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We have used a supervised classification approach to systematically mine a large microarray
database derived from livers of compound-treated rats. Thirty-four distinct signatures (classifiers)
for pharmacological and toxicological end points can be identified. Just 200 genes are sufficient to
classify these end points. Signatures were enriched in xenobiotic and immune response genes and
contain un-annotated genes, indicating that not all key genes in the liver xenobiotic responses have
been characterized. Many signatures with equal classification capabilities but with no gene in
common can be derived for the same phenotypic end point. The analysis of the union of all genes
present in these signatures can reveal the underlying biology of that end point as illustrated here
using liver fibrosis signatures. Our approach using the whole genome and a diverse set of
compounds allows a comprehensive view of most pharmacological and toxicological questions and
is applicable to other situations such as disease and development.
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Introduction

To increase our understanding of liver biology and to aid
preclinical drug characterization, we have identified many of
the biological response programs to xenobiotics and drugs in
the liver by measuring RNA abundance changes. Using these
patterns, the similarities and differences in basic biological,
pharmacological and toxicological responses to different
classes of chemicals can be fully characterized.

To achieve these goals, we built a very large liver xenobiotic
and pharmacological response data set. Liver RNA from rats
treated using multiple doses and at several time points with
344 chemicals and drugs belonging to 70 pharmacologic
activity classes and matching vehicle controls was hybridized
to whole genome microarrays. The resulting data set is
composed of 1695 individual animal studies and 5288
microarrays. Coupled to these data are clinical chemistry,
hematology and hepatic histopathology end points selected to

represent data typically collected in pharmacology and
toxicology studies of drug candidates (Ganter et al, 2005).

Others have approached some of these issues using similar
but much smaller gene expression data sets mostly designed to
identify individual signatures, or biomarkers, of one or two
types of phenotypic or pharmacologic end points (Waring and
Ulrich, 2000; Hamadeh et al, 2002; Heinloth et al, 2004; Elrick
et al, 2005; Nie et al, 2006; Slatter et al, 2006). Because of their
limited coverage of different drugs, chemical structures and
pharmacological responses, these studies do not provide a full
description of the xenobiotic response of the liver, and may
suffer from a lack of specificity due to inadequate representa-
tion of the diversity of drug responses.

This data set presents a data mining investigation of
substantial complexity. Both unsupervised and supervised
(Hastie et al, 2000, 2001; Quackenbush, 2001; Liu and Ringner,
2004) methods can be used for analysis. Because supervised
methods provide a quantitative measure of similarity of new
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chemicals to known chemicals, we used them to develop gene
expression signatures (classifiers), which are short, weighted
probe lists used to assign a sample to one of two classes (El
Ghaoui et al, 2003; Natsoulis et al, 2005).

The scope of our analysis allows us to derive general
conclusions on the number of phenotypes resolvable by gene
expression and the characteristics of genes and gene expres-
sion changes capable of classifying all resolvable phenotypes.
In addition, these studies provide a method to identify all of the
genes that are necessary and sufficient to form a classifier for a
given phenotype. The list of necessary genes allows one to
understand the biology of a phenotype in great detail, as
illustrated using liver fibrosis as an example.

Results

Systematic mining of data set

We systematically divided each phenotype measurement by
severity, dose or time, and attempted to find patterns of gene
expression changes that were able to classify the phenotype
and characterize its severity. The phenotypes measured
include histopathological findings, clinical chemistry and
hematology assay results, and other traditional measures of
health such as body and organ weights. Other phenotypes
include the pharmacological and chemical properties of the
compounds. Samples were separated into two classes, those
that share a given phenotype (positive class) and those that do
not (negative class) (Table I).

A total of 2112 two-class classification questions were
submitted to the sparse linear programming (SPLP) algorithm
(Natsoulis et al, 2005), and the results were internally cross-
validated using the split-sample cross-validation procedure
(Table II). In total, 180 signatures met performance cutoffs for
pharmacology-type and toxicity-type signatures (see Materials
and methods); 41 pharmacology signatures had an average
65.4% sensitivity and 99.7% specificity and averaged 37
probes in length (range 7–70), while the 139 toxicity signatures
had an average 52.6% sensitivity and 99.2% specificity and
averaged 79 probes in length (range 27–167). Toxicity
signatures were generally longer than pharmacology signa-
tures, likely due to the complexity of capturing several distinct
biological processes that converge to a common phenotype.

