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Protein-protein interaction network (PPIN) analysis is a widely used method to study the contextual role
of proteins of interest, to predict novel disease genes, disease or functional modules, and to identify novel
drug targets. PPIN-based analysis uses both generic and context-specific networks. Multiple contextual-
ization methodologies have been described, such as shortest-path algorithms, neighborhood-based
methods, and diffusion/propagation algorithms. This review discusses these methods, provides intuitive
representations of PPIN contextualization, and also examines how the quality of such context-specific
networks could be improved by considering additional sources of evidence. As a heuristic, we observe
that tasks such as identifying disease genes, drug targets, and protein complexes should consider local
neighborhoods, while uncovering disease mechanisms and discovering disease-pathways would gain
from diffusion-based construction.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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1. Introduction

The emergence and growth of network medicine in the last dec-
ade has been facilitated by the growth of publicly-accessible
molecular datasets [1]. Various kinds of interactions such as
protein-protein interactions (PPIs), transcription factor-gene regu-
latory interactions, perturbation effects of drugs and small mole-
cules on gene expression, etc., have been systematically
documented [2–4]. These interactions can be represented as net-
works or graphs, which are composed of a set of nodes, also called
vertices, representing the discrete interacting entities (whose nat-
ure depends on the type of data under study), and a set of links,
also called edges, representing physical or functional interactions
between nodes. Networks consisting of different data types have
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Table 1
Some applications of PPINs mentioned in literature.

Authors Type Application Comments Ref

Tomkins and
Manzoni

Review PPIN analysis of Parkinson’s disease Illustrates the different uses of PPIN analysis, including exploration of the neighbourhood
of a single gene, disease genes prioritization, exploration of novel functions, disease
candidates and pathways, and for comparative studies with other neurodegenerative
diseases

[8]

Vinayagam
et al.

Method Predicted novel cancer-associated genes Applied concepts from control theory to PPIN analysis [9]

Cheng et al. Method Predicted hundreds of drug-disease
associations

Method based on network proximity of disease proteins and drug targets in a PPIN [10]

Cheng et al. Method Predicted drug combinations Network proximity applied to prediction of drug combinations. Approach validated for a
combination of anti-hypertensives

[11]

Chautard E
et al.

Review Identifying drug targets Analysis of drug targets in a PPIN identifies characteristics of drug targets, can guide drug
design

[5]

Choobdar S
et al.

Review Identify various protein communities,
functional and disease modules

DREAM challenge exhibits various approaches for identification of modules based on
topology of networks, including PPINs

[12]

Maron et al. Method Patient specific subnetwork identification
and disease sub-typing

Differences in types of cardiomyopathies (hypertrophic and dilated) detected based on
patient-specific networks

[13]

Vavouraki
et al.

Method Disease stratification and exploring
molecular mechanism

PPIN based study of Hereditary Spastic Paraplegia [14]

Fig. 1. Flowchart of the major steps discussed in the manuscript to obtain a context-specific network. Inputs are taken to be proteins representing a specific context and a
generic PPIN. Two main methods of contextualization – neighbourhood-based and diffusion based- are elaborated. We also discuss additional options for curation, using
different data sources. Such a contextualized network can then be subject to further analysis such as identification of important nodes, and clustering.

A. Badkas, Sébastien De Landtsheer and T. Sauter Computational and Structural Biotechnology Journal 20 (2022) 3280–3290
been leveraged for a variety of tasks, such as the identification of
novel disease proteins and drug targets, predictions of drug side-
effects and toxicity, or the discovery of functional and disease
modules, among others [5,6]. Thereby, different types of biological
networks have been explored, such as gene-regulatory networks,
metabolic networks, protein–protein interaction networks (PPIN),
drug-target networks, etc. [7]. Amongst the PPINs, a variety of
applications have been previously described. Table 1 illustrates
some of the different application areas of PPINs.

Some applications call for analysis of generic PPINs. For
instance, a study of human disease symptoms showed that shared
symptoms are linked to shared protein interactions. This study was
based on analysis of a PPIN combined from 5 different databases
[15]. However, in order to investigate a smaller system for specific
tissues, or localized perturbations, a relevant context-specific net-
3281
work needs to be designed. As an example, a disease-specific net-
work was constructed by mapping Parkinson’s disease (PD)
associated genes to 3 different generic PPINs [16]. The resulting
consensus PD-specific network was analysed to identify novel can-
didates and drug targets. Approaches to obtain context-specific
networks can be broadly divided into local ones (such as neigh-
bourhood methods), and more global ones (such as diffusion-
based methods) [17]. Each approach may lead to different
context-specific networks, in terms of size and structure. Thus,
any analysis performed using such a contextualized network is
dependent on the choice of the method used for the construction.
However, it might not always be clear what an optimal approach to
network building would be or when a certain method should be
preferred.



