
Citation: Chen, J.; Dai, J.; Qian, J.; Li,

W.; Li, R.; Pang, D.; Wan, G.; Li, P.; Xu,

S. Influence of Surface Roughness on

Biodegradability and

Cytocompatibility of High-Purity

Magnesium. Materials 2022, 15, 3991.

https://doi.org/10.3390/ma15113991

Academic Editor: Lavinia Cosmina

Ardelean

Received: 29 April 2022

Accepted: 29 May 2022

Published: 3 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Influence of Surface Roughness on Biodegradability and
Cytocompatibility of High-Purity Magnesium
Jiahao Chen 1,†, Jingtao Dai 1,†, Junyu Qian 2, Weirong Li 3, Ronghui Li 3, Dong Pang 3, Guojiang Wan 2 ,
Ping Li 1,* and Shulan Xu 1,*

1 Department of Oral Implantology, Stomatological Hospital, Southern Medical University,
Guangzhou 510280, China; graholl@smu.edu.cn (J.C.); jingtaodai_88@smu.edu.cn (J.D.)

2 Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science
and Engineering, Southwest Jiaotong University, Chengdu 610031, China; junyu.qian@my.swjtu.edu.cn (J.Q.);
guojiang.wan@home.swjtu.edu.cn (G.W.)

3 Medical Device Division, Dongguan Eontec Co., Ltd., Dongguan 523662, China; liwr@e-ande.com (W.L.);
lironghui@e-ande.com (R.L.); pangd@e-ande.com (D.P.)

* Correspondence: ping_li_88@smu.edu.cn (P.L.); xushulan_672588@smu.edu.cn (S.X.)
† These authors contributed equally to this work.

Abstract: High-purity magnesium (Mg) is a promising biodegradable metal for oral and maxillofacial
implants. Appropriate surface roughness plays a critical role in the degradation behavior and the
related cellular processes of biodegradable Mg-based metals. Nevertheless, the most optimized
surface roughness has been questionable, especially for Mg-based oral and maxillofacial implants.
Three representative scales of surface roughness were investigated in this study, including smooth
(Sa < 0.5 µm), moderately rough (Sa between 1.0–2.0 µm), and rough (Sa > 2.0 µm). The results
indicated that the degradation rate of the Mg specimen in the cell culture medium was significantly
accelerated with increased surface roughness. Furthermore, an extract test revealed that Mg with
different roughness did not induce an evident cytotoxic effect. Nonetheless, the smooth Mg surface
had an adversely affected cell attachment. Therefore, the high-purity Mg with a moderately rough
surface exhibited the most optimized balance between biodegradability and overall cytocompatibility.

Keywords: biodegradable metals; magnesium; cytotoxicity; biodegradability; surface roughness

1. Introduction

Bone defect occurs in the oral and maxillofacial area for various reasons, including
trauma, tumor, and congenital anomaly. Due to its complex anatomical structure, clinicians
find it difficult to regenerate the bone tissue and restore function and aesthetics [1]. Biocom-
patible materials such as titanium [2,3], bioactive glass [4], and synthetic polymer [5] can
be applied for reconstructing the craniomaxillofacial tissue; however, the poor mechanical
properties of the bioactive glass limit the loading application [6]. The synthetic polymer
has a slower degradation rate compared to the healing process of tissue formation. More
importantly, the synthetic polymer exhibits a relatively weak cellular response due to its
hydrophobicity and could release acidic byproducts [7]. Titanium-based (Ti) implants pos-
sess excellent mechanical properties; however, based on oral and maxillofacial applications,
the stiffness of the Ti-based implant (i.e., Ti mesh) can lead to mechanical stimulation of the
mucosal flap, causing an increased exposure risk; thereby, the additional surgery to remove
the implant is inevitable [8].

Biodegradable metals (BMs) refer to a metal or alloy intended to degrade in vivo [9].
Magnesium (Mg)-based BMs have been considered promising maxillofacial implant ma-
terials due to their excellent biocompatibility, superior mechanical strength, appropriate
biodegradability, and sufficient bioactivity [10,11]. Notably, high-purity Mg possesses
superior biocompatibility, and the released Mg ions can enhance the viability of human
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osteoblasts, alkaline phosphate activity, and osteocalcin levels [12]. In addition, the degra-
dation products of Mg and its alloys are phagocytosed by the macrophages and safely
excreted through urine [13,14]. Previous in vivo studies demonstrated that high-purity
Mg implants could effectively reconstruct bone tissues and blood supplies [15,16]. To
date, the pre-clinical application of Mg-based implants primarily includes bone screws,
plates, and screw systems [17–19]; however, Mg and its alloys generate hydrogen gas at
the early implantation stage, forming gas cavities [10]. Numerous studies have focused
on improving alloying [20,21], coating [22,23], and surface modification techniques [24] to
regulate degradation rate and the related biological response.