The quality of signatures derived from this systematic
mining effort can be evaluated in several ways. First, each of
the 180 signatures has a better log odds ratio (LOR) than any of
five commonly used preclinical and clinical tests (Figure 1A)
(Kim and Margolin, 1999; Mistry and Cable, 2003; Loy et al,
2004; http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid¼h-
stat1.table.7254). The increased performance is generally
due to the intentional feature of the SPLP algorithm to create
signatures with very high specificity (El Ghaoui et al, 2003;
Natsoulis et al, 2005). The high specificity avoids false-positive
calls, which, in drug development, could trigger a premature
elimination of a compound or costly secondary testing. We
have developed in addition a modified algorithm (adjusted
SPLP, ASPLP) that weighs false positives and false negatives
differently to obtain signatures with enhanced sensitivity and a
slightly reduced specificity (GRG Lanckriet and G Natsoulis,
unpublished results). Second, the performance metrics are

estimates derived from split-sample cross-validation of the
data and tend to overestimate forward validation performance
obtained on independent data. Using a simulation based on
our own results (Figure 1B), we show that the gap between
these values decreases as the size of the training data set
increases, illustrating that signatures derived from a large
database are more predictive of future performance on
independent data (Michiels et al, 2005). Finally, the conver-
gence of the two curves (Figure 1B) suggests that our data set is
sampling a substantial portion of the liver gene expression
repertoire.

Signature redundancy

Many of the classification sets were based on phenotypes that
are biologically similar in interpretation, yet based on distinct
end points (i.e. clinical chemistry versus histopathology), so it
was of interest to determine how many of these 180 signatures
are truly unique. We considered determining the overlap of
signatures by comparing gene composition, class label
similarity and similarity between rules defining the classes.
None of these approaches was ideal as signatures measuring
the same phenotype can have no gene in common (Natsoulis
et al, 2005); looking at class labels does not take into account
outliers that can drastically affect the signature characteristics
and finally, some phenotypic end points that appear different
are in fact similar when the functional annotations of the genes
are compared. Thus, dissimilarities in class names can hide
biological similarity.

In view of these considerations, we chose a data-derived
definition of what constitutes a unique signature. Signature

Table I Summary description of the database

Characteristics of the liver xenobiotic and pharmacologic response
data set

Arrays (4941 treated+347 untreated controls) 5288
Treatments (biological triplicate) 1695
Compounds 344
Structure activity classes (SACs)a 171
Pharmacologic activity classes (ACs)b 77
Clinical chemistryc 46
Liver histopathology annotations 57

aDefined by chemists as being distinct structural classes.
bSecond level of a two-step hierarchy. Several structurally distinct but related
SACs are grouped into one AC if they share a target.
cIncludes blood chemistry and hematology assays.

Table II Summary description of the results of the systematic mining

Signature type: Candidates Passing validity criteria

Body and organ weights 25 5
Clinical chemistrya 477 61
Histopathology 317 65
Therapeutic indication 52
Pharmacology 1241 49

Total 2112 180

aIncludes blood chemistry and hematology assays.
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matching scores (scalar products) for all 1695 treatments
against all 180 valid signatures were clustered (Figure 2A).
The number of unique signatures present in a set of high-
performing signatures can be defined as the number of distinct
clusters at a given threshold. At a correlation of 0.6, there are
34 clusters of signatures. Using a higher threshold (0.8) derives
55 groups that separate very closely related phenotypes. Using
a lower threshold (0.4) derives 23 clusters. At that level events
that are unique, as defined in the literature, are clustered
together. A correlation of 0.6 ensures that most clusters are
composed of signatures for either a single mode of action or a
single pathological end point and divides the data into groups

that follow both known and unexpected biological relation-
ships. A specific list of unique non-redundant signatures was
obtained by choosing as representative the signature with the
highest positive predictive value from each cluster (Table III).

In contrast to the supervised method described above, 2D
hierarchical clustering of all 1695 liver experiments by all
genes resolved only a few phenotypes such as HMG-CoA
reductase inhibitors and acute phase responses, while PCA
could resolve no phenotypes. PCA could only resolve
phenotypes when a much smaller data set (o200 experi-
ments) containing experiments with very distinct gene
expression changes was analyzed (data not shown).

