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The US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) is an important source for detecting
adverse drug event (ADE) signals. In this article, we propose a three-component mixture model (3CMM) for FAERS signal
detection. In 3CMM, a drug-ADE pair is assumed to have either a zero relative risk (RR), or a background RR (mean RR 5 1),
or an increased RR (mean RR >1). By clearly defining the second component (mean RR 5 1) as the null distribution, 3CMM
estimates local false discovery rates (FDRs) for ADE signals under the empirical Bayes framework. Compared with existing
approaches, the local FDR’s top signals have noninferior or better sensitivities to detect true signals in both FAERS analysis
and simulation studies. Additionally, we identify that the top signals of different approaches have different patterns, and they
are complementary to each other.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE

TOPIC?
� The FAERS’ risk structure (i.e., background drug-ADE

risks generated by comedications and true signals) has

not yet been adequately modeled. The FDR of the drug

ADE signal detection has not been investigated.
WHAT QUESTION DID THIS STUDY ADDRESS?
� The FAERS’ risk structure is characterized by the

proposed 3CMM. The 3CMM initially estimates local

FDR for each drug-ADE pair with respect to the back-

ground ADE risk.

WHAT DOES THIS STUDY ADD TO OUR
KNOWLEDGE?
� The local FDR adds precision in detecting the true
drug-ADE signals. Different signal detection methods
have different strengths in ranking drug-ADE signals.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?
� The 3CMM can generate drug-ADE signals with a
desired false-positive rate. Signals generated by differ-
ent methods are complementary to each other. These
signals are valuable for pharmacological research.

In the United States, adverse drug events (ADEs) account

for >3.5 million physician office visits1 and �125,000 hospi-

tal admissions each year.2 About 53% of elders have their

hospital stays complicated by ADEs.3 Many of these ADEs

cannot be detected in premarketing clinical trials. Regula-

tory agencies maintain spontaneous reporting systems

(SRSs), which collect reports including patients’ medication

and ADE information. One of the well-known SRS data-

bases is the US Food and Drug Administration’s (FDA’s)

Adverse Event Reporting System (FAERS).4 In the past

decades, a significant amount of novel ADE knowledge

was revealed by SRS analyses.5 For the aberrations in this

article, their full names can be found in Supplementary

Table S1.
Disproportionality analysis (DPA) is a major method for

SRS analysis.6 For a drug-ADE pair, DPAs compare its
reported frequency to expected frequency (expectation)

under the assumption of no association between drug and

ADE. The ratio of the observed report frequency over its

expectation (i.e., relative risk (RR)) or other similarly con-

structed statistics are used to assess drug-ADE associa-

tions. Notable frequentist DPAs includes proportional

reporting ratio (PRR),7 reporting odds ratio (ROR),8 and

likelihood ratio test (LRT).9 Besides frequentist approaches,

the empirical Bayesian approach includes the well-known

Empirical Bayesian Geometric Mean (EBGM),10 and the

Bayesian approach includes information component (IC).11

Details of these DPAs will be reviewed in another section

below. Briefly, these approaches do not require sophisti-

cated modeling techniques, are efficient for computation,

and are capable of examining different ADEs simulta-

neously or the whole SRS database at one time.12 Fre-

quentist DPAs utilize P values to detect signals, whereas

the Bayesian and empirical Bayesian DPAs are based on
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posterior probabilities.13 According to a recent comparison
performance analysis on the known drug-ADEs pairs14

using the FAERS data, PRR, ROR, and EBGM have
decent performances. Their areas under the receiver oper-
ating characteristic (ROC; area under the curve (AUC))
range from 0.71–0.75.15

Due to the nature of SRS, the drug-ADE pairs detected
by DPAs are often mixed with false positives.16 For
instance, an SRS report includes every drug and ADE
related to the patient, whereas the true causal relations
between these drugs and ADEs are uncertain. To be spe-
cific, there is an average of four drugs per FAERS report,
as well as an average of four ADEs. If each ADE is caused
by one drug only, the amount of observed false drug-ADE
pairs is significantly greater than the amount of true drug-
ADE pairs. Besides the uncertainties between reported
drugs and ADEs, false positives are generated by incor-
rectly reported drug and ADE names as well. For instance,
about 2,000 drugs are approved by the FDA; although the
amount of drug names identified in our FAERS analysis is
>300,000. Hence, drug and ADE names must be normal-
ized cautiously to minimize false drug-ADE associations.
These false-positive drug-ADE pairs can be considered as
background noises and their properties have not been
investigated. Even though the DPA signals are contami-
nated with false positives, they were shown to have high
enough specificity for further investigation.17 Each DPA has
its unique strength in ranking the top drug-ADE associa-
tions. However, the differences among DPA signal ranking
are not well studied yet. As a result, there is a great deal of
confusion in selecting top signals for further investigation.

