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The use of transcranial direct current stimulation (tDCS) in patients with attention
deficit hyperactivity disorder (ADHD) has been suggested as a promising alternative to
psychopharmacological treatment approaches due to its local and network effects on
brain activation. In the current study, we investigated the impact of tDCS over the right
inferior frontal gyrus (rIFG) on interference control in 21 male adolescents with ADHD
and 21 age matched healthy controls aged 13–17 years, who underwent three separate
sessions of tDCS (anodal, cathodal, and sham) while completing a Flanker task. Even
though anodal stimulation appeared to diminish commission errors in the ADHD group,
the overall analysis revealed no significant effect of tDCS. Since participants showed a
considerable learning effect from the first to the second session, performance in the first
session was separately analyzed. ADHD patients receiving sham stimulation in the first
session showed impaired interference control compared to healthy control participants
whereas ADHD patients who were exposed to anodal stimulation, showed comparable
performance levels (commission errors, reaction time variability) to the control group.
These results suggest that anodal tDCS of the right inferior frontal gyrus could improve
interference control in patients with ADHD.

Keywords: transcranial direct current stimulation, tDCS, attention deficit hyperactivity disorder, ADHD,
interference control, inhibitory control, right inferior frontal gyrus, flanker task

INTRODUCTION

Attention deficit hyperactivity disorder (ADHD) is a childhood-onset psychiatric disorder which is
characterized by developmentally inappropriate levels of inattention, impulsivity and hyperactivity
(DSM-IV). It has a worldwide prevalence of 5.3% in children (Polanczyk et al., 2007) and in many
cases symptoms persist into adulthood (Mannuzza et al., 2003) with an adult prevalence of still
3.4% (Fayyad et al., 2007).

In ADHD cognitive control, the ability to control sensory processes and actions in a goal-
directed manner (Bunge et al., 2002), is severely compromised, affecting motor, emotional
and cognitive domains (Wodka et al., 2007). ADHD patients are particularly impaired in
different aspects of inhibition control, namely interference control, the suppression of task
irrelevant, competing stimuli and response inhibition, the suppression of a prepotent response.
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Interference control has been effectively investigated using the
Flanker task (Eriksen and Eriksen, 1974) and the Simon task
(Simon, 1990), which has been shown to provide a reliable
measurement of this cognitive ability (Wöstmann et al., 2013). In
both tasks participants have to indicate the category of a target
stimulus by a right or a left button press. In the Flanker task,
the target is surrounded by distracting stimuli which must be
ignored in order to give the right response. In the Simon task,
the target stimulus is presented either on the left or on the right
side. In this case, the position must be ignored to give the right
response. So far, ADHD patients have shown higher error rates
and slower reaction times compared to healthy controls (Mullane
et al., 2009).

Successful interference control has been associated with the
integrity of the right inferior frontal gyrus (rIFG) (Luks et al.,
2010; Zhu et al., 2010). In children and adolescents with ADHD
various studies have revealed structural (Sowell et al., 2003;
Durston et al., 2004) as well as functional alterations (Aron and
Poldrack, 2005) in the rIFG. For example during a Simon task,
unmedicated ADHD patients showed less activity in the rIFG
compared to healthy controls (Rubia et al., 2011) whereas ADHD
patients medicated with methylphenidate did not differ from
healthy controls (Lee et al., 2010). Thus, increasing activity of the
rIFG seems to facilitate interference control.

Transcranial direct current stimulation (tDCS) is a non-
invasive tool for modulating cortical excitability. To conduct
tDCS a weak current is passing through the scalp mostly via two
conductive rubber electrodes in sponges soaked in saline solution
or covered with conductive gel. The modulation of cortical
excitability depends on the polarity of electrodes. In general,
the positively charged anode increases cortical excitability
while the negatively charged cathode decreases it (Nitsche and
Paulus, 2000). This modulation is due to a modification of the
resting membrane potential in regions of current flow (Stagg
and Nitsche, 2011). TDCS when applied for 30 min induces
prolonged effects after the end of stimulation (Nitsche and
Paulus, 2001).