To verify that the patterns observed in Figure 2A do not
occur by chance only, we randomized the class assignments
(label permutation) of each of the 180 valid signatures 100
times each and derived and cross-validated a signature for
each permuted label set. Even though the average LOR of the
100 randomized label sets is close to zero for each of the 180
signatures, the maximum LOR ranges between 1.2 and 5.7 and
averages 2.9, well below the average LOR for the 180 valid
signatures (5.7). The permuted label set signatures are also
much longer (averaging 135 genes) than signatures derived
from real class labels. We chose the signature with the highest
LOR from each set of 100 randomizations and repeated the
clustering experiment described in Figure 2A. Not a single
cluster with more than one member is observed at a
correlation of 0.6, while the highest correlation for a cluster
with at least two members is 0.48 (Supplementary information
S12).

Biological relationships between signatures

Beyond its practical use in defining a set of unique signatures,
biologically interesting relationships are revealed between end
points (Figure 2A). For instance, one large cluster consists of
signatures for PPARa agonists, albumin increase, hepatic
eosinophilia, hypertrophy, HMG-CoA reductase inhibitors and
lipase increase. Both PPARa agonists and HMG-CoA reductase
inhibitors are used to lower serum cholesterol and affect lipid
metabolism. PPARa agonists are known to cause hepatome-
galy and hepatocyte proliferation, and albumin output of the
liver increases as a consequence of hepatomegaly (Peters et al,
1997). Finally, we commonly observed increased blood
albumin concentration as well as hepatocellular eosinophilia
and hypertrophy in both PPARa agonist- and HMG–CoA
reductase inhibitor-treated animals (data not shown).

In another case, certain samples match both the toxicant,
DNA alkylator and the fibrosis and bile duct hyperplasia
signatures (Figure 2B), thus suggesting a biological relation-
ship between cellular damage caused by DNA alkylators and
liver remodeling, bile duct hyperplasia and fibrosis. In our
experiments, most treatments that caused fibrosis also caused
bile duct hyperplasia, and as a consequence, signatures for
fibrosis were well correlated with bile duct hyperplasia
signatures (r¼0.68).

Characteristics of signature genes

A common assumption is that highly weighted signature genes
in valid biomarkers have large amplitudes of regulation in the
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Figure 1 (A) Comparing the 180 valid signatures with five commonly used
tests. The sensitivity and specificity of the 180 valid signatures are compared
for Pap smears, PSA, mammograph, chest X-ray and Ames test (http://
www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=hstat1.table.7254; Kim and Margolin,
1999; Mistry and Cable, 2003; Loy et al, 2004). Iso-log odds curves for LOR
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complete data set was split 20 times into a training data set and a forward
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samples treated with the same compound are either included or not in a given
set), thus modeling a growing toxicology database. The five signatures with the
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positive class. Our data indicate little correlation between the
magnitude of the weight and the amplitude of gene regulation
and between weights and average expression levels in
untreated controls (Supplementary information S2). These
findings suggest that small changes in expression play
important roles in signatures and specific liver responses.

A liver xenobiotic response gene set

A total of 1704 probes (representing 1660 distinct genes)
appear at least once in the 34 signatures. Less than 10% (150
probes) account for more than 50% of the sum of impacts
(a measure of importance; see Materials and methods) across
all 34 signatures, while about 25% (400 probes) account for
75% of the sum of impacts (Supplementary information S1).
Thus a small number of genes contribute disproportionately to
signature performance for all end points.

The average LOR across the 34 signatures is 5.7. Each of the
34 signatures was re-derived, with no additional feature
reduction, using the top 100, 200, 400, 800 and 1600 probes
by impact. A more impartial analysis was carried out by
selecting gene sets from 31 randomly chosen signatures and
evaluating the performance of the other three signatures on
each of the gene sets. The procedure was repeated 10 times,
evaluating the performance of a different set of three
signatures each time. The two curves for average LOR, training
on genes from all or training on genes from all but three
signatures, are statistically indistinguishable (Figure 3) and
form a rapidly rising curve which reaches the performance of
the full set at 200 probes and exceeds the performance of all
genes at 400 probes. The average performance of the 34
signatures derived from three separate random gene sets of
equal size drawn from the array is lower. The entire procedure
was repeated using permuted label sets (Supplementary

information S12). In this case, the two impact-based curves
do not separate from the curve based on random gene choice.

Clearly, a subset of genes selected based on importance in
signature performance performs better than the whole. The
performance of any classification algorithm can decrease in
the presence of a large excess of lower information content
variables (genes), ultimately overwhelming the classification
algorithm. SPLP is rather insensitive although not completely
immune to this effect (Natsoulis et al, 2005). In addition, pre-
selection of genes based on probe variance or highest signal
intensity had little effect on the average LOR, whereas
pre-selection based on the average log ratio across the positive
class and statistical significance of fold change reduces
signature performance (Supplementary information S2).