Besides signal ranking, another purpose of a DPA is to dif-
ferentiate true signals from false-positive signals.18 In order
to select true signals, the SRS nature structure must be con-
sidered. We assume the drug-ADE pairs belong to three dif-
ferent groups (mean RR 5 0, 5 1, or >1). First, we assume
that many RRs are equal to 0, as we identify most (90% in
our analysis and 70% in DuMouchel10) drug-ADE pairs’
reported frequencies are 0. From a practical view, an exam-
ple is that tablets/capsules have no risk to the ADE injection
site pain. Second, for the drug-ADE pairs reported at least
once, we assume many of them are false positives. As we
mentioned above, their report frequencies are generated
from either incorrectly reported drug/ADE names or comedi-
cations. The observed report frequencies of these drug-ADE
pairs will be closely distributed around their expectations.
Hence, their RRs are distributed around one. In other words,
the distribution of the false-positive frequency can be charac-
terized by the expected reported frequencies of these drug-
ADE pairs. In the following sections, we refer this group as
the background RR distribution. Third, the remaining drug-
ADE pairs with positive reported frequencies have greater
RRs than those belonging to the background RR group.
Hence, we propose a three-component mixture model
(3CMM) for drug-ADE signal detection. By using the back-
ground RR distribution as null hypothesis (i.e., H0 : RR51),
the local false discovery rate (FDR) can be used to identify
drug-ADE pairs with increased RRs. Moreover, the proper-
ties of top-ranked drug-ADE pairs and the signal detection
performances by different DPAs will be investigated.

METHODS
Definitions and notations
Subscript i indicates the i th drug (1 � i � I) and subscript j

indicates the j th ADE (1 � j � J). The report frequency Nij

is the count of reports containing a drug-ADE pair. Further,

Ni15
P

j Nij is the marginal summation of drug i , and N1j 5P
j Nij is the marginal summation of ADE j , and N115

P
iP

j Nij is the summation over all drugs and ADEs. For DPA

analysis, Eij 5
N1j

N11
3Ni1 is the expectation of Nij . In other

words, Eij is the expected frequency under no drug-ADE

association. Moreover, let Ri1 and R1j be the number of

reports containing drug i and ADE j , respectively, and R11

be the total number of reports.

Review of DPAs

ROR and PRR. PRRij5
Nij=Ri1

R1j 2Nijð Þ= R112Ri1ð Þ ; which is the

ratio of observed reporting rates. Similarly, RORij 5

Nij= Ri12Nijð Þ
R1j 2Nijð Þ= R112R1j 2Ri11Nijð Þ :

The variances of PRR and ROR can be calculated by the

delta method. Signal detection can be based on the lower

bounds of their 95% confidence intervals, which are known

as ROR_025 and PRR_025.

LRT. Under the LRT approach, let N2
ij 5N1j2Nij , and E2

ij 5
N1j

N11
3 N112Ni1ð Þ is the expectation of N2

ij . Both Nij and N2
ij

are assumed to follow Poisson distributions such that Nij

� Poisson Ni13pij

� �
and N2

ij � Poisson N11ð½ 2Ni1Þ3p2
ij �.