Surface roughness is a critical parameter in predicting the corrosion behavior in
metals [24–26]. Scratches on the surface of metals and corrosion pits could cause stress
rise, which allows a decrease in resistance to fracture, leading to stress corrosion cracking
or hydrogen embrittlement, causing premature failure of biodegradable implants during
service [27–29]; however, there have been inconsistent reports regarding the impact of
roughness on the degradation behavior of Mg and its alloys. On the one hand, for the
Mg-based alloy, the degradation rate of the polished surface was more significant than the
semi-polished surface of Mg-based alloys due to more general corrosion occurring [30].
Initially, pitting corrosion appeared on the rough surface during the early stage. After 12 h
immersion, the rough surface presented general and localized corrosion, while localized
corrosion began on the smooth surface; however, no significant effect of surface roughness
was detected under exposure within the simulated body fluid for 12 h [31]. On the other
hand, Nguyen et al. reported that the degradation rate of pure Mg was accelerated with
increasing surface roughness, without any pitting corrosion [32]. Similarly, a recent critical
review about the effect of surface roughness on the degradation derived that mechanical
surface treatment on Mg and its alloys existed a trend of increasing degradation rate with
greater surface roughness [33]; however, to our knowledge, very few reports exist on the
degradation behavior of high-purity Mg with different surface roughness, especially on
oral and maxillofacial applications.

Extracellular matrix topography is one of the essential physical cues for determining
cell adhesion and differentiation [34]. The surface topography of an implant is the process of
integrating and converting physical signals in microecology into intracellular biochemical
signals recognized by cells [35]. Previous studies investigated the effect of surface roughness
topography on modulating cell behaviors. For instance, the highest surface roughness of
titanium depicted a high capacity for cell proliferation and cell attachment [36]; however,
Khang et al. reported that a rougher titanium surface simulated cell proliferation [37]. The
degradation behavior can affect the release of degradation products and generate cytotoxic
effects on cell activity [25]. Adding alloying elements to pure magnesium causes micro-
galvanic corrosion, leading to an increasing degradation rate of Mg alloys, which finally
increases pH value and the release of metallic ions exceeding the cellular tolerance [38].
Naked Mg or improper surface modification may lead to excessive degradation, increasing
Mg ion and hydroxide ion release, causing cell apoptosis. It was reported that the sample
extract with Mg ion < 3.85 mM had minor inhibition in endothelial cells [24] and extracts
with Mg ion concentration of 7.2 mM affected the cellular activity of the human umbilical
vein endothelial cells [39]; however, the role of high-purity magnesium with different
surface roughness in regulating cytocompatibility has not been elucidated.

This study is, to the best of our knowledge, the first report on the effect of different
surface roughness on the in vitro degradation behavior and cytotoxicity of biodegradable
high-purity Mg. The high-purity Mg was selected as an investigated material due to its
excellent biosafety and bioactivity, superior corrosion resistance, and sufficient mechanical,
as previously published in detail [15,40,41]. Based on the surface scales of the craniomaxillo-
facial implants, three representative scales of surface roughness were evaluated, including
smooth (Sa < 0.5 µm), moderately rough (Sa between 1.0–2.0 µm), and rough (Sa > 2.0 µm),
respectively [42]. In addition, the in vitro degradation behavior was assessed using an
immersion test. Moreover, the cytotoxicity evaluation was investigated using the extract
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test and direct contact test. The first null hypothesis indicated that representative different
surface roughness exerted no influence on the in vitro degradation behavior of pure Mg.
The second null hypothesis indicated that different surface roughness of pure Mg would
not affect the cytocompatibility.

2. Materials and Methods
2.1. Specimen Preparation

High-purity magnesium (purity 99.99%, 10 mm in diameter, 2 mm in thickness)
was fabricated as described previously (Eontec. Co., Ltd., Dongguan, China), which
compose of 99.99 wt% Mg, Al 0.002 wt%, Si < 0.001 wt%, Ca < 0.001 wt%, Ti < 0.0001 wt%;
Mn < 0.002 wt%; Fe < 0.001 wt%; Ni < 0.0001 wt%, Cu < 0.0002 wt%, Zn < 0.0028 wt%, and
Pb < 0.0008 wt%, as previously reported [15]. Mechanical grinding was one of the methods
to develop the surface roughness gradient attributes of biodegradable metals. The uniform
texture of surface attributes was obtained by auto mechanical grinding [43,44]. The entire
surface of the specimens was grounded with silicon carbide (SiC) abrasive paper (EXTEC,
Enfield, CT, USA) using a mechanical grinding machine (EXAKT, Norderstedt, Germany).
Specifically, the specimens were ground with the SiC abrasive paper up to P180, P400, and
P4000, respectively, based on the different scales such as smooth, moderately rough, and
rough. Next, the specimens were cleaned ultrasonically using absolute ethanol for 15 min
and dried on a sterile workbench. Each specimen surface was, respectively, sterilized with
ultraviolet for at least 30 min before the tests.

2.2. Surface Characterization

Prior to the surface observation, sample surfaces were sputtered-coated with a 20 nm
thick gold-palladium. The surface morphology was characterized by using a scanning
electron microscope with an energy-dispersive X-ray spectroscopy instrument (SEM-EDS,
MIRA4 LMH, TESCAN, Brno, Czech Republic) at an acceleration voltage of 15 kV. The sur-
face roughness was determined by an optical profiler (Bruker Countor GT K 3D, Billerica,
MA, USA). Four specimens per group were measured with vertical scanning interferometry
with a 1× magnification lens, a field of view of 0.4 × 0.4 mm, and a scan speed of ×1.
According to the manufacturer’s instructions, the ‘VXI’ mode was used to reduce the noise
level in the flat area. Moreover, the tested areas were 3D reconstructed for visualizing the
surface topographies. According to ISO 25178: 2012 [45], the height, spatial, and hybrid
surface texture parameters were chosen to describe the characteristics of the implant to-
pographies. Based on the surface scales of the craniomaxillofacial implants, the arithmetical
mean height (Sa), root mean square height (Sq), texture aspect ratio (Str), and developed
interfacial area ratio (Sdr) were selected, as previously reported [46]. All parameters were
determined and analyzed using the Vision 64 software (Bruker, Billerica, MA, USA).