Studies showed tDCS induced improvements of symptom
severity already in different psychiatric and neurologic disorders,
for example depression (Kalu et al., 2012), schizophrenia
(Brunelin et al., 2012), stroke (Chang et al., 2015) and
dyslexia (Heth and Lavidor, 2015). Castellanos and Proal
(2012) suggested that tDCS may also be of therapeutic use
for ADHD, especially due to its beneficial effect on larger
scale networks (Keeser et al., 2011). The development of non-
pharmaceutical treatment approaches is particularly relevant in
ADHD, since even though many patients benefit from medical
treatment, a substantial number report remarkable side effects
and parents as well as children and adolescents often wish for
alternative treatment strategies (Halperin and Healey, 2011).
Effects of stimulant treatment persist only for the time of
active medication (Chronis et al., 2003), whereas beneficial
effects of repetitive tDCS have been reported to last for several
month (Cohen Kadosh et al., 2010). Even though tDCS has
been predominantly employed in adults, studies in children
and adolescents have confirmed that this method is also well
tolerated and save in younger age groups (Mattai et al., 2011;

Andrade et al., 2014; Moliadze et al., 2014; Krishnan et al.,
2015).

Studies testing modulatory effects of tDCS in ADHD are,
however, sparse. Using oscillatory tDCS during slow wave sleep,
Prehn-Kristensen et al. (2014) demonstrated an improvement
of declarative memory performance on the next day as well
as improved reaction times in a go/nogo task in children with
ADHD (Munz et al., 2015).

In the current study, we aimed to improve interference control
in adolescents with ADHD using tDCS. In healthy adults, tDCS
over of the rIFG and the pre-supplementary motor area has
been successfully used to improve response inhibition (Hsu et al.,
2011; Jacobson et al., 2011; Ditye et al., 2012), thus, the rIFG
was chosen as target region for stimulation in adolescents with
and without ADHD. We applied anodal, cathodal, and sham
tDCS to each participant. We predicted that ADHD patients
would show impaired interference control in the sham condition
and would improve through anodal tDCS over the right IFG.
Since cathodal tDCS over frontal cortical areas can impair as
well as facilitate cognitive processes (Nozari et al., 2014), we
included cathodal stimulation for explorative purposes. Finally,
we performed computer simulations using a pediatric model in
order to model the current flow in the experimental stimulation
design.

MATERIALS AND METHODS

Participants
Forty six male adolescents aged 13–17 years participated in the
study. Three ADHD patients and one control participant were
not included because behavioral data suggested that they did not
comprehend the task (see Statistics for exclusion criteria).

Participants and their parents were interviewed with the
Revised Schedule for Affective Disorders and Schizophrenia for
School-Age Children: Present and Lifetime Version (K-SADS-
PL, Kaufmann et al., 1997). Twenty one of the adolescents met
the diagnostic criteria of the DSM-IV for ADHD (16 combined
subtype, 5 primarily inattentive subtype). Additionally, one
patient fulfilled diagnostic criteria for conduct disorder. Control
subjects had no history of neurological or psychiatric disorders.

Intelligence was assessed by the Culture Fair Test – Revised
Version (CFT, Weiss, 2008). Handedness was assessed by the
Edinburgh Handedness Inventory (Oldfield, 1971). Table 1 shows
that the groups did not differ in age or intelligence. Parental
and self report revealed that ADHD symptom severity was
higher in ADHD patients compared to healthy controls. Two
participants of the ADHD group and two participants of the
control group were left handed, all others were right handed.
ADHD patients taking methylphenidate (n = 10, sustained-
release) or lisdexamfetamine (n= 1) for the treatment of ADHD,
refrained at least 24 h before each experimental session from
taking their medication.