This analysis suggests that the genes selected by the impact
metric are of general applicability, and just a small portion, by
themselves, can characterize a large fraction of liver response
to xenobiotics. We further characterized the utility of the
small gene set to derive signatures for a biological event
distinct from xenobiotic exposure, caloric restriction. The 200
gene set was far superior to a random selection of genes in
classifying the response to caloric restriction (Supplementary
information S10).

Gene composition of the xenobiotic response
gene set

Given that just 200 probes out of the 1704 probes in the unique
34 signatures can create valid signatures for a diverse set of end
points, this set would be expected to contain many genes
involved in liver xenobiotic metabolism, pharmacology and
response to tissue injury. The probes were ranked by the sum
of their impact across all signatures and examined for
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enrichment in gene ontology (GO) terms (Figure 4 and
Supplementary information S8). We sought to increase the
sensitivity of detecting GO term enrichment by analyzing
successive portions of that ranked list as some terms, only

enriched in the very top of the list, might not appear
significantly enriched in the entire list. GO terms associated
with many of the liver’s functions are enriched in the first
windows of analysis (Figure 4), such as the terms cytochrome
P450 and microsome, two partially overlapping GO terms
(Supplementary information S9), reflecting the importance of
cytochrome P450s in xenobiotic metabolism (Ioannides,
2002). The term fatty acid metabolism, comprising genes such
as fatty acid synthase, enoyl-CoA hydratase, acyl-CoA synthe-
tase among others is also enriched. The liver is a major site for
fatty acid and lipid metabolism, and several major classes of
compounds present in the database (statins, fibrates, glita-
zones, estrogen receptor modulators and others) affect lipid
synthesis and degradation. Terms such as feeding behavior
(including genes such as orexin and glucagon) and potassium
ion transport and elevation of cytosolic calcium ion concen-
tration suggest that genes belonging to these categories are
also involved in xenobiotic responses but are less important
than cytochrome P450 and fatty acid metabolism which peak
earlier.

Identification of complete gene sets capable of
forming a classifier

We have previously observed that several signatures for the
same end point can be derived with no gene in common
(Natsoulis et al, 2005). Therefore, it was of interest to
determine how many different genes are capable, in various
combinations, of yielding a signature with a performance
exceeding a certain threshold for a given classification
question. Such a gene set could be considered a necessary
gene set (NGS) because no valid signature can be derived from
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the complement of the NGS (i.e. all genes present on the array
minus the NGS). To determine the NGS for each of the 34 end
points described above (Table III and Supplementary informa-
tion S11), all genes were submitted to the signature-generating
algorithm initially. If a valid signature was obtained, the
highest impact signature probes, accounting forX90% of total
impact, were removed from the set of all probes and the
resulting stripped set was resubmitted to the algorithm. The
cycle was repeated until the performance of the signatures
dropped below a chosen threshold (for this experiment LOR
X4); we call this procedure ‘stripping’. Some signatures, such
as spleen weight decrease and periportal lipid accumulation,
continue to yield valid signatures even after more than 20
cycles of stripping. The performance of other signatures such
as monocyte increase and periportal hypertrophy rapidly
decays after one or two cycles. Examination of the genes in
these stripped signatures for each type suggests that in the
former case, a large number of genes belonging to different
pathways are sufficiently characteristic of the end point in
question to yield a valid signature. In the latter case, just a few
genes have the ability to diagnose the phenotype and once
removed from consideration, no other gene can substitute.

Liver fibrosis

To illustrate the value of the NGS gene list formed by the
stripping procedure, we chose the liver fibrosis signatures for
detailed analysis (SV0650143R5RU, Table III). Chronic liver
fibrosis can ultimately result in liver failure and is a significant
risk factor for liver cancer, and remains difficult to prevent and
treat (Takahara et al, 2006; Iredale, 2007). Better under-
standing of the biological responses during development of
fibrosis has emerged via studies using multiple experimental
model systems (Huang et al, 2004; Jiang et al, 2004;
Utsunomiya et al, 2004; Takahara et al, 2006; Gnainsky et al,
2007; Iredale, 2007) and genome-wide characterization of gene
expression changes as described here.