Fig. 2. Different components of contextualized PPIN construction.
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This review presents an overview of the network contextualiza-
tion process (Fig. 1). To begin with, a description of generic PPINs is
presented, together with some of the main public databases of
protein-protein interactions. We then discuss the two approaches
– neighbourhood and diffusion-based – in detail, drawing exam-
ples from various studies mentioned in the literature. Further, we
explore methods of refining networks obtained using these
approaches. We also examine the suitability of each approach in
different contexts. The review concludes with a summary of our
observations and suggestions, highlighting the application-
specific and contextual nature of the PPIN construction process.
2. Data availability and quality

PPIs considered here are physical interactions between proteins
that lead to downstream biological changes in an organism [18].
(Fig. 2 (a)) Such interactions are responsible, for example, for sig-
nalling cascades involved in all biological processes. There are sev-
eral generic and tissue-specific PPI databases available which offer
experimentally verified and computationally predicted interac-
tions. These databases document interactions available in the liter-
ature, such as those detected experimentally using methods such
as yeast two-hybrid screening, affinity purification, etc., as well
as those predicted by computational algorithms. Some of the most
widely used databases include HPRD, APID, BioGRID, HINT, HIPPIE,
STRING, and IntAct [19–25] Some databases provide confidence
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scores, which can be used to construct weighted networks, in
which an interaction’s weight corresponds to the degree of cer-
tainty that the interaction is, indeed, a part of the real network.
These generic PPIs contain interactions collected across multiple
cell/tissue types, occurring at different times, in multiple biological
contexts. However, not all interactions occur in all entities simulta-
neously, as each cell/tissue type has a characteristic protein
expression profile. Contextualizing generic PPINs into tissue-
specific networks is based on tissue-specific expression data. For
example, in their study, Magger et al., identified 60 tissue-
specific PPINs based on gene expression data and a generic PPIN
[26]. Such tissue-specific networks are used to study localized con-
ditions, or to identify specific drug targets. A database of cell-line
specific networks, BioPLEX, is also under construction [27]. How-
ever, gene expression might not always be a good predictor of pro-
tein expression, and several studies have reported conflicting
results in this regard [28–30]. Several mechanisms exist, such as
transcriptional regulation, ribosomal competition, post-
translational modifications, ubiquitin-dependent degradation etc.,
which regulate the protein levels, especially after the mRNA has
been transcribed [31]. Hence, caution must be exercised when
using gene expression as a proxy for protein expression. Back-
ground on various experimental techniques, an overview of how
PPI databases are built, and a recent list of PPI databases can be
found here [3,32]. Some examples of PPI databases are shown in
Table 2.



Table 2
Some PPIN databases.

Database Size (Human)* Type Organisms Comments Website Ref.

HPRD 41,327 Primary 1 (h.
sapiens)

Manually curated from literature. Last updated in 2010 https://www.hprd.org/ [19]

APID 667,805 Secondary >400 Experimentally validated interactions. Last updated in 2021.
Collection of interactions from IntAct, HPRD, BioGRID, DIP and
BioPlex

https://cicblade.dep.
usal.es:8080/APID/init.
action

[20]

BioGRID 841,206+ 15,642 ++ Primary 81 Lists physical and genetic interactions for various organisms.
Contains a ‘muti-validated’ dataset with high confidence
interactions, based on presence of multiple evidences of a given
interaction. Updated monthly

https://thebiogrid.org/ [21]

IntAct 3,62,712** Primary 16 Experimentally obtained data, curated data from literature https://www.ebi.ac.uk/
intact/home

[25]

BioPlex �120,000
(HEK293T) � 71,000
(HCT116)

Primary 2 human
Cell lines

Experimentally obtained Affinity-Purification Mass Spectrometry
(AP-MS) data

https://bioplex.hms.
harvard.edu/

[27]

STRING 1,19,38,498# Secondary/
Predictive

14,094 Physical and functional interactions obtained from experiments,
computational predictions, text-mining and other databases.
Provides confidence scores associated with each interaction.

https://string-db.org/ [24]

HIPPIE 7,83,182 Secondary 1 (h.
sapiens)

Provides confidence scores and functional annotation for
experimentally verified interactions. Last updated April 2022

https://cbdm-01.zdv.
uni-mainz.de/
~mschaefer/hippie/
index.php

[23]

HINT 119,526 Secondary 12 Manually curated high-throughput experimental data, curated
from 8 different databases

https://hint.yulab.org/ [22]

GeneMANIA 1,17,49,785^ Secondary 9 Physical and functional interactions. Can be used as a curation
tool, e.g for adding missing members in a network; as a tool for
functional annotation and interpretation

https://genemania.org/ [33]

*As obtained from the database website, May 2022.
** For Human species, only intra-species physical interactions between proteins considered here.
^All human interactions.