No participant reported contraindications to receiving tDCS.
The study was approved by the local ethics committee of the
University of Magdeburg and followed the ethical standards
of the Helsinki declaration. All participants and their parents
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TABLE 1 | Group characteristics.

ADHD (n = 21) Controls (n = 21) p-value

Age (years) 14.33 14.24 0.79

Combined subtype (ADHD) 16 – –

Primarily inattentive subtype (ADHD) 5 – –

Conduct disorder 1 – –

Medication 11 – –

IQ (CFT) 100.00 105.33 0.14

ADHD symptom severity (K-SADS-PL, parental rating present) 10.86 0.25 <0.001

ADHD symptom severity (K-SADS-PL, self rating present) 9.90 0.10 <0.001

gave written informed assent/consent before participating. Each
participant received a voucher (10€) for a local shopping center
per session.

Experimental Design and Task
Each participant received anodal, cathodal, and sham tDCS,
separated by at least 1 week, while completing a modified Eriksen
Flanker task (Eriksen and Eriksen, 1974). The order of tDCS types
was pseudo-randomized and counterbalanced and participants
were blinded to the type of stimulation they received in each
session. For the Flanker task, stimuli consisted of one central
target arrow flanked by two arrows on both sides (Figure 1C).
Participants had to indicate the direction of the target arrow
(right/left) by a button press with the index finger of their
right or left hand, respectively. Flanking arrows pointed in the

same (congruent stimuli) or opposite direction (incongruent
stimuli) as the target arrow. Four resulting arrays were randomly
presented with equal frequency. Stimuli were presented with a
visual angle of 3.8◦ with Presentation software (version 16.4,
www.neurobs.com).

As illustrated in Figure 1, each trial started with a fixation
cross, presented for 100, 200, 300, or 400 ms followed by a
blank screen for 100 ms. Then stimuli were presented for 60 ms
followed by a blank screen for 300 ms and a fixation cross for
1000 ms. Participants had a total time of 1360 ms to respond
to the target stimulus. The interstimulus interval varied between
1560 and 1860 ms. Participants were instructed to react as
accurately and as fast as possible. The task consisted of three runs
à 156 trials and had a total duration of 15 min. Before the task
started, a short training was conducted for 1 min (32 trials).

FIGURE 1 | Experimental procedure and task. (A) position of the stimulation electrode, (B) position of the reference electrode, (C) Flanker task, (D) procedure of
an experimental session.

Frontiers in Cellular Neuroscience | www.frontiersin.org 3 March 2016 | Volume 10 | Article 72

www.neurobs.com
http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


fncel-10-00072 March 21, 2016 Time: 16:26 # 4

Breitling et al. Improving Interference Control in ADHD with tDCS

Transcranial Direct Current Stimulation
A battery driven DC stimulator (neuroConn, Germany) delivered
a direct current with an intensity of 1 mA via two conductive
rubber electrodes (7 × 5 cm, current density: 0.029 mA/cm2)
covered with saline soaked sponges. The stimulation electrode
was centered on electrode site F8 (Figure 1A), according to
the 10–20 International EEG system which corresponds to the
rIFG (Homan et al., 1987). The reference electrode was placed
posterior to the left mastoid (Figure 1B). Anodal and cathodal
tDCS were applied for 20 min (with a 30 s ramp up and down).
For sham stimulation electrode arrangement was identical to
active stimulation but the stimulator was turned off after 30 s
with a 30 s ramp up and down. To ensure stable stimulation
effects according to Nitsche et al. (2008), each participant
received 5 min of tDCS before he started with the Flanker
task (Figure 1D). In the first 5 min of stimulation instruction
was given to the participants and a short training block was
conducted. Afterward, stimulation continued for the 15 min
duration of the experimental task. At the end of each session
participants indicated the strength of skin sensations caused by
tDCS and their subjective ability to concentrate on a 5-point
Likert-scale.