The log-likelihood ratio (llr) llrij 5Nij log Nij=Eij

� �
1N2

ij log ½N2
ij

=E2
ij � is used to test the null hypothesis H0 : pij 5p2

ij . Fur-

ther, for an ADE, MLRj 5maxi llrij

� �
is used for testing H0

: pij 5p2
ij 1 � i � Ið Þ vs H15:H0. Under the null, MLRj

doesn’t have a closed form distribution. As a consequence,

the authors simulated the null distribution to calculate P

values.9

IC. This approach assumes that Ri1 follows a binomial dis-

tribution Ri1 � Bin R11;pi1ð Þ; and pi1 is assumed to have a

uniform prior such that pi1 � Uniform 0; 1ð Þ:11 Similarly, R1j

� Bin R11;p1j

� �
and p1j � Uniform 0; 1ð Þ. Nij is assumed to

follow a binomial distribution with a beta prior such that Nij

� Bin R11;pij

� �
and pij � Beta 1; pi13p1j

� �21
h i

:11 Diriche-

let distribution can be used as the prior distributions as

well.19 Defined as ICij 5log2
pij

pi1p1j

� �
, IC is a measurement

of disproportionality. Its posterior expectation was Eq. 1,

E ICij
� �

5log2
Rij 11
� �

R1112ð Þ2

R1112ð Þ21R11 Ri111ð Þ R1j 11
� �

" #
: (1)

and its variance, V ICij

� �
, can be obtained via the delta

method. The lower bound of 95% confidence interval

(IC_025) is used for detecting signals.

EBGM. This approach assumes Nij � Poisson lij

� �
:10 The

relative risk (RR) is kij5
lij

Eij
and the observed RR is k̂ ij5

Nij

Eij
.

The RR is assumed to follow a mixture distribution in which

the first component has mean <1 and the second compo-

nent has mean >1:
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kij � PC kij ; a1; b1

� �
1 12Pð ÞC kij ; a2;b2

� �
: (2)

where in Eq. 2, C k; a; bð Þ5 ba

C að Þ k
a21exp 2bkð Þ. For the

parameters in Eq. 2, their maximum likelihood estimators

can be estimated from the observed likelihood of Nij s. The

EBGM is an estimate of drug-ADE association.

EBGMij 52 E log kij jNij ;Eijð Þ=log 2½ �: (3)

The 5th percentile of kij ’s posterior distribution, EB_05, is

used for signal detection.

Bayesian false discovery rate. This approach calculates the

posterior probabilities with respect to a predefined null

hypothesis.13,20 The estimated posterior probabilities were

named the Bayesian False Discovery Rate (BFDR), which

refers to the Bayesian false discovery rate. For instance,

BFDR is initially derived from the EBGM model,13 in which

the posterior probability of kij to be greater than a prede-

fined cutoff point is used for signal selection.

BFDRij kthresð Þ5P kij > kthres jNij ;Eij
� �

: (4)

3CMM and the local FDR. The 3CMM assumes the RRs

are distributed either at 0, with mean 5 1, or with mean>1

(Eq. 5):

kij � P1 I kij 50
� �� �

1
X3

l52

PlC kij ; al ;bl

� �� 	
;

a25b2; a3 > b3; P11P21P351; and

C k; a;bð Þ5 ba

CðaÞ k
a21exp 2bkð Þ:

(5)

The first component in the above model is an identity distribu-

tion. It characterizes the drug-ADE pairs with their RRs equal

to 0. Under the assumption of a25b2, the second component

in Eq. 5 describes drug-ADE pairs having background RRs.

The second component will be defined as the “null distribu-

tion” for establishing the local FDR statistic.21 The third com-

ponent has its mean >1. It represents the increased RRs

generated from true drug-ADE associations. For those drug-

ADE pairs that have background or increased RRs, we

assume the distribution of their observed report frequencies

Nijs to be Poisson kij3Eij

� �
. If the drug-ADE pairs’ RRs are

equal to 0, we assume their observed report frequencies to

have an identity distribution such that I Nij50
� �

. The distribu-

tion of Nij under 3CMM is:

P Nij
� �

5P1I Nij 50
� �

1
X3

l52

Pl F Nij ; al ; bl ;Eij
� �� 	

;

a25b2; a3 > b3 and P11P21P351:

(6)

In Eq. 6, F Nij ; al ;bl ;Eij

� �
5

C Nij 1alð Þ3E
Nij

ij
3b

al
l

C alð Þ3Nij !3 Eij 1bl½ �Nij 1al
is the nega-

tive binomial distribution. The log-likelihood function of

Eq. 6 is:

ll Nij ; Eij ; a25b2; a3; b3;P1;P2f g
� �

5
X

i

X
j

log P Nij
� �

;

P3512P12P2:

(7)