+ Non-Redundant-Physical, ++Non-Redundant – Genetic.
# Physical and functional interactions.
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3. Methods for constructing and contextualizing PPINs

3.1. Overview

Generic PPINs, as described above, catalogue interactions
between different proteins. A contextualized network refers to a
specific subset of such a generic PPIN, with a defined biological
context. Biological contexts of interest include, for example,
tissue-specific sets of interactions, the network of all PPIs in a
specific cell type, or the network of all the proteins associated
and suspected to be involved in, say, Alzheimer’s disease. The con-
struction of context-specific PPINs from a generic PPIN involves the
creation of a relevant network around specific proteins, or seeds.
We define seeds as the proteins of interest that form a specific bio-
logical context. Seeds can be differentially expressed proteins
obtained from a proteomics or transcriptomic experiment, or prior
knowledge from literature on disease-associated proteins. Creating
a contextualized network (graph) of these seeds involves mapping
these seeds onto a generic PPIN, thus identifying the connections
between the seeds, and adding new nodes from the neighbourhood
of the seeds. Curation of obtained network can be done based on
additional databases. Such a contextualized network can then be
subjected to various ways of network analysis such as centrality
calculations and clustering.

Interactions between proteins can be either transient or perma-
nent. Description of changes in network topology over time is pos-
sible as a sequence of static networks, which are snapshots of the
effective interactions at specific timepoints, therefore enabling the
study of the network over time. Some methods, explicitly consider-
ing the protein levels as states of the model, require specific con-
struction methods, kinetic parameters, which draw from a
variety of sources and are highly dependent of the mathematical
approach. In this work, we consider only static contextualized net-
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works in detail, leaving aside dynamic networks, where the struc-
tural changes of the network are studied over time.

The first step of static PPIN contextualization is the mapping of
the seeds (Fig. 2 (b)). Often, not all of the seeds map to the generic
PPINs. This could either be because the protein is missing from the
database, or due to protein annotation discrepancies. Hence, net-
work construction may begin with a reduced number of seeds
(Fig. 3 (a)). This initial seed mapping allows one to already obtain
the first impressions about their topology, connectivity, helps visu-
alize their placement in the network, and indicate their impor-
tance. Following the initial seed mapping, one can explore their
contextual, topological and biological characteristics further via
connecting the seeds based on existing direct edges (Fig. 2(c))
and/or expanding the network (Fig. 2(d), (e), (f)). The two broad
approaches to contextualization are the neighbourhood-based
methods – which include shortest-path and k-step neighbour
methods – and the diffusion-based methods.

The size of the contextualized network – measured in terms of
nodes and edges of the network – varies, based on the contextual-
ization process followed. In case only the existing edges between
the seeds are considered, the number of nodes remains constant,
after the initial loss of seeds during mapping, while the edges cor-
responding to their connectivity are added (Fig. 3 (a)). Connecting
seeds via shortest paths usually results in the inclusion of addi-
tional, non-seed nodes (Fig. 2(d) and Fig. 3 (b)). Network expan-
sion around seeds via either neighbourhood approaches or
diffusion-based approaches generally leads to much larger net-
works, compared with the starting number of seeds, especially if
some seeds are hub proteins (interacting with a large number of
proteins) (Fig. 2(e), (f) and Fig. 3 (c)).

The final size and structure of the resulting network depends on
documented links between the proteins – thus, the state of com-
pletion of the database-, the approach, and any additional curation
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Fig. 3. Illustration of network building methods: In terms of number of nodes and edges, simply connecting seed nodes (a) after mapping them to a generic PPIN (which could
result in the loss of number of seed nodes) will keep the number of nodes constant, but will lead to a modest increase in the number of edges. Connecting nodes via shortest
paths (b) would increase the number of nodes as well as edges. Here, the choice of whether one or more shortest paths are considered will indeed affect the size of the final
network. A steep increase may be expected in the size of the network in terms of both number of nodes and edges when the neighbourhood/diffusion-based network building
is applied (c), especially if hub nodes are present in the seed genes. The largest size of a network is the entire generic PPIN used in the process. We can illustrate the network
building process, as a bottom-up construction method (d) or a top-down contextualization process (e). In the bottom-up construction, starting from nodes of interest, one can
build up the connections between the nodes based on available evidence in generic PPIN, or add new nodes and edges to the starting nodes to understand how they influence
and are influenced by their interaction partners. On the other hand, one can start with a generic PPIN, and trim away nodes and edges that may not be expressed in specific
tissues or cell types, or in certain disease contexts. In a constructed network or in contextualization of a network, multiple criteria can be used to reach a final network. A
constructed/contextualized network can further be appended or pruned (f). For example, for a network constructed by connecting the seeds via shortest paths, one would
need to consider interactions among the newly added seeds, thus increasing the number of edges of the network while keeping the number of nodes constant. Alternatively,
given evidence of expression, one may consider including additional nodes, and thus additional edges to the network. On the other hand, one may prune the network based on
additional criteria, such as removing peripheral nodes (reducing number of nodes and edges), or simply removing some of the edges that may not have experimental support.
The loss of an edge may or may not reduce the number of nodes. While these steps may seem trivial, they affect the size and topology of the network, and have a major effect
on the predictions and conclusions of network-based analyses.
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steps. For neighbourhood approaches, one criterion could be a con-
fidence scores threshold for the inclusion of interactions. When
using diffusion algorithms, the size of the obtained network is
dependent on the cut-off values considered for inclusion of nodes.

