocytes within the CNS. 

Failure of H-2 process-bearing astrocytes to express MHC 
antigens could result from a suppressive trophic response from 
the neuronal population. To test this possibility, we cultured 
pure populations of astrocytes from cerebral cortices of em- 
bryonic mice, induced them with astrocyte IFN, IFN-a/#, 
and IFN-/~, and then determined the expression of H-2 and 
Ia antigens by immunohistochemical staining (Fig. 5, Table 
IV). Astrocytes cultured for 1-3 wk did not respond to IFN 
induction with enhanced MHC antigen expression. Cells in 

Table IV. Percentage of Astrocytes Expressing MHC 
Antigens 

Astrocyte Morphology 

Process-bearing Sheet-like 

Treatment H-2 Ia H-2 la 

Astrocyte IFN 41 _ 3 0 43 +_ 2 0 
IFN-a/~ 45 -+ 4 0 48 -+ 4 0 
IFN-/3 0 0 0 0 

Astrocytes from cerebral cortices (sheet-like) and astrocytes in neuronal cultures 
(process-bearing) were prepared as described in Materials and Methods. Cells 
were grown for 5 wk and then treated with l0 U o f lFN (astrocyte, a//3, or/3) 
for 48 h. Cells were then double-labeled with rabbit anti-GFAP and monoclonal 
antibodies to H-2 or la antigens. The percentage of GFAW" cells that express 
MHC antigens was determined by counting ~200 cells. Values are expressed 
as the mean (-+ SD) of four separate experiments. 
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Figure 4. (a-c) Photomicrographs of astrocytes present in neuronal cultures that were treated with 10 U of astrocyte IFN for 48 h. (a) Phase- 
contrast; (b) GFAP staining; (c) H-2 staining. Approximately 45% of the process-bearing astrocytes in neuronal cultures were H-2 +. (d-i) 
Neutralization of H-2 inducing activity of astrocyte IFN with anti-IFN-a//3 (d-f) or anti-IFN-7 (g-i) antiserum. 10 U of astrocyte IFN was 
incubated with 500 neutralizing U/ml of anti-IFN-a/~ or anti-IFN--r antiserum for 3 h at 37"C. The antigen-antibody mixture was then added 
to cultures for 48 h. Astrocytes were stained with antibodies to GFAP (e and h) or H-2K k antigens (fand i). Anti-IFN-a/~ antiserum effectively 
neutralized the H-2 inducing activity (d-f) of astrocyte IFN, whereas anti-IFN-3, antiserum did not (g-i). Bar, 20 ,m. 

these cultures formed a confluent monolayer that consisted 
of two populations of astrocytes: those that stained intensely 
with anti--GFAP antibodies and cells that showed diffuse 
GFAP staining. By 3--4 wk of culture all of the cells stained 

intensely with anti--GFAP antibodies. Induction of older cul- 
tures (4-6 wk) with astrocyte IFN or IFN-a//3 resulted in 
~40% of the astrocytes expressing detectable H-2 staining 
(Table IV). 
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Figure 5. (a-c) Phase-contrast micrograph (a) of 5-wk-old cortical astrocyte cultures treated with 10 U ofastrocyte IFN for 48 h and stained 
with anti-GFAP (b) and anti-H-2K k (c) antiserum. (d-i) Neutralization of H-2 inducing activity of astrocyte IFN with anti-IFN-a/B (d-f) or 
anti-lFN-3, (g-i) antiserum. Neutralization assays were done as described in Fig. 4, d- f  legend and then cortical astrocyte cultures were stained 
with antibodies to GFAP (e and h) or H-2K k (fand i) antigens. Note that while enhancing H-2 antigens (c and i), astrocyte IFN also caused 
disorganization of GFAP filaments (b and h). Bar, 20 um. 