For pharmacovigilance study, drug-ADE pairs with positive

report frequencies are of more interest. Their conditional

distribution is:

P Nij 5k jNij > 0
� �

5
F k ;a2; b2;Eij
� �

1P3
P2

3F k ;a3; b3;Eij
� �

P Nij > 0;a2; b2;Eij
� �

1P3
P2

3P Nij > 0;a3; b3;Eij
� � :

(8)

In Eq. 8, P Nij > 0; al ; bl ;Eij

� �
is the probability of Nij > 0,

based on F Nij ; al ;bl ;Eij

� �
. Their report frequencies can be

modeled by the conditional log-likelihood function in Eq. 9:

ll Nij ; Eij ; a25b2; a3; b3; rf g
� �

5
X

i

X
j

log P Nij 5k jNij > 0
� �� 	

(9)

Instead of estimating P2 and P3 separately, the conditional

model in Eq. 9 considers their ratio as a single parameter.

Thus, Eq. 9 has four parameters a25 b2; a3; b3;f r5P3=P2g.
The local FDR statistic is:

local FDR Nij
� �

5
P23F Nij ; a2; b2;Eij

� �
P13I Nij 50

� �
1
P3
l52

F Nij ; al ;bl ; Eij
� �

3Pl
� 	 : (10)

It is equivalent to the posterior probability of a drug-ADE

pair to have a null RR. If Nij > 0, the local FDR can be sim-

plified as:

local FDR Nij 5k jNij > 0
� �

5
F k ; a2; b2; Eij
� �

F k ; a2; b2;Eij
� �

1r3F k ; a3; b3; Eij
� � :

(11)

Like the EBGM model, under the 3CMM, posterior expecta-

tions of the RRs for the drug-ADE pairs with positive report

frequencies can be estimated simultaneously. The 3CMM-

based EBGM (3C_EBGM) is:

3CEBGMij 52
E log kij jNij ; Eijð Þ

log 2 : (12)

In Eq. 12, E log kij jNij ; Eij

� �
5local FDR Nij

� �
3 W a21Nij

� ��
2

log b21Eij

� �
�1 12local FDR Nij

� �� 	
3 W a31Nij

� �
2 log b31ð

�
Eij Þ�, where W xð Þ is the digamma function.

Drug-ADE signal ranking
For data analyses and simulations, local FDR is used to

rank top drug-ADE signals generated from our 3CMM

model. The PRR, IC, and EBGM are used to rank top drug-

ADE signals generated from their models. For LRT, it is

computationally infeasible to estimate extreme P values

(i.e., <1210) through simulation studies. Thus, llr is used to

rank signals. They are consistent with their P value-based

rankings.9 We calculated the BFDR under the EBGM model
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and set kthres 5 2 according to Ahmed et al.13 The BFDR is

used to rank top drug-ADE signals.

Control of confounding bias
In this section, we define a propensity score (PS) adjusted

expectation to control confounding bias. Both the regular

expectation (defined in the Definitions and Notations sec-

tion) and the adjusted expectation will be utilized for signal

detection. To calculate the adjusted expectation, principle

components (PCs) are derived from the drug matrix, in

which each column corresponds to a drug and each row is

a report. For our analysis, we use the first 100 PCs and the

logistic regression model in Eq. 13 to calculate the PS.

logit P Drug51ð Þ½ �5b01
X100

i51

bi 3PCi (13)

For a drug-ADE pair, we fit another logistic regression

model in Eq. 14, in which response variable is the ADE sta-

tus and covariates include the drug status and its PS.

logit P ADE51ð Þ½ �5b01b13Drug1b23PS (14)

From Eq. 14, for K reports, the PS adjusted expectation is

defined as:

E5
XK

k51

P ADE51jDrug50 & PSkð Þ31 Dk51ð Þ½ � (15)

In other words, Eq. 15 is the production of the drug fre-

quency and the average of PS adjusted drug absent ADE

risks.