Conceptually, PPIN construction can be viewed either as a
bottom-up process: starting from a set of known proteins of inter-
est, one can construct a network based on physical interactions
between these known nodes, and expand the network (Fig. 3
(d)), or it can also be thought of as a top-down approach (Fig. 3
(e)): starting from a generic database, one then prunes nodes and
edges to give a more specific network.

In the next section, variants of two broad construction/contex
tualization approaches: local neighbourhood-based, and
diffusion-based, are discussed.
3.2. Connecting proteins and neighbourhood-based methods

The simplest approach to obtaining a context-specific PPIN is to
connect every pair of seeds when such interactions are docu-
mented in a database (Fig. 2 (c)). The resulting network would
have the same number of seeds, with an increased number of
edges. (Fig. 3 (a)) This could lead to either a dense, single-
component network, or several disconnected components,
3284
depending on the number of seeds and of relevant interactions pre-
sent in the database. In the case of disconnected components,
while these small components may help understand the interac-
tions and functions in which the seeds are involved, the lack of a
single network may limit the scope of analysis.

Another approach is to connect the seeds via the shortest paths
(Fig. 2 (d)): for every pair of seed node, if there exist a path in the
generic network which is shorter and not yet part of the contextu-
alized one, include all nodes and interactions along this shortest
path. This method of network construction was the idea behind
some tools such as Lists2Networks and POINeT [34,35]. These tools
use different generic PPIs, and are designed to contextualize them,
based on user-provided seeds. They also have users choose the
maximum number of intermediary nodes on such shortest paths.
POINeT has other options to refine networks such as removal of
peripheral (degree 1) nodes, setting filters on the number of refer-
ences for interactions, and adding confidence to interactions if two
interactors of one of the interactions were both present in query
list, if two interactors shared a GO term, or interologs (conserved
interactions across species, such that interactions between two
proteins in one organism are conserved in another organism’s
orthologs) are present [36]. These tools are no longer maintained,
however. Wang and Loscalzo proposed the Seed Connector algo-
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rithm (SCA) to connect disease-associated proteins scattered in a
PPI network by adding as few additional linking nodes as possible
[37]. This is done by iteratively adding neighbours of seeds, and
identifying additional nodes that yield the largest connected com-
ponent containing the maximum number of the seeds. The authors
showed that the resulting modules are coherent and correspond to
disease mechanisms and pathways, and are also enriched in known
targets of existing drugs.

When multiple shortest paths exist between seeds, the user
must choose a criterion, such as including nodes on all of the short-
est paths, or only including paths and nodes that are shared among
different seeds. In a method proposed by Garcia-Vaquero et al.,
aiming to identify proteins involved in multiple conditions,
betweenness centrality is used to ascertain proteins that appear
most frequently in the shortest paths between different disease
modules [38]. A similar approach was used to define a ‘flow cen-
trality score’ based on betweenness centrality considering paths
between the disease modules of asthma and COPD [39]. These
choices underlie the trade-off between the size and quality of the
context-specific network: if one prioritizes a minimal number of
additions, then algorithms designed to arrive at an optimal net-
work may be resource intensive. On the other hand, allowing for
all possible paths would considerably increase the size of the net-
work, increase computation time, and may add a high number of
false positives. Approximations can be used to save computational
time, but running such optimizations for large sets of networks
may still be resource-intensive. For weighted networks, when the
choice of the shortest path is linked to minimizing or maximizing
the edge weights, Dijkstra’s algorithm provides an exact solution
[40]. For example, in PPINs that provide edge weights based on
the quantity of evidence available for a given interaction, prioritiz-
ing paths with highest edge weights would be equivalent to ensur-
ing only the most certain interactions are included in the network.

The direct neighbourhood approach to network construction is
based on the ‘‘guilt-by-association” principle – interacting proteins
may belong to similar functional modules, and thus contribute
towards the same biological processes (Fig. 2 (e)) [41]. In the case
of protein complexes, each of the members of a complex would be
a first neighbour of at least one other member of the complex. Pro-
teins playing a role in the etiology or progression of a certain dis-
eases may have other nodes in their neighbourhood, which relay
external stimuli, or are interaction partners involved in the same
signalling pathway, and may be involved in the disease state as
well. These neighbourhood nodes should be identified and func-
tionally annotated.

To contextualize a network exploring the neighbourhood of
known disease proteins, the number of neighbours (1-step, 2-
step, k-step) to be included depends on the interest and context,
such as whether the aim is to identify drug targets close to the
known disease protein, or whether the interest is elucidating the
disease mechanism and pathways involved. Multiple tools exist
that allow for expanding seed nodes and obtaining subnetworks
via k-step interactors, for example STRING and BIANA (Biologic
Interactions and Network Analysis), which is available as a part
of Galaxy InteractoMIX [24,42,43].