Hepatic fibrosis commonly occurs following injury from a
variety of insults, including drugs and toxicants, and is
accompanied by an inflammatory response triggered by
Kupffer cells, resident monocytes and other types of immune
cells. Hepatic stellate cells (HSCs) are normally quiescent;
upon hepatocyte injury, however, HSCs are activated by
inflammation and differentiate into myofibroblast-like cells
that can proliferate and migrate. HSCs and periportal
fibroblasts repair hepatic injury by secreting extracellular
matrix proteins such as collagen, whose synthesis is promoted
by the fibrogenic cytokine TGFb (Ramm et al, 2000).

Gene-type enrichment in signatures reveals
pathways and processes activated by
pharmacology or pathology

The 1380 unique probes (Supplementary information S11) that
were present in all stripped fibrosis signatures that exceeded
LOR¼4 are statistically enriched (P-value o0.05) in GO terms,
such as cell–matrix adhesion, amino-acid transporter activity,
fatty acid biosynthetic process, cellular defense response,
chemokine activity, organic anion transporter activity, sulfate

transport, positive regulation of transcription and carbo-
hydrate transport, most of which are affected during injury
and subsequent fibrosis and bile duct hyperplasia (Figure 5A).
Other terms such as serotonin receptor activity, sensory
perception and brain development were enriched at P-values
o0.001, indicating that local innervation and paracrine
regulation of liver functions are remodeled during fibrosis.
Many of these enrichments are not observed until the later
signature cycles (cell–matrix adhesion and serotonin trans-
porter activity, for example) and could be missed with more
conventional methods of analysis.

Downregulation of a number of liver-specific genes may
signal a loss of function of and/or an actual loss of the major
parenchymal cells in the liver, hepatocytes, which comprise
80% of the normal liver cell population. Genes that are
preferentially downregulated include those that are involved
in amino-acid metabolism, organic anion and amino-acid
transport and metabolism, and several sulfotransferases and
cytochrome P450s (Figure 5B).

Genes that are preferentially upregulated in contrast include
those involved in cell adhesion, cytoskeleton organization,
cell–cell signaling, proliferation, xenobiotic metabolism and
the immune response. Molecules that are upregulated
induce or promote cell adhesion (PDGFa, endothelin 1,
cd36, osteoblast-specific factor and procollagen C-endopepti-
dase enhancer) and remodeling of the actin cytoskeleton
(Flna, Tekt1, Krt2-7 and Cappa1). Both PDGFa and endothelin
1 promote activation of HSCs and consequently fibrosis (Eng
and Friedman, 2000; Iredale, 2007). In total, 84 of 137 probes
that averaged twofold or more upregulation had low ex-
pression in the liver (average log signal intensity o�0.3;
P-value¼8.8�10�7). Many of these genes are those upregu-
lated in rare cell types that are activated during liver injury and
fibrosis, such as HSCs and Kupffer cells (Figure 5B).

TGFb1, which is a strong promoter of collagen production
and fibrosis, was itself unchanged on average. TGFb1 must be
proteolytically processed before becoming active (Zhu and
Burgess, 2001) and thus there may be a change in conditions
that favor processing of latent TGFb1 during liver injury.
Evidence that TGFb1 is exerting an active influence includes
the induction of both TGFb1-induced transcript 1 and
follistatin. Follistatin is an antagonist of activin, a growth
factor that is a member of the TGF superfamily, and may
modulate TGF action (Matzuk et al, 1995).

Activated HSCs produce collagen, which is deposited as part
of the remodeling of the extracellular matrix during fibrosis.
Expression of collagen at the sites of injury correlates with
induction of fibrosis and scarring (Leveille and Arias, 1993;
Alcolado et al, 1997; Gabele et al, 2003). Seven different genes
encoding collagen molecules were part of the NGS, including
procollagen type 1 a1 (upregulated about twofold on average
across the positive class), the primary molecule in collagen I
(data not shown).

The NGS analyses for all 34 unique signatures is summar-
ized in Supplementary information S11. Similar insight into
biology can be obtained through these analyses. For example,
the HMG CoA reductase inhibitor signature NGS is enriched
in cholesterol biosynthesis genes, reflecting the mechanism
of action of these drugs. In addition, this signature was
derived from high-dose treatments that caused liver injury.
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Enrichment of cell cycle and DNA replication terms were also
observed, a possible reflection of the liver response to injury.