Computer Simulation of tDCS
The simulations were conducted using a head model, which was
derived from a pediatric brain atlas covering subjects in an age
range of 9–18 years. This multimodal head model [Pediatric Head
Modeling (PHM); Song et al., 2013, https://home.pedeheadm
od.net/display/Pedvol/Pediatric+Head+Atlasses#, accessed on
May 19th 2015] fuses CT imaging data of a 13-year-old boy,
which is registered non-linearly, with an MRI atlas (MNI, Fonov
et al., 2011). The multimodal approach combines advantages of
computed tomography (CT) and magnetic resonance imaging
(MRI) for an accurate representation of tissues, such as scalp,
skull, internal air (CT) as well as gray/white matter and
eyeballs (MRI). The segmentation (PHM) was utilized to create
a tetrahedral mesh (software: cleaver version 1.5.4, 6.7/38.3
million tetrahedral nodes/elements), which was used later on to
perform bioelectric simulations of tDCS (finite element method,
Dannhauer et al., 2012). Two electrodes sponges (50 × 70 mm,
5 mm thickness) were meshed with the head model based on
experimental electrode positioning (anode: F8, cathode: P7).
SCIRun5 (SCI-Institute, 2016) was employed to set up electrical
properties such as boundary conditions (±1 mA, complete
electrode model), for anode and cathode, as well as, isotropic
conductivities (scalp = 0.43, skull = 0.01, CSF = 1.79, gray and
white matter = 0.33/0.142, eyeballs = 0.4, electrode saline = 1.4
and internal air = 1e-6 [S/m]) and electrode contact impedance
of 20 kΩ. Again, SCIRun5/BrainStimulator was applied to
further compute a finite element solution and visualize current
densities.

Statistics
From the original sample, three ADHD patients and one control
person were excluded from the analysis because their commission
error rates were more than two standard deviations above

the mean of their respective group (all stimuli, first session)
indicating that they did not entirely comprehend the task.

Rates of commission errors (false button press) and omission
errors (no button press), mean of reaction times and reaction
time variability (standard deviation of reaction time normalized
by mean of reaction time) were analyzed in SPSS (version
22.0). Incongruent trials were considered for all analyses, as the
performance in these trials serves as an indicator for quality of
interference control. Only the first reaction of participants was
analyzed and only correct trials were considered for reaction
time analyses. Trials with reaction times less than 200 ms
were excluded from all analyses. Repeated measures analyses of
variance (ANOVA) were conducted with the factors tDCS type
(anodal vs. cathodal vs. sham) and group (ADHD vs. control)
for all dependent measures. In order to control for learning
effects across sessions, we separately analyzed session number
(1 vs. 2 vs. 3) and group (ADHD vs. control) in a further repeated
measures ANOVA. Mean comparisons of directed hypotheses are
reported one-sided.

RESULTS

The overall ANOVA did not show effects of tDCS regarding
commission errors, omission errors, reaction times and reaction
time variability, although descriptive data suggested diminished
commission errors in the ADHD group after anodal stimulation
(Figure 2A, Supplementary Table S1). The analysis of session
number, however, revealed a significant learning effect for
commission errors [F(2,80) = 15.71, p < 0.001], reaction
times [F(2,80) = 6.81, p < 0.01] and reaction time variability
[F(2,80) = 3.88, p < 0.05]. Participants of both groups made
more errors in the first session compared to the second
[t(41) = 4.63, p < 0.001] and the third session [t(41) = 4.38,
p < 0.001] (Figure 2B). Reaction times and reaction time
variability decreased also from the first to the second session
[t(41) = 2.99, p < 0.01, t(41) = 2.81, p < 0.01]. See Supplementary
Table S2 for detailed values. To resolve the confounding of
learning and stimulation effects, we subsequently focused in
an exploratory analysis on the first session of each participant.
The three resulting ADHD groups (anodal, cathodal, sham,
n = 7 in each group) as well as the three control groups
did not differ in age or intelligence. Symptom severity
did not differ between ADHD groups and the distribution
of clinical subtypes and medication was comparable (all
p > 0.1).