Generally, in the literature, only first (direct) and sometimes
second-step neighbours are included. Liu et al. used an epidemio-
logical network model to evaluate the effect of neighbourhood on
spreading efficacy, using the SIR epidemiological model for simu-
lating the spread of information through 6 different types of net-
work [44]. While they proposed a novel measure –
‘neighbourhood centrality’ – they state that 2-step neighbourhood
returns higher rankings of nodes they refer to as ‘influential
spreaders’. However, as the networks tested in this study were
not biological networks, the applicability of this conclusion for
biomedical research needs to be verified. Using signalling and PPI
3285
networks, Módos et al., showed that first neighbours of cancer-
related proteins are important in pathogenesis and can be effective
drug targets [45]. They also showed that several of the approved
compounds target first neighbours.

However, one problem with this k-step neighbourhood
approach is that it can yield a network where the number of nodes
is considerably greater than the number of seeds, and could
include several unrelated interactors. Indeed, some of the best-
known proteins have many hundreds of known interactors both
on account of their ubiquitous physiological roles – for example
p53 and ubiquitin – and due to the fact that these are very well-
studied proteins. Some of these interactions could be spurious,
while some others may be context-specific, and thus, not found
under all the conditions. The selection of such hub proteins may
lead to very large networks encompassing many pathways and
systems, in a way that is less dependent on the specific seed pro-
teins, making these networks less useful for the study of specific
processes or diseases.

3.3. Diffusion-based algorithms

Because neighbourhood and shortest-path approaches are local
approaches, these may not capture perturbations from peripheral
connections. A seed may have a limited role in a neighbourhood
but might be connected to a larger component via only a few links.
For example, a receptor may be specific to a ligand and have a
specific downstream interactor, but at the same time, may be a
part of a large signalling cascade via this single interactor. Some
of the connecting members of a pathway may be missing, thus,
may not be found as direct neighbours of disease-associated seeds.
Also, when multiple, equally short paths exist between seed nodes,
the approach becomes subjective. Alternative approaches have
been developed to overcome these shortcomings based on the idea
of information propagation, along the lines of ‘heat/fluid’ diffusion,
where seed nodes are treated as ‘hot-spots’ and this heat diffuses
through the network structure to identify other, potentially ‘hot’
candidates. The process is referred to as network diffusion or net-
work propagation. Since this is an iterative process where each
node is exchanging information with its neighbour, at conver-
gence, each node will have been affected by the entire topology
of the background network, and will be attributed a quantitative
value based on its proximity to different seed nodes and the topol-
ogy of the network (Fig. 2(f)). This approach considers all possible
paths, and thus overcomes the limitations of the shortest path
methods [46].

Propagation over unweighted networks leads to equal flow to
the neighbours, while in weighted networks, flows are functions
of edge weights. Variants of the method include random walk
and random walk with restart (RWR). Details on the algorithms
can be found in the review by Cowen et al. [46].

Propagation algorithms such as PRINCE, for example, require an
input of disease-disease similarity measure and a background PPIN
to identify disease-associated genes and complexes [47]. Other
well-known examples of network propagation are the algorithms
HotNet and HotNet2, that identify differentially mutated sub-
networks in cancer networks, thus pointing to novel candidates
[48,49]. MUFFINN, another tool designed for cancer gene predic-
tion, uses PPINs such as STRING and HumanNet, along with muta-
tion data as seeds for network propagation [50]. It uses three
different diffusion algorithms (Gaussian smoothing, RWR and iter-
ative ranking). An application of network contextualization used to
assess drug combinations in cancer is SynGeNet, which uses the
belief propagation algorithm for subgraph identification [51].
Belief propagation finds the minimum Steiner tree, or an optimal
subgraph using edge weights (based on the reliability of presence
of the edge), and node weights (expression p-values) [52]. A recent
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review summarizes the different methods belonging to this class of
algorithms and their application in integrating multiple layers of
omics data [53].

Some limitations of the method include the need for user-
defined parameters. For example, in case of RWR, the restart
parameter (the probability at each step to restart the random walk
from the initial node) needs to be specified, which ensures that the
diffusion process penalizes longer walks from the seed nodes. One
also needs a significance threshold to define the network of inter-
est, and these choices are often case-specific. Hence, the applica-
tion of network propagation algorithms needs to be optimized in
the light of the data used and the application context.