Parameter estimation
We utilized the particle swarm optimization (PSO) to esti-

mate the maximum likelihood estimators.22 The practices

are five-dimensional and four-dimensional vectors with

respect to the log-likelihood (Eq. 7) and conditional log-

likelihood (Eq. 9). Let X be the particle’s position, V be the

particle’s velocity, subscript t t51; . . . ; Tð Þ indicates the t th

particle, and superscript s s51; . . . ; Sð Þ indicates the sth

step. In each step, the PSO identifies the local and global

best such that Lt 5 arg maxX s
t s51;...; S ll Nij ; Eij ;X

s
t

� �
and

G5 arg maxLt t51;...; T ll Nij ; Eij ;Lt

� �
. Then, the particles’

positions (X) and velocities (V Þ are updated by:

V s
t 5wsV s21

t 1U 0; 1ð ÞC1 Ls21
t 2X s21

t

� �
1

U 0; 1ð ÞC2 Gs21
2X s21

t

� �
and X s

t 5X s21
t 1V s

t :
(16)

In Eq. 16, the weight ws is set to be ws5

wmax2wminð Þ3 itermax2iterð Þ
itermax

1wmin, and U 0;1ð Þ is a number

generated uniformly from 0 to 1.23 The PSO is carried out

by setting the particles with random starting points, and

iterating until they converge.

FAERS data processing
The FAERS reports are stored quarterly for each year. The

reports from the first quarter of 2004 to the third quarter of

2012 were selected. The primary ID numbers of the reports

were used to filter duplications. Moreover, drugs recorded to
treat indicated ADEs were removed in order to reduce the
indication bias. Our initial database contains 4,070,770
reports, 15,445 unique MedDRA24 preferred terms, and
356,734 distinct drug names. Drug Bank IDs25 were adopted
to normalize the drug names. Manual corrections were made
for the frequent drug names (>999 reports) that cannot be
mapped with Drug Bank ID. These corrections included cor-
rection for incorrect formations or drug names with additional
information. For instance, “simvastatin tablets 20 mg” was
manually revised to “simvastatin.” The final data had 1,735
distinct drug names.

We selected reports containing 92 MedDRA24 preferred
terms that belong to myopathy, neuropathy, delirium, and
skin pigmentation disorder for simulations and analyses as
well. This dataset is named as four ADE data in the follow-
ing sections. The ADE names and their frequencies are
given in Supplementary Table S2. Due to computational
burden, adjusted expectations were only calculated for the
four ADE data. The adjusted expectations will be used to
calculate EBGM, BFDR, and local FDR.

Drug-ADE signal validation and evaluation
The side effect resource (SIDER)26 is a database estab-
lished from drug labels. As it includes the labeled drug-
ADE associations, we adopted it to validate the top signals
of different DPAs. In the validation process, we utilized the
drug name mapping tool developed by Wu et al.27 to nor-
malize drug names between SIDER and FAERS.

The Observational Medical Outcomes Partnership (OMOP)
gold standard14 was designed to establish a reference set for
pharmacovigilance study. It contains 399 drug-ADE pairs that
were made up of 181 drugs and 4 ADEs (acute myocardial
infarction, acute renal failure, acute liver injury, and gastroin-
testinal bleeding). These 399 drug-ADE pairs are classed as
165 true positives and 234 true negatives. The performances
of signal detection for local FDR and other DPAs will be eval-
uated by the OMOP gold standard. The signal detection per-
formances are evaluated by areas under the ROC curve
(AUCs).

RESULTS
FAERS risk profile
The conditional 3CMM (Eq. 9) had been applied to both full
FAERS data and the four ADE data. The estimated risk
structures for the full data, four ADE data with regular
expectation, and four ADE data with adjusted expectation
are shown in Table 1. Generally, among all drug-ADE pairs

Table 1 Risk profiles for full FAERS data and the four ADE data

Group

Full data

Four ADE data

with regular

expectation

Four ADE data

with adjusted

expectation

Mean

RR [SD] %

Mean

RR [SD] %

Mean

RR [SD] %

Background risk 1 [0.73] 81 1 [0.66] 90 1 [0.75] 85

Increased risk 4 [11.5] 19 5.10 [8.17] 10 4.96 [6.52] 15

ADE, adverse drug events; FAERS, US Food and Drug Administration

Adverse Event Reporting System; RR, relative risk.
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with non-zero risk, 19% of them have an average of RR of
4. We also fitted the EBGM model (Eq. 2) to the full FAERS
data. Under EBGM model, the drug-ADE pairs have two

RR mean estimates: 0.76 or 3.67. The EBGM model’s sec-
ond component (mean 5 3.67) is similar to the third compo-
nent of 3CMM (mean 5 4.0). On the other hand, the first

Figure 1 (a) The report frequencies and the observed relative risks (RRs) for the top-20 ranked signals by different methods with regu-
lar expectation. (b) The report frequencies and the observed RRs for top-20 ranked signals by different methods with adjusted expecta-
tion. BFDR, Bayesian False Discovery Rate; EBGM, Empirical Bayesian Geometric Mean; IC, information component; LFDR, local
false discovery rate; LRT, likelihood ratio test.