A marginally significant interaction between tDCS
stimulation and group showed that patients tended to respond
more strongly to stimulation than controls [F(2,36) = 2.71,
p = 0.08] (Figure 3A). ADHD patients who received sham
stimulation made more commission errors (mean: 20.57%)
than controls (mean: 12.08%) [t(12) = −1.92, p < 0.05] and
ADHD patients receiving anodal stimulation had lower
commission error rates (mean: 9.82%) than those who
received sham stimulation [t(12) = -2.44, p = 0.02]. In
the control group, there was no effect of tDCS (anodal:
13.21%, sham: 12.08%). Thus, the commission error rate in
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FIGURE 2 | Commission errors in Flanker task. (A) commission errors in different tDCS conditions when three sessions of each participant are considered,
(B) learning effect, ∗∗∗p < 0.001, error bars represent one standard deviation.

FIGURE 3 | Performance for first sessions in different tDCS conditions. (A) Commission errors, (B) reaction time variability, ∗p < 0.05, error bars represent
one standard deviation.

ADHD patients who received anodal tDCS was at the same
level as in healthy controls. Cathodal tDCS did not differ
from sham tDCS in both groups (ADHD: 14.45%, controls:
8.97%).

The same pattern occurred for reaction time variability
(Figure 3B). An interaction between tDCS stimulation and group
[F(2,36) = 3.47, p < 0.05] showed that in patients reaction time
variability was reduced during anodal stimulation compared to
sham stimulation [t(12) = −2.02, p < 0.05]. Whereas ADHD
patients who received sham stimulation showed higher variability
of reaction times than control participants [t(7.7) = −2.66,
p = 0.01], ADHD patients in the anodal condition did not differ
from the control group. In the control group, reaction time

variability was lower during sham tDCS than during anodal tDCS
[t(12) = 2.03, p < 0.05]. Cathodal tDCS did not differ from sham
tDCS in both groups.

For omission errors and means of reaction times there
were no significant main effects of tDCS type or group
and no interaction between both factors (see Supplementary
Table S3).

Side Effects
Participants judged their ability to concentrate similarly for
all different tDCS types. For skin sensations, there was
a trend toward a main effect of tDCS [F(2,36) = 2.83,
p = 0.07]. Skin sensations (Table 2) were rated higher
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TABLE 2 | Skin sensations and perceived concentration during tDCS sessions (mean and standard deviation).

Sham Anodal Cathodal Main effect tDCS

Skin sensations 2.14 (1.10) 2.43 (0.85) 3.07 (1.27) [F(2,36) = 2.83, p = 0.07], c > s

Concentration 4.36 (0.75) 3.93 (0.62) 4.07 (0.73) [F(2,36) = 1.36, p = 0.27]

1 = “not,” 2 = “slightly,” 3 = “fairly,” 4 = “quite,” 5 = “very.”

during cathodal tDCS compared to sham tDCS [t(26) = 2.07,
p < 0.05].

Computer Simulation of tDCS
Figure 4 shows that the computer model predicted current
density concentrations over right frontal/temporal regions. In
more detail, the anodal current flew through scalp tissue, while
a fraction entered skull/CSF to reach brain tissue at right
frontal/temporal areas. The stimulation estimated higher current
density concentrations at brain stem/lower cerebellum close to
the foramen magnum. Some amount of that current might have
left the cranium through the foramen magnum, as indicated in
Eichelbaum et al. (2014), flowing further toward the cathodal
electrode.