Since networks are studied across different fields, some of these
methods are discussed under different labels. An example is the
PageRank algorithm, on which the Google search engine is based,
which describes prioritization based on information diffusion
through directed networks – a variant of random walk with restart
[54]. Indeed, network building and analysis are tightly linked.
Sometimes the boundaries between these steps may be diffuse,
hence discretization of these steps can be tricky. For example, clus-
tering or community detection, which is employed for network
analysis, can also be seen as a way of network contextualization.
As an example, applying a clustering algorithm contextualized
the yeast interactome, resulting in clusters based on cellular func-
tions [55]. Thus, clustering can identify specific subsets of proteins,
corresponding to specific functional contexts. This approach can
help functional annotation of proteins with previously unknown
functions. Several of the methods underlying clustering include
variants of neighbourhood-based and random-walk based
approaches, along with those based on network topology. Several
reviews discuss the many approaches and applications of cluster-
ing [56,57].

3.4. Other methods

Another class of methods, called representation learning, is now
being used extensively for PPIN analysis. These methods take as
inputs entire networks and learn a vectorized representation (em-
bedding) of their topology, which is then used for tasks such as
label prediction, edge prediction, etc. [58]. However, underlying
these methods is a combination of learning from neighbours and
diffusion of information in the network. As mentioned before,
studies and methods mentioned above focus on static PPINs. How-
ever, most of the PPIs are transient. Dynamic PPINs account for
these time-dependent interactions. They are e.g. constructed from
temporal correlation data, based on the strength of correlations
between expression of different genes, or by combining static, gen-
eric PPINs with condition-specific temporal data. Several computa-
tional approaches also exist that combine experimental data with
modelling approaches e.g. Boolean methods, for constructing
dynamic networks, including protein networks [59,60]. These
dynamical networks present more accurate pictures of evolution
of interactions, and are able to present, for example, the response
of the organism to external stimuli. More discussions on the con-
struction of dynamic networks can be found here [61].

3.5. Use of additional types of ‘interactions’ and databases

Constructed context-specific PPINs based on the above-
mentioned approaches can be refined further by ‘appending’ or
‘pruning’ (Fig. 3 (f)) based on additional evidence, from other
sources such as gene expression, or proteomics data, protein struc-
ture and protein complex databases, tissue expression catalogues,
etc. Both appending and pruning may be at node or edge level.
For example, if a cluster of proteins in the network forms a part
of a known protein complex, the other members of the complex
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could be added (both nodes and edges). Interactions between pro-
teins can be further filtered based on the number of occurrences of
the interactions in databases, or by using confidence scores. For
example, several studies use the confidence scores of 0.9 while
using the STRING database [62,63]. Stringent cut-offs will result
in small networks, while relaxing the condition allows for more
candidates. Appropriate cut-offs ideally limit the number of false
positive interactions.

Several of these databases are manually curated, thus reducing
the risk of artefacts from text-mining. However, databases still
contain noisy data. For example, data observed in experiments
such as affinity purification, may not occur in vivo. Certain interac-
tions may only occur following specific perturbations, and may not
exist in normal physiological conditions. An interesting observa-
tion reported is that some of the tissue-specific proteins interact
with proteins which are a part of the core machinery in different
cells, while some of the ubiquitously present ‘house-keeping’ pro-
teins may have tissue-specific interactions [64]. Thus, determina-
tion of tissue-specific, true positives is challenging. Evidence for
interactions may also vary based on the popularity of a protein:
it is known that well-studied proteins contribute to a large per-
centage of the literature, leading to imbalanced data availability
[65]. Databases constructed based on literature thus reflect this
bias in terms of network connectivity of the well-known genes.
On the other hand, the picture of the interactome is incomplete,
as many interactions have probably not been evidenced yet, or
might only exist in biological conditions that have not yet been
investigated [66]. Because of these limitations, there is a need for
reliable PPI prediction methods, to reduce the exponential number
of experiments that would be required to complete the interac-
tome. Hence, a prudent strategy of accurate predictions followed
by experimental validation is needed.

Many databases such as STRING and GeneMANIA offer different
levels of connections between an input protein and its known
interactors such as co-expression, co-localization, pathway con-
nectivity, and shared protein domains [24,33]. Such information
can be combined with physical interactions. Other databases such
as protein complex information, protein structures, and pathway
databases can complement information in PPINs and help
append/prune interactions. For example, Cheng et al. constructed
a ‘structurally resolved PPIN’ based on the availability of experi-
mental or predicted protein structures [67]. Guala et al. provide a
comprehensive view of different data types available that can be
integrated to build high-confidence networks [68].

However, low overlap between different databases may lead to
use of limited data. This is a vicious cycle, that well-studied pro-
teins will have a large body of evidence to support observed inter-
actions, which would then be selected for further study. Thus,
while choosing interactions with strong evidence may be pre-
ferred, it might impede the discovery of lesser known candidates.
Hence, obtaining high-quality basal networks, with sufficient sup-
port for inclusion of interactions to ensure new knowledge can be
uncovered, while reducing false positives, is crucial for generating
superior analytical results.