Discussion

The concept of the connectivity map was recently introduced,
whereby a set of signatures is compared to a reference
database of gene expression profiles obtained from com-
pound-treated cell lines (Lamb et al, 2006). The authors show
that close examination of gene expression profiles correlated
and anticorrelated with a given signature provides insights

into the multiple modes of action of certain compound classes
and into the multiple biological mechanisms underpinning the
phenotype of interest (Lamb et al, 2006). Here, we explore a
much larger xenobiotic response database in an in vivo model.
The breadth of the database and the systematic nature of the
methodology allow us to derive a number of observations of
general interest. (1) We have developed methods to identify
biologically synonymous end points; these synonymous end
points uncovered unexpected associations between apparently
unrelated phenotypes. Using this method, we identify signa-
tures (classifiers) for 34 distinct end points. (2) We show that
signature genes are not appreciably enriched in genes showing
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Figure 5 (A) Analysis of gene types enriched in the necessary gene set for the fibrosis signatures. Genes were ranked by cycle across all signatures. Overlapping
windows of 50 genes were tested for enrichment in GO terms. Terms with enrichment exceeding �log(P-value)¼2.5 are shown. (B) Model of gene expression events in
liver fibrosis annotated with genes observed to be regulated by profibrotic xenobiotic treatments. The normal architecture of the liver (left) is remodeled following toxic
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large amplitude of regulation or high levels of expression; we
also show that aggressive gene pre-selection by amplitude of
expression change or statistical significance reduces classifier
quality. (3) We show that a small number of genes (B200) is
sufficient to classify all unique phenotypic end points in the
liver. (4) We show that this limited gene set involves many
genes in the xenobiotic response repertoire. (5) Finally, we
show that a large data set encompassing a wide variety of
toxicological and pharmacological activities yields signatures
with higher performance.

Our approach also identifies examples of very different
signatures for a single end point. Similar results have been
reported before and have often been regarded as problematic
for the studies themselves or of the field in general (Michiels
et al, 2005). Here, we describe a formal method to identify all
the genes capable of defining a classifier for a given phenotype,
at a chosen quality threshold. These lists of necessary genes
form a ranked list of the genes involved in a particular
phenotype and can be used to characterize the gene expression
changes and thus infer biological changes that underlie a
phenotype. Because the NGS includes all potential genes that
could be used as part of a diagnostic test, a definition of
the NGS for a particular phenotype or disease provides
robust intellectual property and a barrier to entry for others
attempting to build diagnostics for the same phenotype.

The liver fibrosis NGS provides insights into the biological
pathways involved in the progression from liver injury to
fibrosis. We show that xenobiotic insult leads to loss of certain
gene expression apparently secondary to hepatocyte cell death
through necrosis and apoptosis and leads to the upregulation
of weakly expressed genes, probably due to activation and
expansion of less abundant cell types, such as HSCs and
Kupffer cells.

This study illustrates that a comprehensive approach can
distill a complex and broad issue to a definable set of answers,
increase our knowledge and develop useful signatures and
diagnostics. Using a similar approach would better character-
ize other model systems and molecular phenotypes underlying
disease processes and lead ultimately to clinically useful
diagnostic markers.

Materials and methods

Rat liver xenobiotic and pharmacology database

The construction of the database was previously described in detail
(Ganter et al, 2005). We focus here on the liver portion of the data set.
In total, the data set was comprised of 5288 individual animal studies
(arrays). The array data used in this study have been deposited in the
Gene Expression Omnibus (GEO accession no. GSE8858). Microarray
analysis was performed on liver mRNA using CodeLink Rat UniSet 1
Bioarrays (now provided by Applied Microarrays, Tempe, AZ, USA)
with analysis restricted to 8565 probes and about 7700 individual
genes. Coupled to these data are the blood clinical chemistry,
hematology and histopathology findings typically measured in
pharmacology and toxicology studies of new chemicals and drugs
(Tables I and II and Supplementary information S3 describe the
dimensions and contents of the data set). Taken together, the RNA
abundance measurements and the phenotypic measurements consti-
tute a uniform data set, which we have explored using supervised
mining methods using classification rules established as described
below.