DISCUSSION

The aim of this study was to demonstrate the impact of
tDCS over the rIFG on interference control in ADHD patients.
Accordingly, adolescents with and without ADHD underwent
anodal, cathodal and sham tDCS while completing a Flanker
task. In contrast to our prediction, the overall analysis did not
reveal a significant tDCS effect in either group. However, a
significant learning effect from the first to the second session
suggested that effects of learning and stimulation could have
overlapped or interacted. When only the first session of each
participant was analyzed, ADHD patients receiving anodal tDCS
showed significantly lower commission error rates and reaction
time variability than patients who obtained sham stimulation.
Moreover, task performance in the anodal ADHD group did

FIGURE 4 | Computer simulation of the utilized tDCS electrode settings. Current density concentrations are visualized on brain surface of the employed
pediatric head model. The current density values are peaking locally in frontal/temporal (maximum: 0.12 A/m2), brain stem and lower cerebellar (near foramen
magnum) regions.
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not differ from the healthy control group whereas performance
in the sham ADHD group did. It is conceivable that while
errors were diminished, reaction times were not increased,
indicating that anodal stimulation was not associated with a
speed accuracy trade off. Cathodal tDCS did not influence
performance of participants. It is worth noting that significant
results in the overall analysis were most likely made more
difficult by the considerably large variability in performance and
tDCS effects between participants. Different studies have recently
shown (Kim et al., 2014; Lopez-Alonso et al., 2014; Wiethoff
et al., 2014) that not all individuals profit from tDCS and it is
highly debated to what extent individual differences in anatomy,
neurophysiology, neurochemistry, genetics or psychological
status can predict responders and non-responders (Li et al.,
2015).

Analyzing the first session, error rate considerably differed, by
approximately 50%, between the sham and the anodal ADHD
group equaling the extent of error reduction in a Flanker task
by methylphenidate (Jonkman et al., 2007). Contrary to our
expectations, we found tDCS effects only in the first session.
This result is consistent with studies of the motor cortex showing
that stimulation effects in second tDCS sessions were diminished
and delayed (Monte-Silva et al., 2010) or even reversed (Monte-
Silva et al., 2013) suggesting that anodal tDCS caused a slight
inhibition. Gill et al. (2015) found anodal tDCS effects when
stimulating during high but not during low working memory
load. In contrast, Bortoletto et al. (2015) found tDCS effects only
in an easy task condition, but not in a difficult one. These results
indicate that the current state of the stimulated area depending
on numerous factors can strongly modulate stimulation effects.
In our study the first session was probably associated with high
levels of arousal and participants had no experience with the task.
These factors may have set cortical activation of ADHD patients
into a state properly for tDCS to interact with. Alternatively,
learning effects could have been enhanced by stimulation (Ditye
et al., 2012), which would lead to better than expected task
performance in subsequent sham sessions (see Supplementary
Tables S4 and S5).

In contrast to existing studies which achieved improvements
in a broad range of cognitive abilities in healthy persons (Coffman
et al., 2014) we did not find any improvements in the control
group. It could be speculated that in deficient interference
control an enhancement of the rIFG activity will result in an
improvement of this cognitive process, whereas in an optimal
level of cognitive processing – as in our sample of healthy
control subjects – additional modulation will be less effective
or even detrimental. This might be related to an inverted
U-shaped dose-response relationship between cortical activity
and cognitive outcome, as it has been reported for the relation
of the dose of a pharmacological treatment and altered cognitive
functions (Goldman-Rakic et al., 2000). Monte-Silva et al. (2009)
demonstrated dose-dependent impairment by a dopamine D2-
like agonist on anodal tDCS-induced motor cortex excitability.
The findings revealed an inverted U-shaped curve with enhanced
activity by anodal tDCS at an optimal dose of D2-like agonists,
whereas lower and higher doses resulted in less activity (Monte-
Silva et al., 2009; Krause et al., 2013).

We assume that improvement of interference control is
caused by an enhanced activity of the rIFG. The computer
simulation supports our experimental results and suggests that
we succeeded in targeting this area. However, since we did not
exclusively stimulate the rIFG, effects could also be based on
other physiological mechanisms. Using large electrodes (surface
of 35 cm2) produced widespread changes in cortical excitability.
This might have led to changes in the general arousal (McIntire
et al., 2014) or could have influenced cortical connectivity (Pena-
Gomez et al., 2012). It is unlikely, however, that unspecific tDCS
effects independent of electrode montage are responsible for
those effects since there was no significant improvement with
respect to the cathodal tDCS condition. Small current density
values, predicted on brain and scalp model surface, reflect the
fact that shunting through low resistive head tissues (e.g., skull)
diminish largely when injecting through two big remote patch
electrodes.