Using multiple databases and multiple versions of the same
database can also be a strategy to reduce database dependency
of the results. Since different PPI databases show limited overlap
in their listed interactions, several studies have designed strategies
to overcome this bias [69]. One is to use separate databases, and
collate independently obtained results or identify common ones.
Another is to use different databases for prediction and validation.
Indeed, different versions of the same database show differences.
The study by Cecchini et al., combined the strategies of using mul-
tiple datasets, and multiple versions of the same dataset [70]. They
used two different PPINs -BioGRID and HPRD – for training and
prediction of novel metabolic disease genes, and validated the pre-
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dictions using a subsequent version of the Comparative Toxicoge-
nomics Database, which led to the validation of 123 new candi-
dates, that were absent in the previous version of the database.
The May 2022 version of BioGRID has 841,206 non-redundant
human protein interactions listed, while the January 2022 version
contained 794,900. Changes in number of interactions affect the
number of edges, may also affect the number of nodes, and hence
the structure and topology of the network, which has direct impli-
cations on the network analysis and results. The scale free nature
of biological networks ensures that the core, highly connected
nodes retain their importance, but analyses that includes low-
degree, peripheral nodes may be affected. Thus, results based on
a specific release may need to be revisited over time to ascertain
that the relevance and applicability of the analysis are retained.
4. Discussion

Choice of network building approach

In this review, we covered then main methodologies for contex-
tualizing a generic PPI, given the available data and the scope of the
study. A key question, then, is how does one choose the most suit-
able approach? Multiple factors can render the different methods
more or less relevant depending on the scientific problem and
the specific case. Among some of the constraints to be considered
are the availability of data and ease of application.

The applicability of the different methods mentioned previously
depends on the availability of specific data. Well-studied diseases
with multiple -omics datasets allow for building context-specific
networks based on multiple sources of a large quantity of informa-
tion, while in the case of rare diseases, limited data availability
may limit this process. For example, there exist abundant cancer
datasets of different -omics types, with a large number of samples.
In contrast, rare diseases are limited in the number of patients
from which such data can be generated. Some of the algorithms
require data such as mutation frequency, copy number variation,
etc, which is much more readily available for cancer, than for other
diseases.

Accessibility of different algorithms also poses a challenge.
Some of these algorithms require coding skills for data handling
and integration from multiple sources, and have been imple-
mented in a variety of programming languages, thus requiring spe-
cialized training. Some of these methods are available as online
tools, and apps for platforms such as Cytoscape [71]. However,
many of these apps and online tools are no longer maintained
and eventually become deprecated or lose compatibility over time.

For neighbourhood approaches, an appropriate value for the
number of steps in k-step methods needs to be identified. Using
a low value will fail to include the low-impact peripheral effectors,
while a high value will make the contextualized network eventu-
ally converge towards the generic PPIN. In the latter case, the influ-
ence of the starting seeds would decrease, and the networks would
lose their ‘context-specificity’. Diffusion algorithms require user-
defined parameters like the rate or extent of diffusion. Thus, these
methods may require either arbitrary inputs, or a detailed evalua-
tion of the impact of different parameter values on the outcome.

Depending on the application, a focus on the local neighbour-
hood would be promising from a therapeutic perspective. Drugs
affecting disease proteins or disrupting an interaction such as
ligand-receptor binding typically tend to affect the immediate
neighbourhoods. As mentioned, protein complexes involve
direct-interactors. In such cases, the immediate neighbourhood of
seeds would be of interest, rather than a large network, obtained
from higher value of k in a k-step expansion or diffusion, which
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may not necessarily lead to useable predictions but could increase
computational time and the required resources.

Few studies have directly compared the different methods of
network contextualization. Shim et al. presented an interesting
study [17] in which they compared the direct neighbourhood
approach to the diffusion-based approach on human and worm
functional gene networks for prediction of disease-associated
genes. Using the area under the receiver-operating characteristic
curve as an evaluation metric, they showed that the direct neigh-
bourhood approach recovers more true positives when only the
top predictions are considered. They argue that while it is generally
shown that network propagation algorithms perform better in
terms of gene prioritization, this outcome is based on the overall
ranking of all genes under study. When only the top predictions
are of interest (which is the case when experimental validation is
the goal), neighbourhood approaches might be preferred.

They, however, added the caveat that the neighbourhood
approach may not work if genes belonging to the same pathways
are disconnected in the network. This could happen, for example,
if the seeds are distant members of a pathway and the intermedi-
ate members of the pathway are missing, in which case diffusion
algorithms would be preferred. This observation was highlighted
in a study by Agrawal et al. [72]. They showed that neighbourhood
methods perform poorly in discovering disease-pathways, as com-
pared to random-walk based methods, which showed better per-
formance. Across 519 diseases, the recall of the random-walk
method was 0.356, but only 0.242 for the neighbourhood-based
method. The Mean Reciprocal Rank of the predictions (proportional
to prediction performance) was 0.061 compared to 0.029, indicat-
ing a lower (better) rank of the true positives for random-walk
based methods. Their analysis also included embedding methods.
Diffusion-based network construction can capture perturbation
effects from peripheral interactors, and identify components of a
pathway spread out across the generic PPIN. Hence, this approach
could be useful in uncovering details of disease mechanisms,
involving large signalling cascades and disease-pathways spread
across the network. However, the authors also noted that perfor-
mances of different methods varied for different diseases.