2.3. Immersion Test

The in vitro degradation behavior was investigated using an immersion test with
different simulated body fluids. A cell culture medium and artificial saliva were chosen
to be the electrolytes for the tests to mimic the submucosa and intraoral environments
of implantation sites. All specimens were immersed under cell culture conditions (5%
CO2, 95% humidity, 37 ◦C) for 30 days. According to ISO 10993-12: 2012 [47], the ratio of
solution volume to sample surface area was 1 mL: 1.25 cm2. According to the information
from the manufacturer (Leagene Biotechnology, Beijing, China), the pH value of artificial
saliva was adjusted to ~5.5 by hydrochloric acid, and the components are shown in Table 1.
Cell culture medium was prepared using the Dulbecco’s modified Eagle medium (DMEM,
Gibco, Grand Island, NY, USA) with 10% fetal bovine serum (FBS, ExCell Bio, Shanghai,
China) [48].

Eight parallel specimens were taken with the cell culture medium and artificial saliva
for each group. The immersion solution was refreshed every two days to perform a semi-
static degradation process. Meanwhile, the pH value was measured at each time point.
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After 30 days of immersion, samples were taken out from the immersion solution and
gently rinsed with distilled water. Next, the degradation products were removed by a
chromic acid solution (180 g CrO3 dissolved in 1000 mL distilled water, Macklin, Shanghai,
China) for 20 min at room temperature, as previously reported [49]. Afterward, the samples
were rinsed with distilled water and dried with an air stream. The samples (n = 4) per
group were used to determine the degradation rate, according to ASTM G1-03: 2017 [50].
The degradation rate was calculated and expressed as µm/year as per Equation (1):

Degradation rate (µm/year) = 8.74 × 107 ∆W
A × t × ρ

(1)

where ∆W (g) is the mass loss before and after removal of the corrosion products; A is
the exposure area of sample (cm2); t is the immersion time (h); ρ is the density of material
(1.74 g/cm3). Additionally, sample morphology before and after removal of degradation
products was characterized by SEM-EDS.

Table 1. Main composition of artificial saliva according to the manufacturer.

Composition Concentration

Sodium chloride 0.40 g/L
Potassium chloride 0.40 g/L

Calcium chloride dehydrate 0.79 g/L
Sodium dihydrogen phosphate dihydrate 0.78 g/L

Urea 1.00 g/L
Sodium sulfide 0.05 g/L

2.4. Cytotoxicity Test
2.4.1. Cell Culture

Mouse fibroblasts (L929, Procell Life Science and Technology Co., Ltd., Wuhan, China),
mouse preosteoblast cells (MC3T3-E1, Procell Life Science and Technology Co., Ltd., Wuhan,
China), and mouse macrophages (RAW264.7, Procell Life Science and Technology Co., Ltd.,
Wuhan, China) were used to investigate the cytotoxicity of specimens. In a standard cell
incubator (5% CO2, 95% humidity, 37 ◦C), three cell lines were cultured in Dulbecco’s
modified Eagle medium (DMEM, Gibco, Grand Island, NY, USA) with 10% fetal bovine
serum (FBS, Gibco, Grand Island, NY, USA) and penicillin and ptreptomycin (100 U/mL)
(PS, Gibco, Grand Island, NY, USA). The complete cell medium was refreshed every two
days. Cell passage was carried out when cells reached about 80% confluency.

2.4.2. Extract Test

An extract test was performed based on ISO 10993-5: 2009 [51] and ISO 10993-12:
2012 [47] guidelines. Specifically, the surface area ratio and sample extract were set to
1.25 cm2/mL for 72 h under cell culture conditions. In addition, the titanium-based alloy
was set as the negative control while the pure copper became the positive control. Mean-
while, a pH meter (SX-620, Sanxin, Shanghai, China) was used to measure the pH value
of specimens extracts. The concentration of Mg ion was measured by atomic absorption
spectrophotometry (TAS-990F, Persee Inc., Beijing, China).

The live/dead cell fluorescence staining was undergone to qualitatively analyze
cytotoxic effects using a live/dead viability/cytotoxicity assay kit (KGAF001, KeyGEN
BioTECH, Nanjing, China). Three types of cell lines were cultured with a cell culture
medium in a 12-well plate at a density of 3 × 104 cells/mL overnight. Afterward, the
medium was exchanged with sample extracts. Then, the extracts were removed after
incubation for 24 h, and gently rinsed the cells with phosphate-buffered saline (PBS, Gibco,
Grand Island, NY, USA). Subsequently, 2 mL of staining reagent containing 2 µM calcein
acetoxymethyl (Calcein AM) and 8 µM propidium iodide (PI) were added and cultured
for 10 min in the dark at room temperature. Furthermore, cell morphology and viability
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were observed by downright fluorescence microscopy (DMi8, Leica Microsystems GmbH,
Wetzlar, Germany). Three parallel wells per group were set, and at least three fields of each
well were randomly selected to shoot.