While effectively enhancing the expression of  H-2 antigens, 
IFN-a//~ and astrocyte IFN caused alterations in the cyto- 
skeletal arrangement of  GFAP filaments (Fig. 5, b and h). 
The MHC inducing activity was neutralized by anti-IFN-a/~/ 

(Fig. 5f) ,  but not by IFN--r antibodies (Fig. 5 i). None of the 
IFNs induced the expression of  Ia antigens on astrocytes 
(Table IV). 

To determine whether the other major glial cell population, 
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the oligodendroglia, showed enhancement of  H-2 or la anti- 
gens in response to astrocyte IFN, we treated oligodendrocytes 
with 10 U of  astrocyte IFN for 48 h and then double-labeled 
the cells with rabbit antibodies to the oligodendroeyte-specific 
marker, galactocerebroside and with monoclonal antibodies 
to H-2 or Ia antigens (Fig. 6, a-c). None of  the oligodendro- 
cytes examined showed detectable levels of  H-2 or Ia antigens 
after exposure to astrocyte IFN (Fig. 6 c). 

Inducible expression o f  H-2 Antigens in the Brain 

We attempted to test whether the H-2 induction observed in 
vitro had relevance to a physiological response in vivo. Astro- 
cyte IFN, IFN-a/~, IFN-~, or supernatants from uninduced 
astrocyte cultures that exhibit no IFN activity were injected 
into cerebra of  l-d-old CBA/J mice. After different periods 
of  treatment, brains were dissected, the meninges removed, 
and the tissue was dispersed into single cell suspensions. The 
cells were then stained for H-2 and Ia expression. Fig. 7 shows 
the time courses of  the percentage of  brain cells that express 
H-2 antigens. Approximately 20% of the brain cells that 
received IFN-a//5 or astrocyte IFN were found to express H- 

Figure 6. (a-c) Photomicrograph of an oligodendrocyte from embry- 
onic mouse brain treated with 10 U of astrocyte IFN. (a) Phase- 
contrast; (b) GC staining; (c) H-2 staining. Bar, 20 um. 
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Figure 7. Expression of H-2 antigens on brain cells in vivo. Brains of 
1-d-old CBA/J mice were injected with 50/~1 (1 U/ul) of IFN-a/B 
(I-q), IFN-/3 (A), or astrocyte IFN (O), or control supernatant that 
lacked IFN activity (O). After different times, single cell suspensions 
were prepared and stained with monoclonal antibodies against H- 
2K k (14-4-4S). The percentage of H-2 ÷ cells was determined by 
counting ~ 1,000 cells per time point. 

2 antigens by 2 d after treatment. The percentage of  H-2 ÷ 
cells decreased so that by 7 d after IFN injection into brains, 
few, if any, positive cells were present. Cells from brains 
injected with IFN-/~ or control supernatants did not express 
detectable levels of  H-2 antigens. 

To determine whether cells in different brain regions ex- 
pressed H-2 or Ia antigens in response to IFN, we made fresh- 
frozen cryostat sections from brains injected with IFN-a/# or 
astrocyte IFN and from brains injected with supernatants 
from uninduced astrocyte cultures that show no IFN activity 
(Fig. 8). H-2 ÷ staining was detected on groups of  cells scattered 
throughout the frontal lobes and on cells lining the ventricles 
in brains injected with astrocyte IFN or IFN-a/#. No staining 
was observed in cerebellum or brain stem regions or in control 
sections of  brains which were injected with supernatants from 
uninduced astrocyte cultures. Thus, it appears that H-2 anti- 
gens can be induced on CNS cells in vivo by astrocyte IFN. 