Definitions

During the course of this study we employed several widely used
concepts, and a few novel metrics, which are defined here to increase
clarity. Treatment: a biological triplicate group of samples derived from
animals treated with the same dose, for the same time and with the
same compound. Upregulated, downregulated: indicate changes in the
steady-state level of expression of a RNA in the liver, we note that
tissues are composed of several cell types and changes may reflect
multiplication, activation, inactivation or death of cell populations, in
addition to selective RNA degradation, or changes in primary
transcription rates. Orthogonal data: data describing samples that
are not gene expression data; for example, clinical chemistry,
hematology-, histopathology-, pharmacology- and literature-derived
annotations. True positive (TP): samples for which the biomarker
indicates the sample is positive and the orthogonal data indicate the
sample is positive for the phenotype under investigation. True negative
(TN): samples for which the biomarker indicates the sample is
negative and the orthogonal data indicate the sample is negative for
the phenotype under investigation. False negative (FN): samples for
which the biomarker indicates the sample is negative and the
orthogonal data indicate the sample is positive. False positive (FP):
samples for which the biomarker indicates the sample is positive
and the orthogonal data indicate the sample is negative. Log ratio:
always refers to log10 ratio of mean signals of treated samples
to vehicle treated controls for the gene in question. Sensitivity: sensi-
tivity¼TP/(TPþFN). Specificity: specificity¼TN/(FPþTN). Positive
predictive value (PPV): PPV¼TP/(TPþFP). Log odds ratio (LOR):
LOR¼ln(((TPþ 0.5)(TNþ 0.5))/(FPþ 0.5)(FNþ 0.5)). The scalar pro-
duct (SP): defined for a treatment as SP¼Swixi�b, where wi is the
weight for gene i and xi is the log10 ratio for gene i; the sum is over all
genes of the signature. Note that the list of genes and weights is the
output of the SPLP algorithm. Impact: the impact of a gene in a
signature is computed by multiplying the average log ratio x for that
gene across the positive class defined in the signature definition (see
below) by the weight w of that gene in the signature. The total impact
of the gene is that value, minus the equivalent value calculated for the
negative class. Gene list and GO analysis: or examinations of lists of
genes for enrichment of various terms; enrichment is calculated by use
of Fisher’s exact test and often expressed as the P-value or�log10 of the
P-value for the particular term(s).

Rule types for class definition

The rules were implemented using the SQL query language according
to the following logical steps. First, the ‘universe’ of profiles relevant to
the two-class classification question was defined. The universe could
be further restricted based on dose, time or both considerations.
Profiles outside the universe were not considered further. Next the
universe was split into three classes: the positive class, the negative
class and the excluded class. The positive class was usually defined as
the set of samples sharing a particular property, while the negative
class was often defined as the remainder of the universe. A portion of
the universe was sometimes assigned to an excluded class when the
true phenotype might not be known for some samples because they
were not assayed, or they were assayed but assay values were missing
or uncertain. Alternatively, when classes were defined based on a
continuous assay value, samples were often ranked, by fold change or
P-value versus control, for example. The positive and negative classes
were then defined as the extremes (top one-third and bottom one-third,
for example) of this distribution and the intermediate samples were
assigned to the excluded class. This had the advantage of training
neither for nor against samples with intermediate values. Most of the
clinical chemistry and hematology rules were structured in this
manner since these values were continuous. In these cases, derivation
of signatures along the variable distribution was often systematically
explored. For example, signatures were systematically derived for a
particular clinical value from treatments with fold changes of 100-, 30-,
10-, 3-, 1.5- and 1.1-fold; similar systematic schemes were applied as
appropriate to ranked lists, P-values, ridit scores and other metrics
indicating intensity. These systematic studies often revealed how the
phenotype changed with intensity.
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To allow cross-validation through split-sample procedure and to
impose chemical diversity on the training set, thereby broadening the
applicability, we imposed minimum class sizes. A minimum class size
was imposed for both the positive and negative classes and for all rule
types. We used split-sample cross-validation across 20 randomly
selected splits to estimate the performance of the signature. We
uniformly applied a split ratio of 60% training and 40% test, which in
cases of a positive class size equal to 6 corresponded to 3.6 training and
2.4 test, or after rounding, 3 positive samples in the training set and 3
in the test set. Imposing a lower limit of six experiments in the positive
class ensured that a minimum number of 6!/(3!*3!)¼20 distinct splits
of the positive class were possible. The minimum negative class size
was set at 44 so that the sum of minimum sizes for both classes
comprised at least 50 samples. The larger minimum class requirement
for the negative class was intended to ensure diversity within the
negative class, so that the resulting signature was capable of
discriminating between the ‘phenotype of interest’ and a large variety
of other effects. A minimum of three distinct chemicals was also
imposed on the positive class to ensure that the signatures recognized
a general property of the class and not idiosyncratic characteristics of
an individual compound. Additionally, for clinical chemistry and
hematology and histopathology signatures, we required that the
compounds used in the positive class treatments belong to three
separate activity classes. Again, this was to ensure that the resulting
signature is characteristic of the common pathology and not of an
individual compound class. The logical steps described above were
combined and automated to generate rule sets that could be
categorized by the type of data defining the positive class as distinct
from most of the other treatments within the database.