Figure 2 Signal detection algorithm performances (area under the curve (AUC)) classified by event. IC, information component; LFDR,
local false discovery rate; LRT, likelihood ratio test; PRR, proportional reporting ratio.
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component of the EBGM model (mean 5 0.76) is a mixture of

3CMM’s components one and two. By using regular expecta-

tion, 10% drug-ADE pairs in the four ADE data have an aver-

age of RR of 5.10. Adjusted expectation yielded the risk

structure such that 15% drug-ADE pairs have an average of

RR of 4.96. More information about model fitting is presented

in the Supplementary Figures S1-S3.

Properties of the top-ranked signals
The comparison of top-ranked drug-ADE signals among

DPAs was performed on the four ADE datasets. We

observed that the top 20 signals generated from different

DPAs had different report frequencies and observed RRs

(Figure 1a,b). For both regular and adjusted expectations,

local FDR top signals have moderate report frequencies

but a greater magnitude on the observed RRs. We discov-

ered that EBGM and IC yielded similar top-20 ranked

drug-ADE pairs. Their report frequencies are small. On the

contrary, the report frequencies of BFDR’s and LRT’s top

signals are significantly larger.
Top-20 signals were further investigated by SIDER.26 For

the frequentist methods, 10 of the top 20-ranked signals

identified by LRT can be validated in SIDER, and 1 by

PRR. The Bayesian method, IC, has 5 drug-ADE pairs. For

the empirical Bayesian methods with adjusted expectation,

EMGM, BFDR, and local FDR have 4, 4, and 5 overlapped

drug-ADE, respectively. Alternatively, with regular expecta-

tion, EBGM, BFDR, and local FDR have 3, 6, and 5 over-

lapped pairs. Interestingly, the top-20 ranked signals by

different methods are complementary to each other, such

that nearly all methods’ top-20 signals can identify unique

SIDER documented drug association(s). The top 20 ranked

signals by each method are in Supplementary Table S3.

DPA performance evaluation by OMOP gold standard
Using OMOP gold standard,14 performances of EBGM,
PRR, and ROR were compared by Ryan et al.,14 in which
EBGM was shown to have the best performance (i.e.,
AUC). In this study, we extend the comparisons to local
FDR, LRT, and IC. Additionally, the performances of EBGM
and local FDR under regular and adjusted expectations will
be evaluated. As 3CMM generates both 3C_EB05 and local
FDR, their combination can be used for performance evalua-
tion. We used a weighted combination of 3C_EB05 and local
FDR (local FDR13C_EB05), where the weights are derived
from logistic regressions. As we mentioned in the Drug-ADE
signal ranking section, llr is used to evaluate the perfor-
mance of LRT. In our analysis, BFDR is not examined
because BFDR is equivalent to EB05 i:e:; BFDR kThres5ðð
2Þ < 0:05 is equivalent with EB05 > 2Þ. Their performan-
ces are shown in Figure 2. For frequentist approaches, LRT
has better AUCs than PRR in three out of four ADEs. The
IC_025, the only Bayesian approach, has comparable
AUCs to the other DPAs. By using regular expectation, local
FDR13C_EB05 is noninferior to or better in three of four
ADEs. Alternatively, by using adjusted expectation, local
FDR13C_EB05 has best performance in liver injury. The
AUCs of local FDR13C_EB05 under equal weights were
examined as well. Under regular expectation, the AUCs are
0.71 for myocardial infraction, 0.72 for liver injury, 0.78 for
acute renal failure, and 0.76 for gastrointestinal bleeding.
Under adjusted expectation, the AUCs are 0.67 for myocar-
dial infraction, 0.77 for liver injury, 0.71 for acute renal fail-
ure, and 0.76 for gastrointestinal bleeding. For the ROC
curves, please visit Supplementary Figure S4.