In the case of protein function prediction, Cao et al. argue that
while hub proteins have a large number of interactors which might
be involved in the same biological process, these interactors are
not likely to have the same function [73]. They used the example
of a chaperone as a hub protein, which interacts with thousands
of functionally distinct proteins. They propose a new metric, based
on graph embedding, called diffusion state distance (DSD) and
show that it outperforms function prediction methods based on
the shortest-path approach.

Task-specific benchmarking of different methods will be crucial
to evaluate which of the network construction approaches would
yield reliable predictions in the different practical applications. In
reviewing the performance of different algorithms: network neigh-
bourhood based, diffusion-based and algorithms based on Random
walk with restart, Guala and Sonnhammer designed a benchmark-
ing strategy based on Gene Ontology (GO) terms [74]. The bench-
marking study re-iterates observations made by Shim et al., that
while diffusion-based methods show an overall better perfor-
mance, neighbourhood methods show a superior performance
when only the top part of the output is taken into consideration.
The comparison was made based on measures such as Median
Rank Ratio of True Positives and partial Area Under the ROC Curve
(pAUC). This pAUC was consistently higher for the MaxLink
method, using neighbourhood-based approach, than for the meth-
ods using the PageRank or random-walk algorithms. Some of the
benchmarking efforts have been cancer-specific e.g. this study
which reviewed 12 methods of predicting cancer driver genes,
based on eight benchmarking datasets [75]. Fine et al. proposed a
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‘leave-one chromosome out’ cross-validation, applying it to 20 dif-
ferent gene prioritization methods [76]. Their evaluation method is
based on stratified linkage-disequilibrium (LD) regression. The
proposed method aims to avoid the pitfalls of relying on ‘gold-
standard’ genes for validation, as such datasets do not include as-
yet undiscovered disease-gene associations, and may not be useful
for validating novel candidates. Other benchmarking approaches
for PPIN-based analysis include [12] for assessment of module
identification algorithms on different kinds of networks including
PPINs. A survey of subnetwork identification was recently under-
taken by Nguyen et al. [77], in which they tested 22 different meth-
ods. As PPINs are used in several contexts, each application will call
for such benchmarking efforts.

Overall, these benchmarking efforts show that different data,
network structure and assumptions underlie various methods,
which may yield different but complementary insights. Thus, no
method may be inherently superior, but could be more or less
informative for a given context or application. Benchmarking
efforts could help outline strengths, limitations and the range of
applicability of different approaches.
5. Summary and outlook

PPINs yield several insights – from highlighting novel disease
genes to prioritizing drug targets, and can be useful in diverse
applications aiding translational medicine. However, reliable gen-
eric and context-specific networks are necessary to obtain reliable
and robust predictions. Context-specific networks for disease-
specific applications have been obtained using two main
approaches: one based on local neighbourhood of seeds and the
second being diffusion-based information transfer. In reviewing
these approaches, the following observations can be made:

� Several variants of neighbourhood-based and diffusion-based
methods exist, and a variety of applications of these methods
can be found in the literature. However, there is no standard
method for a given application. The choice of the method
remains dependent on the kind and availability of input data
and the purpose of the analysis.

� Local neighbourhood methods could be more useful for tasks
such as identifying disease genes, drug targets, and protein
complexes, while diffusion-based methods could yield better
insights on protein function prediction, studying disease mech-
anisms and discovering disease-pathways.

� Standard tools based on different algorithms can be very useful,
especially to improve the accessibility of the algorithms. These
tools should also be maintained over time which is often not the
case.

� Benchmarking of methods is necessary. In practice, it is difficult
to compare different studies due to the diversity in available
data for different diseases, the heterogeneity of networks, and
the use of different datasets. Hence, devising standardized mea-
sures of performance of various methods, and studies perform-
ing comprehensive evaluation of different techniques are
needed.

� The quality of the databases has a direct impact on network-
based analysis. Noisy data, incomplete coverage of interactions,
and low overlap between databases necessitates several data
pre-processing and integration steps during context-specific
network construction.

The use of different approaches for PPI network construction
makes it difficult to draw conclusions about the superiority of
some methods across studies. As distinct approaches towards such
network-based analysis might shed a different light on the same
3288
problem, the combination of multiple methods could yield comple-
mentary insights about the same dataset. However, follow-up
experiments validating computational predictions are needed,
and findings need to be fed back into the literature, in a continuous
benchmarking effort, to ensure that such predictive methods
remain useful and relevant. As the number of studies based on
PPINs grows, a unifying framework for integrating insights based
on different methods and data would be critical for obtaining a
comprehensive view of biological systems.
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