To further determine the relative cell viability and cell membrane integrity, a cell
counting kit-8 assay (CCK-8, Dojindo Laboratories Co., Kumamoto, Japan) and an lactate
dehydrogenase (LDH) cytotoxicity assay kit (Beyotime Biotechnology, Jiangsu, China) were
performed, respectively. Briefly, three cell lines were individually seeded into a 96-well
plate at a density of 3 × 104 cells/cm2. After incubation for 24 h, the cell culture medium
was interchanged with 100 µL sample extracts. After 24 h, the extract was removed and
added 100 µL DMEM without FBS, and 10 µL CCK-8 reactant was added for 2 h. At the
time point, a microplate reader (iMark, Bio-rad, Hercules, CA, USA) was used to record
the absorbance value at 450 nm. The relative metabolic activity was calculated according
to Equation (2).

Relative metabolic activity (%) =
ODsamples −ODblank

ODnegative −ODblank
× 100% (2)

where ODsamples means optical density (OD) value of samples; ODnegative means the OD
value of the negative control and ODblank means the OD value of DMEM alone with
CCK-8 reagent.

The LDH cytotoxicity assay kit was utilized as per the manufacturer’s instructions.
Briefly, three cell lines were seeded onto the 96-well plates and the cell culture medium was
exchanged with sample extracts, as mentioned above. Before 1 h of the testing timepoint,
the LDH release reagent was added to the wells of maximum cell enzyme activity, then
cultured in the incubator for 1 h. Subsequently, the 96-well plate was centrifuged with
a plate centrifuge (PlateSmart, Miulab, Hangzhou, China) for 5 min at 400 g. A total of
120 µL supernatant per well was shifted to a new 96-well plate and incubated with a 60 µL
LDH reaction reagent. After incubating in the dark at room temperature for 40 min, the
absorbance was determined at 490 nm using a microplate reader (iMark, Bio-rad, Hercules,
CA, USA). The relative LDH release was calculated according to Equation (3).

Relative LDH release (%) =
ODsamples −ODblank

ODmax −ODblank
× 100% (3)

where ODsamples is OD value of samples; ODmax is OD value of the maximum cell enzyme
activity and ODblank is the OD value of DMEM alone with LDH reaction reagent.

2.4.3. Direct Contact Test

To mimic the initial protein absorption and the formation of degradation layer, the
specimens with different roughness were pre-incubated with the cell culture medium for
24 h, as previously reported [52]. Afterward, the mouse macrophages were seeded on the
materials at a density of 3 × 104 cells/cm2 into the 12-well plate for 24 h. Three parallel
samples per group were utilized for each experiment. The Calcein AM/PI staining was
used to determine cell membrane integrity. In addition, the qualitative and quantitative
results were evaluated using a fluorescence microscopy and flow cytometry, respectively.

Live/dead cell fluorescence staining was performed to qualitatively analyze cell
membrane integrity which is directly in contact with materials. Similarly, as mentioned
above, RAW264.7 cells were seeded on pre-treated samples in a 12-well plate for 24 h.
Afterward, specimens were stained with 10 mL PBS containing 5 µL of 16 µM Calcein
AM and 5 µL of 8 µM PI for 10 min after gently rinsing with PBS. The cell membrane was
observed by the confocal fluorescence microscope (DMi8, Leica Microsystems CMS GmbH,
Wetzlar, Germany).

The percentage of live cells was analyzed quantitatively using flow cytometry. Briefly,
the supernatant of extracts was collected into centrifuge tubes. After washing and trypsiniza-
tion, the cells in PBS and Trypsin-EDTA (Gibco, Grand Island, NY, USA) were pooled and
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centrifuged (1000 rpm for 5 min), followed by resuspension in 1 mL PBS. To identify the
dead cells, 200 µL cell suspensions were incubated with 1 µL of 1 g/L PI reagent (10 mg
PI in 10 mL ddH2O, Sigma-Aldrich, Stein-Heim, Germany) at 4 ◦C in the dark for 1 min
before measurement. Subsequently, the cell viability was assessed using the flow cytometry
instrument (DxFLEX, Beckman Coulter, Suzhou, China).

2.5. Statistical Analysis

All the quantitative data were presented as the mean and standard deviation. To
ensure reproducibility, all experiments were independently performed at least three times.
Statistical analyses were performed by using GraphPad Prism 9 (GraphPad Software, Inc.,
San Diego, CA, USA). One-way analysis of variance (ANOVA) was utilized to analyze the
surface roughness, degradation test, and cytotoxicity test, followed by Tukey’s comparisons
test. Statistical difference was regarded as significant when the p-value was less than 0.05.

3. Results
3.1. Surface Morphology and Roughness

Surface morphology and three-dimensional reconstruction surface of the samples are
presented in Figure 1. The representative SEM image revealed that samples with P180
and P400 exhibited grinding textures in a regular direction (Figure 1a). Moreover, several
deep cavities could be observed between the grinding textures, while the sample with
P4000 depicted a slight scratch. Furthermore, the interval of the scratches on the surface
of P4000 was narrower when compared to the P180 and P400 counterparts. In addition,
Figure 1b shows the reconstructed three-dimensional surfaces of the samples with different
roughness scales. The surfaces with P180 and P400 exhibited amounts of valleys and
protrusions relative to the reference plane. The surface of P180 ranged from −11.7 µm
to 13.5 µm, while the P400 ranged from −15.3 µm to 5.4 µm. As a representative image
of P4000, the reconstruction surface exhibited that the absolute value of the height of the
largest pit within the defined area was approximately 7.5 µm, and the most prominent peak
height value was approximately 2.6 µm inside the defined area.