Simulation study
In order to maintain the drugs’ correlation structure, we chose
a random subset of FAERS containing 40,000 reports. We fur-
ther selected 100 drugs randomly for our simulation study. In
the simulation studies, 20 ADEs were simulated by assuming
5 causal drugs per ADE. For multiple causal drugs on a
report, we assumed the risks to be multiplicative. For each
simulation, ADE status for each report was simulated first.
Then, we summarized the reports into report frequencies of
2,000 drug-ADE pairs. The causal drug-ADE pairs repre-
sented true signals, and the background signals were gener-
ated from the FAERS’ comedication structure.

We conducted 1,000 simulations. First, the top 50 and 20
drug-ADE pairs ranked by different DPAs have at least 90%
to be casual drug-ADE pairs except for PRR. Second, the
average observed RRs and report frequencies for different
DPAs’ top-20 signals were examined. Results show a con-
sistent pattern as we observed from our FAERS analysis
(Figure 3). The report frequencies of the EBGM and IC top
signals are small; the report frequencies of the LRT and
BFDR top signals are large; and the report frequencies of
the local FDR top signals are in the middle. For the
observed RRs, a reverse trend was observed.

In addition, simulation studies were conducted to examine
the true positive rate (TPR) and the local FDR consistency.
We examined the TPR for the top-20, 50, 100, and 200
ranked signals. Results show that EBGM, IC, and local FDR
rankings have nearly 100% TPRs (Supplementary Figure

Figure 3 The average simulated report frequencies and the sim-
ulated observed relative risks (RRs) for top-20 ranked signals by
different methods. BFDR, Bayesian False Discovery Rate; EBGM,
Empirical Bayesian Geometric Mean; IC, information component;
LFDR, local false discovery rate; LRT, likelihood ratio test.
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S5). From another simulation, we observed that the local
FDR estimators are consistent, if the drug-ADE pairs are
following the 3CMM independently (Supplementary
Figure S6a). Although, if the independent assumption does
not hold, then the local FDR estimators are underestimated
(Supplementary Figure S6b). More detailed data and infor-
mation are presented in Supplementary Figure S2.

CONCLUSIONS

This article presents a novel model (3CMM) for detecting
drug-ADE associations. Under 3CMM, local FDR is defined
to be the posterior probability of a drug-ADE pair to have
an increased RR with respect to the null. On one hand,
local FDR’s top signals show reasonable power to detect
true signals from the FAERS database. In addition, local
FDR have comparable or improved performances in OMOP
analysis as well. On the other hand, simulation studies
show local FDR has noninferior or better abilities to select
casual drug-ADE pairs. Thus, local FDR is a decent statis-
tic for signal ranking/detection. Additionally, local FDR is
more statistically meaningful regarding FDR, compared to
traditional DPA statistics.

The observed RRs and report frequencies for different
DPAs’ top signals were examined. An interesting finding is
that DPAs have different patterns of their top signals. The
report frequencies of the EBGM and IC top-20 signals
range from 10 to 50, which are among the smallest.
Although their top signals’ observed RRs are the highest
(between 20 and 200). The LRT and BFDR top-20 signals
show a contrary pattern. Their report frequencies are at
least 200 and up to a few thousand. Although their
observed RRs are between 2 and 15. For local FDR, both
its top-20 signals’ report frequencies (20 to 400) and
observed RRs (16 to 200) are moderate. To summarize,
the IC and EBGM top signals are rare drug-ADE pairs with
large RRs; LRT’s and BFDR’s top signals are common
drug-ADE pairs with low RRs; and local FDR’s top signals
are drug-ADE pairs with moderate frequencies and RRs.
Comparing the top-signals, nearly all methods can identify
unique SIDER26 documented drug-ADE association(s).
These are important evidences that the signal detection
methods are complementary to each other. Using the
OMOP golden standard drug-ADE pairs, we show that
combining both 3CMM statistics, 3C_EB05 and local FDR,
they have comparable or better AUC performance in select-
ing the true drug-ADE signals. In detecting liver injury-
related drugs, PC adjusted 3C_EB051local FDR has the
best AUC. For real application, equal weights can be used
to combine local FDR13C_EB05. Further, none of the
method has uniformly better performance than other meth-
ods. This is more evidence that different DPAs are
complementary.