Discussion 

Our results demonstrate that astrocytes, but not neurons, can 
produce IFN that is both biologically and antigenically similar 
to IFN-a/13. Treatment of  CNS cells with astrocyte IFN 
enhances the expression of  H-2 antigens on a subpopulation 
of astrocytes. This finding may have particular relevance to 
the generation of  CNS immune responses. For example, 
cytotoxic T cells are actively involved in certain brain lesions 
and in the pathology of  certain viral infections of  the brain. 
Since there is little or no expression of MHC antigens on 
normal CNS cells (8), it might be expected that virally infected 
brain cells could escape recognition and destruction by cyto- 
toxic T cells, which can recognize viral antigens only in 
association with cellular MHC antigens (44). Since CNS cells 
show enhanced expression of  MHC antigens in response to 
IFN, and the peripheral IFN classes (a, ~, and 7) do not 
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Figure 8. Cryostat sections of CBA/J frontal lobes injected with 50 U of astrocyte IFN (a and c) or with control supernatants that lacked IFN 
activity (b and d). (a and b) Phase-contrast micrographs and (c and d) H-2K k staining. Bar, 20 #m. 

appear to cross the blood-brain barrier (5, 22, 30, 35), IFN 
produced by astrocytes may play an important role in CNS 
immune responses by enhancing the expression of MHC 
antigens on previously immunologically incompetent brain 
cells, which then become competent to participate in T cell- 
mediated responses. This mechanism may contribute to CNS 
degenerative diseases such as multiple sclerosis, where T cells 
infiltrate the CNS (7, 38). 

The brain has been shown to produce high levels of IFN 
when injected with viruses (1, 35) or poly d-rC (6). Within 
the brain there also appears to be compartmentation of IFN. 
Luby and co-workers (25) found that patients dying from St. 
Louis encephalitis had IFN in frontal lobes, cerebellum, basal 
ganglia, but not brain stem. Marked differences in IFN con- 
tent between certain areas of the brains infected with Western 
equine encephalitis have also been reported (24). It is possible 
that astrocytes in different locations of the brain produce IFN, 
thus accounting for the compartmentation of IFN observed 
in CNS infections and diseases. We are currently investigating 
whether astrocytes from different CNS locations can be in- 
duced to produce IFN activity. 

Although astrocyte IFN and IFN-a/13 share many biologi- 
cal, physicochemical, and antigenic properties, further neu- 
tralization assays with antisera against subclasses of IFN-a/# 
are required to determine whether these are identical IFNs 

or different subclasses of IFN-a/#. All types of IFN genes 
have been cloned. There is a single IFN-~ gene (16) and IFN--r 
gene (12), whereas from Southern blot analysis on chromo- 
somal DNA the number of IFN-a genes was estimated to be 
at least 9-11 (33, 45). Since there are multiple subclasses of 
IFN-a//3, it is possible that astrocytes exclusively produced 
one IFN subtype that is not expressed by other cells of the 
body. 

Tamm and co-workers (39) have reported IFN-# disorgan- 
izes the microtubule and 10-nm filament network in a sub- 
population of macrophages. Microtubules from the peripheral 
cytoplasm coiled around the nucleus without evidence of 
depolymerization after IFN-/3 treatment. We have found that 
IFN-a/~ and astrocyte IFN treatment of astrocytes results in 
the disorganization of intermediate GFAP filaments, and we 
have obtained data that prolonged astrocyte IFN treatment 
of neurons leads to disorganization of neurofilaments in neu- 
rons (data not shown). Whether these intermediate cytoskel- 
etal alterations affect cellular functions is unclear, but these 
observations suggest a possible explanation for the production 
of neurofibrillary tangles and neuritic plaques in Alzheimer's 
and Parkinson's diseases (37). 

CNS cells have been categorized by morphological and 
antigenic criteria (27). Two broad classes of astrocytes, pro- 
toplasmic and fibrous, differ in their antigenic phenotype, 
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developmental history, morphology, and location in the CNS. 
We have demonstrated that cells within each of these broad 
astrocyte categories can be further subdivided based on their 
ability to express H-2 antigens in response to IFN treatment. 
Whether these H-2 ÷ astrocytes are functionally different from 
H-2- astrocytes remains to be determined, but clearly the 
CNS probably contains many more astrocyte subtypes than 
previously realized. 
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