Limitations
One limitation of our study is the small sample size in
our exploratory analysis of the first session. A small sample
size bears the risk that confounding variables are not equally
distributed between groups and could therefore add to the
experimental effect. To control for confounding variables,
participants were assigned randomly to experimental conditions.
Moreover, experimental groups of this study did not differ
in age, intelligence, ADHD symptom severity and ADHD
subtypes. Nevertheless, it cannot be stated with certainty that
randomization was successful for all possible confounding
variables. Therefore, to assess genuine pre-stimulation differences
between groups, a stimulation naïve session should be included in
future investigations.

Since simple learning effects can mask effects of stimulation,
the use of tasks with the prospects of small learning or practice
effects would be essential. Commission error rates in the
flanker task have been actually shown to provide satisfactory
test–retest reliability (Wöstmann et al., 2013). Alternatively,
established neuropsychological tests with parallel forms could
provide useful estimates of performance increments due to
stimulation.

Between participants, there was a considerable variability of
error rates, especially in ADHD patients. ADHD symptoms
improve with ongoing age (Faraone et al., 2006) but this
development proceeds differently in each individual. Thus, a
younger sample would possibly have shown a more homogenous
behavior which could increase the likelihood that positive effects
of anodal stimulation are more clearly detectable.

Currently, the view that sham stimulation is an appropriate
method for blinding participants is questioned (Davis et al.,
2013; Horvath et al., 2014). As a contribution to this discussion
we found that skin sensations were not identical between sham
and cathodal tDCS. In adults, it was already shown that sham
tDCS is not an appropriate blinding method when using higher
current intensities of 2 mA (O’Connell et al., 2012). It seems
that for adolescents blinding is problematic even at a current
intensity of 1 mA, as skin sensitivity is higher during younger
age (Lautenbacher and Strian, 1991). This outcome should find
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attention when conducting and interpreting results of tDCS
studies with children and adolescents.

Future Directions
Transcranial direct current stimulation studies with young
participants have reported only mild and transient side effects,
like tingling and itching (Krishnan et al., 2015) and the method
is considered save for children and adolescents when safety
guidelines are followed. On this basis, tDCS is a promising tool
for the treatment of childhood onset psychiatric disorders, since
it provides the particular opportunity to positively influence
atypical brain development early and persistently (Krause and
Cohen Kadosh, 2013). At the same time, it is important to bear
in mind that tDCS can also cause deterioration of cognitive
functions (Sellers et al., 2015).

Our results suggest that the used tDCS assembly could be
suitable for improving interference control in ADHD patients.
In further investigations results have to be confirmed and
extended. For example, it needs to be clarified whether targeting
specific functions such as interference control via tDCS leads
to amelioration of clinical symptoms such as general behavioral
control or impulsivity. For the development of an effective
therapy it will be essential to investigate how long-term effects can
be accomplished and maintained. In this context, it is important
to further investigate potential learning or carry-over effects,
since clinical treatment efficacy is often assessed in cross-over
designs which could underestimate effects of stimulation.

Finally, anatomic inter-subject variability is a particular
challenge for the development of stimulation protocols because

factors like the topography of the cortex, subcutaneous fat
and distribution of cerebrospinal fluid determine current flow
(de Berker et al., 2013) and can lead to different activations
in different individuals (Horvath et al., 2014). Perspectively,
computer simulations could aid to identify electrode settings
that combine behavioral improvement with minimal dosage
(in terms of stimulation intensity as well as spread of current
within the brain), which is particularly important in pediatric
populations.
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