The systematic mining, using the restrictions and procedures
mentioned, resulted in 2112 signature-derivation rules. The positive
classes of these signatures averaged 36 treatments and included an
average of 14 drugs from 11 classes per signature, and the negative
class averaged 754 treatments and included an average of 270 drugs
from 63 activity classes. Thus, the diversity of the treatments, drugs
and activity classes was very large. Examples of the complete list of
2112 rules are presented by rule type for the activity class, structure
activity class, pharmacology, clinical chemistry, hematology, histo-
pathology rules and the body-and-organ weight rules (Supplementary
information S4). The list of histopathology annotations and of the
clinical chemistry and hematology assays on which the rules are based
is presented (Supplementary information S3). Full Excels files
containing all of the rules also accompany this paper. The compound
classification in terms of activity class and structure activity class as
well as the class labels for the 34 unique signatures is shown in Table III
and other characteristics of the set of 34 unique signatures can be
found in Supplementary information S5, S6, S7 and S8.

Signature derivation and cross-validation

The classification algorithm used was the SPLP algorithm (El Ghaoui
et al, 2003; Natsoulis et al, 2005). We note that this algorithm makes
use of the mean log ratio and the standard error of the mean within
each biological triplicate experiment, thus accounting for variability of
measurements in classifier construction. In all cases, probes were
eliminated for missing data (for the positive class if any data were
missing; or for the negative class if 45% missing values). Missing
probes occurred because of array technical failures, values below
threshold and several other less common technical reasons. For
computational speed consideration, probe pre-selection (feature
reduction) by variance was used for those systematic mining signature
derivation runs, which aimed to characterize all possible drug
signatures, 2112 derivations in total (Tables I and II).

Split-sample cross-validation
In all cases, a 60/40 split-sample procedure was applied and the
performance was reported as the average of the test results for 20
random partitions of the data (Simon et al, 2003; Allison et al, 2006;
Varma and Simon, 2006). In cases where the sample class identities
(labels) were set according to the properties of the compound
(structure activity class, activity class and pharmacology signatures)

the treatments were split by compounds. Splitting by compounds
placed all dose–time combinations of treatments for a given compound
either in the training or in the test set. This avoided situations in which
a signature could be trained on samples treated with multiple dose–
time combinations of a compound and evaluated on other dose–time
combinations of the same compound. Evaluation was performed at the
level of the treatment. We refer to this modified cross-validation
procedure as split by compound, count by treatment. In cases where
the labels were set according to the properties of the sample (e.g.
signatures for histopathology and clinical chemistry end points where
dose level and/or time point are critical to development of the
phenotype), both the partitioning and the evaluation were carried out
at the level of the sample; we refer to this cross-validation procedure as
split by treatment, count by treatment.

Validity criteria
We defined two different validity cutoffs for signatures based on their
anticipated use and the sensitivity of the expected user groups to false-
positive or false-negative errors. A specificity X95% and sensitivity
X50% was used for signatures assessing pharmacology, and
specificity X98% and sensitivity X40% for signatures classifying
toxicity end points.

Liver xenobiotic response gene set

An impact table for all genes appearing in the 34 unique signatures
recomputed without gene pre-selection is presented (Supplementary
information S8). Genes were sorted according to the sum of impacts
across all signatures. This sorted list is referred to in the text as the
impact-based list. The top 200 genes from this list are referred to as the
liver xenobiotic response gene set.

Identification of NGSs

For a given end point, all available gene variables (i.e. no feature
reduction) were submitted to the SPLP algorithm. If, upon cross-
validation, the performance of the resulting signature exceeded
LOR¼4, the highest impact genes participating in the signature were
set aside from the data set. The signature was re-derived and the
procedure was repeated until the performance of the signature
dropped below LOR¼4. The union of all the set-aside gene sets was
the NGS. We have observed that on average less than half the genes
contribute more than 90% of the impact in any given signature. To
focus the algorithm on the genes contributing most to the signature, for
each cycle genes were ranked by impact, and the highest ranked genes,
accounting for at least 90% of the total impact, were designated as the
most important genes in the signature and set aside. GO analysis of the
stripped gene set was performed as follows: genes were arranged in
order of stripping cycles. GO analysis was performed on a series of
overlapping windows of 50 genes with increments of 25. GO term
enrichment was calculated for each window and for each GO
term using Fisher’s exact test.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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