Three-dimension roughness parameters are depicted in Figure 1c–e, including the
arithmetical mean height (Sa), root mean square height (Sq), texture aspect ratio (Str), and
developed interfacial area ratio (Sdr), respectively. Figure 1c depicts the Sa value and Sq
value of the surface of the samples. The Sa and Sq values were similar and gradually
decreased. One-way ANOVA confirmed the statistical differences in Sa value and Sq value
of roughness gradient treatment: Sa (F (2,9) = 166.80, p < 0.0001) and Sq (F (2,9) = 138.90,
p < 0.0001). Tukey’s multiple comparisons test showed that the group of P4000 had a signif-
icant decrease in Sa value and Sq value when compared to the other groups (p < 0.0001).
When the P180 group was compared with the P400 group, Sa values and Sq value was signif-
icantly decreased (p < 0.05). As depicted in Figure 1d, one-way ANOVA confirmed the sta-
tistical differences in Str value (F (2,9) = 11.27, p = 0.0035). Tukey’s multiple comparisons test
indicated that the P4000 had a significant increase when compared to the P180 (p = 0.0068)
and P400 (p = 0.0065). As shown in Figure 1e, Tukey’s multiple comparison test indicated
significant differences in Sdr value between the P180 group (Sdr = 78.53 ± 36.38%) and the
P4000 group (Sdr = 4.37 ± 5.22%).
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Figure 1. Surface morphology and surface roughness of specimens. (a) Representative SEM magnifica-
tion of different specimens (magnification 100×, scale bar = 250 µm). The inset images corresponded
to the magnified surface morphologies (magnification 500×, scale bar = 100 µm). (b) Reconstructed
three-dimensional surface of specimens with different surface roughness. (c) Arithmetical mean
height (Sa) and root mean square height (Sq). * and # represent a statistical difference (p < 0.05) when
compared with the P180 and P400, respectively. (d) Texture aspect ratio (Str). * represents a statistical
difference between the two groups. (e) Developed interfacial area ratio (Sdr). * represents a statistical
difference between the two groups.

3.2. In Vitro Degradation Behavior

To evaluate the long-term degradation of pure Mg samples with different roughness
in the simulated body fluids, a long-term immersion test was performed under semi-static
conditions. Meanwhile, the degradation kinetics of samples in artificial saliva were also
detected. The surface morphology and the chemical composition after different fluids
immersion are presented in Figure 2. As illustrated in Figure 2a, after immersion in the
simulated body fluids (DMEM + 10% FBS) for 30 days, a multi-sheet-like morphology
appears on different roughness surfaces, while grinding textures can be observed on the
surface of the P180 and P400 groups. Noteworthily, the area of the lamellar structure
presented on the P180 surface is larger than their other two roughness counterparts (P400
and P4000). Meanwhile, the substrate of P180 and P400 groups erupted and presented
cavities. The P4000 exhibited similar corrosion products of graininess-like structure, albeit
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smaller, with an intensive surface distribution. Furthermore, the chemical composition
of corrosion products was analyzed using EDS analysis. The EDS results showed that
mostly C and O elements could be detected. In contrast, few metal elements were Mg, Ca,
and P. As shown in Figure 2b, after immersion in the artificial saliva, a loose pebble-like
morphology could be observed, and no textures appeared on the surface. The P180 group
surface existed amount of pebble-like corrosion products, while scattered distribution on
the P4000 group surface. The C, O, Ca, and P elements were detected by EDS analysis.
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Figure 2. Surface morphology characteristics and chemical composition of samples after immersion
test. (a) Representative SEM images (scale bar = 250 µm and 50 µm, magnification 100× and 500×,
respectively). Surface chemical composition corresponding to the red point A-F of immersing in
simulated body fluid. (b) Representative SEM images (scale bar = 250 µm and 50 µm, magnification
100× and 500×, respectively). Surface chemical composition corresponding to the red point G-L of
immersing in artificial saliva detected by EDS.

The degradation behavior and morphology of the sample with gradient surface rough-
ness in DMEM and artificial saliva are presented in Figure 3. The samples with different
surface roughness appeared to have similar pH value changes in the DMEM and artificial
saliva (Figure 3a). Specifically, in the first two-day, pH values dramatically increased
from 7.3 to 8.5 and 5.5 to 8.0 of immersion in DMEM and artificial saliva, respectively.
Subsequently, pH values tended to be stable, ranging from 8.0 to 8.5 and 7.3 to 8.0. After
immersion for 30 days, the degradation rate was obtained by weight loss (Figure 3b). The
statistical differences in the degradation rate of samples immersed in DMEM were con-
firmed by one-way ANOVA (F (2, 33) = 5.69). Tukey’s multiple comparisons test presented
that the group of roughest surfaces (P180) had significantly increased degradation rates
when compared to the smoothest surface (P4000) (p = 0.0073). In addition, a nearly reached
significance (p = 0.0550) was observed between P400 and P4000 groups. Regarding the
samples in artificial saliva, no significant differences in degradation rate were observed
based on the results of Tukey’s multiple comparisons.