The 3C_EBGM and 3C_EB05 generated by the 3CMM
are consistent with DuMouchel’s EBGM10 and EB05 (Sup-
plementary Figure S7). In the four ADE data analysis,
DuMouchel’s EBGM and our 3C_EBGM have the same
top-20 ranked drug-ADE pairs. Through 3CMM, local FDR
is naturally defined with respect to the null RR distribution.

As described in the 3CMM and the local FDR section,
3CMM is derived based on the nature structure of the ADE
risks. The background risk (null) is properly defined only
under 3CMM. Alternatively, under a two-component mixture
model in which one component represents background risk
(mean RR 5 1) and the other component characterizes
increased risk (mean RR >1), the null distribution is mis-
specified. As a consequence, the local FDR will be
improper. The rationale of 3CMM is also supported by the
fitted EBGM model, in which the first component have
mean RR 5 0.76. The first component of the EBGM model
represents a mixture of the background risk (mean RR 5 1)
and the zero-risk component. Under 3CMM, the zero-risk
component is not identifiable from the data. Although, this
issue can be solved by the conditional inference approach,
in which the background and increased risks can be esti-
mated. Compared with DuMouchel’s model, 3CMM initially
estimated the background risk of the FAERS database.
Another contribution is the added local FDR statistics,
which measures the false-positive drug-ADE signals. Simu-
lation results show that the model-based local FDR are
consistent with empirical false discovery rates. Thus, the
uncertainty is not a major challenge for using the local FDR
estimates. The local FDR statistics can be used to prioritize
drug-ADE signals alone. Alternatively, it can be combined
with other methods. For instance, local FDR can be used
to evaluate the FDR for the top-signals generated by differ-
ent methods as well.

In this analysis, PS was used to control confounding vari-
ables. Particularly, 100 PCs were used to estimate the PSs.
A plot of number of PCs vs. percentage of variation
explained is given in the (Supplementary Figure S8), and
100 PCs explain 57.36% of the total variation. For our anal-
ysis, incorporating 100 PCs costs about 10 GB of computa-
tional memory (sample size about 4.07 million) to fit the
propensity score model. Both computational resources and
statistical knowledge (i.e., percentage of variation
explained) are two factors to determine the number of PCs
for the propensity score model. In our analysis, we use PS
as a covariate. Additionally, PS can be also used to match
observations or as weight. Our choice is a computational-
driven approach, as PS-matching is computationally expen-
sive and using PS as weight may yield instable model esti-
mation. Moreover, confounding variables, such as
demographic variables and clinical variables, can be con-
trolled by either multiple regression or propensity score
analysis,28,29 which are multivariate extension of PRR or
POR methods. However, integrate confounding variables
into the other DPA methods are not straightforward, and
need significant further methodology development. For
instance, vast FAERS reports are missing age and gender
information. Further, we identify that the adjusted expecta-
tion is not performed uniformly better than regular expecta-
tion in the OMOP analysis. We identify techniques, such as
traditional multiple regression and propensity score analy-
sis, are underpowered on handling highly correlated drugs.
Such correlations are generated by the increasing trend of
co-prescriptions and polypharmacy.30 As a consequence, in
such a situation, multivariate analyses may yield reduced
power to detect signals compared with univariate analyses.
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Last, the proposed local FDR derived from 3CMM is funda-
mentally different from the BFDR.13 Under 3CMM, if a drug-
ADE pair has a positive report frequency, its RR would either
follow a gamma distribution with mean 5 1, or a gamma distri-
bution with mean >1. These two distributions represent the
background (null) and increased (alternative) RR distributions.
The 3CMM shares same model frame work with Efron’s local
FDR model, in which null and alternative distributions are
clearly specified. Additionally, the local FDR from 3CMM fol-
lows the theory of Storey.31 The BFDR is derived from the
EBGM model which does not have null and alternative distri-
butions. The BFDR is defined to be the posterior probability of
RR to be greater than a predefined threshold. Thus, the
BFDR null hypothesis does not characterize the null or false
positive distribution. On the contrary, 3CMM characterizes the
SRS nature risk structure; models the RR by specifying the
null and alternative distributions; and estimates the local FDR
purely from the drug-ADE pairs’ report frequencies.
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