Figure 3c presents the representative degraded morphology after the removal of the
corrosion products. The P180 and P400 samples in DMEM + 10% FBS depicted general
corrosion, and several corroded pits could be detected on the surface, while the P4000
group appeared lamellar localized corrosion. The P180 and P400 groups in artificial saliva
presented an analogous corrosion morphology after a long-term immersion. The grinding
scratch could still be observed after the removal of the corrosion products, and general
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deep pitting corrosion existed on the sample surface. For the smooth surface of P4000, the
area of pitting corrosion was more extensive and shallower compared to the other two
different roughness surfaces.
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Figure 3. Degradation behavior of pure Mg samples with gradient surface roughness attributes.
(a) pH value change of simulated body fluid and artificial saliva for 30 days, respectively. (b) Degra-
dation rate (µm/year) calculated by weight loss of samples after 30 days of immersion in DMEM and
artificial saliva under cell-cultured conditions, where * represents a statistical difference between the
two groups. (c) Surface morphology of samples after removal of corrosion products. Representative
magnification 100× of SEM images and the insets show the magnification 500× of SEM images.

3.3. Cytocompatibility Evaluation

To investigate the cytotoxicity of different samples, three types of cells were cultured in
sample extracts. Figure 4a depicts that the cell membrane integrity of L929, MC3T3-E1, and
RAW264.7 was exposed to sample extracts. The green fluorescent viable cells were stained
using Calcein AM, implying cell membrane integrity. On the contrary, the apoptotic cells
presented red fluorescent. Most L929 fibroblasts exposed to pure Mg sampled extracts de-
picted green fluorescent staining, in line with the negative control. Regarding the other cells
exposed to sample extracts, most of them survived (green fluorescent staining) while a few
red fluorescent staining (dead cells) was observed. The L929 and MC3T3-E1 cells appeared
to have a typical spindle-like morphology, while the RAW264.7 grew contiguously.
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Figure 4. Cytotoxicity evaluation of specimens with different roughness surfaces. (a) Representative
fluorescent staining images of L929, MC3T3-E1, and RAW264.7 cultured in sample extracts for 24 h
(magnification 100×, scale bar = 250 µm). Titanium-based alloy extracts were used as a negative
control (N.C.), and pure copper extracts as a positive control (P.C.). The viable cells present green
fluorescence while the dead cells show red fluorescence. (b) Relative cell metabolic activity of L929,
MC3T3-E1, and RAW264.7 after culturing in sample extracts for 24 h detected by CCK-8 assay. Red
line indicates 70% of negative control. (c) Relative LDH release of three types of cells for 24 h.
Maximum cell LDH release was used as a positive control and set to 100%. Dashed line indicates 30%
of control, suggesting a line of cytotoxicity effect.

To quantitatively determine cell viability, the relative metabolic activity and relative
LDH release of different types of cells were measured by CCK-8 assay (Figure 4b) and LDH
release assay (Figure 4c), respectively. As shown in Figure 4b, all types of cells exposed
to sample extracts above 70% of the negative control implied relatively high metabolic
activities. As illustrated in Figure 4c, cells exposed to the sample extracts of different
roughness exhibited an appearance below 30% of LDH release relative to the positive
control, reflecting no cytotoxic effect of the test extract. Table 2 shows the analysis result of
the sample extracts. The Mg ion concentration was detected. Compared to the cell culture
medium, Mg ion concentration was significantly elevated among the P180, P400, and P4000
sample extracts. No significant difference was detected in the pH value of the different
roughness sample extracts.

Table 2. Analysis result of sample extracts.

Sample Mg Ion Concentration (µg/mL) * pH Value

Control 19.2 1 7.56 ± 0.06
P180 242.8 ± 29.5 8.02 ± 0.03
P400 284.8 ± 26.8 8.09 ± 0.06
P4000 262.8 ± 69.1 8.10 ± 0.04

* Mg ion concentration (µg/mL) determined. 1 Data are given from Ref in [53].
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Cells were directly cultured on the textured surface of pure Mg samples having
different roughness attributes for 24 h. Figure 5a reveals that the cells cultured on the P180
and P400 samples had benign reactive and suitably distributed morphologies, comparable
with the negative control. Regarding the P4000 samples, the green fluorescent staining (live
cells) significantly decreased, indicating exist cytotoxic effect. The red fluorescent staining
was hardly detected due to the dead cells being removed when rinsing the samples before
the fluorescent stain. Figure 5b,c show the cell apoptosis of RAW264.7 directly cultured on
the sample surface, determined by PI staining flow cytometry. The percentage of live cells
of macrophages cultured on the P4000 sample surface was below 70%. One-way ANOVA
was used to confirm the statistical differences in the percentage of live cells cultured on
the sample surfaces. Tukey’s multiple comparisons showed significant differences in the
percentage of live cells among the cells cultured on the smooth surface of pure Mg samples
(57.44 ± 8.773%) and the negative control (92.42 ± 3.266%, p < 0.0001). The percentage of
live cells directly attached to the pure Mg samples with different surface roughness showed
significant differences when comparing P4000 samples (57.44 ± 8.773%) with P180 samples
(81.09 ± 3.572%, p = 0.0002) and P400 samples (79.16 ± 9.074%, p = 0.0006).
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Figure 5. Direct contact test of sample with different roughness. (a) Fluorescent staining images of
RAW264.7 cultured on sample surfaces (magnification 100×, scale bar = 250 µm). (b) The result of flow
cytometry, suggesting cell apoptosis of RAW264.7 directly cultured on sample surface, determined by
PI staining. (c) The quantitative results of cell viability. Titanium-based alloy was set as a negative
control (N.C.). * represents a statistical difference between the two groups.
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4. Discussion

Biodegradable Mg and Mg-based alloys have been categorized as a new generation
of promising implant materials for craniomaxillofacial applications thanks to their supe-
rior biodegradability and biocompatibility. Roughness surface is a critical parameter for
optimizing the materials’ properties of Mg-based metals. Nonetheless, the ranges of the
most optimized roughness for Mg-based implants remain unclear. The current study inves-
tigated the effect of different surface roughness on the in vitro degradation behavior and
the cytocompatibility of high-purity Mg. In this study, the surface textures with different
roughness range, such as Sa value > 2.0 µm, Sa value between 1.0 µm and 2.0 µm, and Sa
value < 0.5 µm, were obtained by automatic grinding machine. Meanwhile, in comparing
the surface texture to the definition area, the surface area increased by approximately 80%,
55%, and 4%, correspondingly. Our results indicated that the degradation rates in DMEM
were significantly elevated by surface roughness (p < 0.01). In addition, a direct contact
test revealed that it significantly affected macrophages adhesion (p < 0.01); therefore, both
hypotheses were rejected.

4.1. Biodegradability Influenced by Surface Roughness

The in vitro degradation behavior of pure Mg was investigated through a semi-static
immersion test with two different simulated body fluids, namely DMEM with 10% FBS and
artificial saliva. Previous studies have reported that DMEM with 10% FBS under cell culture
conditions could mimic in vivo physiological implantation environment, especially the
interstitial fluid [48,54,55]. In addition, considering the different maxillofacial applications
(i.e., guided bone regeneration membrane), the implants could have exposure to the oral
environments, indicating switching of the tissue fluid to human saliva; therefore, artificial
saliva was also utilized for the immersion tests.

Our results investigated Mg degradation with different surface roughness under cell
culture conditions. Mg degradation has been involved with both thermodynamic and
kinetic mechanisms governing a series of electrochemical reactions. In the initial stage, the
Mg immersed in the DMEM with 10% FBS (pH value: 7.3) led to the anodic and cathodic
reactions as described by Equations (4)–(6) [56]. Our results indicated that a slight increase
in pH value could be observed in the medium (Figure 3a). With the degradation occurring,
the interaction between the Mg surface and the electrolyte-containing aqueous media
caused the degradation layer formation. Moreover, SEM-EDS indicated the presence of
several elements such as Mg, C, O, Na, P, Cl, and Ca (Figure 2a). This can be confirmed that
these elements were detected in the degradation layer, which was derived from chemical
reactions with the components of DMEM with 10% FBS. Herein, the degradation layer
might be composed of MgO, Mg(OH)2, MgCO3, and serum-related organic components, as
previously reported [55].

Anodic reaction: Mg→ 2Mg2+ + 2e− (4)

Cathodic reaction: 2H2O + 2e−→ 2OH− + H2↑ (5)

Overall reaction: Mg + 2H2O→2Mg2+ + 2OH− + H2↑ (6)

Generally, the in vitro degradation behavior was determined by the applied body
fluids. In this experiment, the artificial saliva was neutral to a slightly acidic environment
(pH value: 5.5). The main differences between DMEM and artificial saliva were the
degradation products and the overall rates. According to the SEM images, the relatively
dense and thick degradation layers on the Mg surfaces were formed in the artificial saliva
(Figure 2b). The EDS results indicated that the predominant components were Ca, P, O,
and C elements. According to the main composition of artificial saliva (Table 1) and the
primary degradation mechanism (Equations (4)–(6)), the released Mg ions could further
react with calcium ions and phosphate ions, depositing a mixture of a calcium-phosphate
layer (i.e., Ca3(PO4)2, Ca8H2(PO4)6·5H2O and CaHPO4·2H2O), as previously described [57].
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In addition, Mg degradation in the artificial saliva was two-fold lower than its counterpart
in DMEM with serum. Compared to DMEM, the original artificial saliva is a slightly acidic
solution, which apparently decreases the Mg degradation. This result mainly contributes
to the fact that the stable passivation calcium-phosphate layers can be formed in the acidic
solution [57,58]. Additionally, based on the degradation mechanism above, the surface
roughness had no apparent impact on the degradation products on the samples.

Notably, surface roughness plays diverse roles in the Mg degradation rates and modes
under various degradation conditions; however, the overall tendency clearly showed that
the degradation rate of the rough Mg specimen (Sa > 2.0 µm) in DMEM was significantly
higher than that of the smooth Mg specimen (Sa > 0.2 µm). Firstly, the rough surface
exhibited higher values of Sa and Sdr, suggesting that a higher surface area was exposed
to the electrolyte. This factor could directly enhance the degradation rate of rough Mg,
consistent with a previous finding [32]. Moreover, there was no statistically significant
difference in the degradation rate in DMEM despite a pronounced increase in Sa value
from P400 to P180. This probably arose from the fact that the surface roughness is critical
to predicting degradation rates, which degradation kinetics are also influenced by surface
free energy, compactness of passivation layers, and protein absorption. In comparison, the
surface roughness did not affect Mg degradation in the artificial saliva (Figure 3b). This
could be attributed to the stable passivated calcium-phosphate layer formed on the Mg
surfaces, preventing chloride ion attacks on the matrix [56]. In addition, regarding the
degradation modes, uniform degradation was observed among the Mg specimens with
different surface roughness, irrespective of the applied simulated physiological media. Our
finding is inconsistent with previous studies, which reported that a rough Mg surface leads
to the severity of pitting corrosion in the initial degradation stage [59,60]. This discrepancy
could be attributed to the high purity magnesium with grain refinement, which escapes the
micro-galvanic corrosion affected by the alloys [61].

4.2. Cytocompatibility Affected by Surface Roughness

In this study, the cytocompatibility of high-purity Mg was investigated through a
combination of an extract test and a direct contact test. The results of the extract test
indicated that cell viability was not influenced by Mg with different surface roughness.
Furthermore, the direct contact test revealed that fewer viable cells were attached on the
smooth Mg surface than those on moderately rough and rough Mg surfaces (Sa > 1.0 µm).

Basically, the standardized extract test is a projection of the material’s degradation
products towards cellular responses, mainly involving the released degradation products
and related cellular tolerances [62]. The quantitative results depicted that all sample extracts
had no adverse effects on three different cell lines, indicating no cytotoxic effects according
to the requirements of ISO standard (Figure 4). This indicated that cells could become
tolerant of the toxicity effects of degradation products. According to the analysis of sample
extracts (Table 2), the increased Mg ions and hydroxide ions were observed, which can be
considered as the main degradation products from the sample extracts. Previous studies
reported no apparent decrease in cell viability when the pH value of the medium was
less than 9 [63,64]. In addition, the Mg ion concentrations (<285 µg/mL) in the tested
sample extracts were lower than the overall cellular tolerance (<360 µg/mL), as previously
reported [40,65]. It is noteworthy that the sample extracts with surface roughness had
no effects on the cell viability, attributed that there were no apparent differences in the
degradation products released from Mg having diverse roughness surfaces.

The direct contact test investigated the cellular behavior on the material interface,
which is mainly determined by material degradation, surface characteristics, and cellular
response. In our preliminary experiments, the cells were nonviable on bare (or untreated)
surfaces, mostly consistent with most previous studies [66,67]; therefore, high concentration
and rapid release of Mg ion should be responsible for the cytotoxic effects. Undoubtedly,
most cells (i.e., osteoblast, macrophage) have no chance to directly grow on the original
surface of Mg-based implants (without any protein adsorption and the formation of an
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initial degradation layer) under most physiological conditions [68]. Herein, specimens
were pre-incubated before the tests to mimic the initial degradation layer formation, as
previously described [67,69].

Regarding Mg-based alloys, surface roughness is regarded as a critical parameter to
predict cellular response against the interfaces of Mg-based implants. Our results showed
that the rough Mg surfaces exhibited cellular attachment superior to the smooth ones. As to
the bioinert materials (i.e., Ti and PEEK), it is well-known that a moderately rough surface
(Sa > 1.0 µm) could improve cell adhesion, proliferation, and differentiation because of
optimized surface topography and surface-free energy [70,71]. In addition, a recent study
demonstrated that the rough surface with the ridge/valley network feature of Mg-based
metals could efficiently facilitate the proliferation of endothelial cells while suppressing
the smooth muscle cells [24]. In addition, a more stable passivation layer formed by
rough roughness could be another factor, decreasing the adverse effects of the rapid ion
release [72]; therefore, the rough surface could improve cell adhesion with the synergy of
the above factors.

Regarding the potential applications, the biodegradability of high-purity magnesium
can safely degrade without producing obvious toxic products, making it one of the most
promising candidates for biodegradable craniomaxillofacial implants. Surface rough-
ness modification can adjust their degradation kinetics. In the present study, our results
demonstrated that the degradation rate of high-purity magnesium with Sa value of surface
roughness ranging from 1.0–2.0 µm was appropriate and clinically acceptable. Considering
the implant application of high-purity Mg in vivo, a moderately rough surface (Sa between
1.0–2.0 µm) can be used to improve cell adhesion and proliferation; therefore, the results
of this study provide significant information for the surface modification of high-purity
magnesium implants to enhance cell adhesion and optimize biological responses, especially
for the oral and maxillofacial area.

5. Conclusions

In the present study, the effect of surface roughens on the in vitro degradation behavior
and cytocompatibility of high-purity Mg was investigated. Within the limitations of the
current in vitro study, the principal findings were drawn as follows:

1. With increasing surface roughness, the degradation rate of the Mg specimen in the
DMEM with FBS was significantly increased. However, no marked increase was
observed in the degradation rate when Mg was immersed in the artificial saliva.

2. The degradation mode and the products of high-purity Mg were not obviously af-
fected by the surface roughness.

3. The extract test revealed that Mg extracts derived from different surface roughness
did not exhibit any cytotoxic effect on the L929 fibroblast, the MC3T3-E1 preosteoblast,
and the RAW264 macrophage.

4. The direct contact test demonstrated that the surface roughness of high-purity Mg
with the Sa value > 1.0 µm had the potential to improve cell attachment.

In summary, the present study indicated that the high-purity Mg with a micro-
roughness range of Sa between 1.0 and 2.0 µm had an optimized balance between biodegrad-
ability and cytocompatibility, especially for the craniomaxillofacial applications. Neverthe-
less, the limitation of our present study is that the semi-static immersion test is not able
to fully simulate the dynamic conditions of fluid circulation. In addition, although the
work investigated the interaction between surface roughness and cell adhesion, further
insights into the correlation between surface topography/chemistry and biological signals
are further required.
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