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Abstract

Small cell lung cancer (SCLC) is a carcinoma of the lungs with strong invasion, poor progno-

sis and resistant to multiple chemotherapeutic drugs. It has posed severe challenges for the

effective treatment of lung cancer. Therefore, searching for genes related to the develop-

ment and prognosis of SCLC and uncovering their underlying molecular mechanisms are

urgent problems to be resolved. This study is aimed at exploring the potential pathogenic

and prognostic crucial genes and key pathways of SCLC via bioinformatic analysis of public

datasets. Firstly, 117 SCLC samples and 51 normal lung samples were collected and ana-

lyzed from three gene expression datasets. Then, 102 up-regulated and 106 down-regu-

lated differentially expressed genes (DEGs) were observed. And then, functional annotation

and pathway enrichment analyzes of DEGs was performed utilizing the FunRich. The pro-

tein-protein interaction (PPI) network of the DEGs was constructed through the STRING

website, visualized by Cytoscape. Finally, the expression levels of eight hub genes were

confirmed in Oncomine database and human samples from SCLC patients. It showed that

CDC20, BUB1, TOP2A, RRM2, CCNA2, UBE2C, MAD2L1, and BUB1B were upregulated

in SCLC tissues compared to paired adjacent non-cancerous tissues. These suggested that

eight hub genes might be viewed as new biomarkers for prognosis of SCLC or to guide indi-

vidualized medication for the therapy of SCLC.

Introduction

Lung cancer is a subtype of malignant tumors with a peak risk of morbidity and mortality,

which makes it a notable healthcare issue for human beings. In 2018, the total number of cases

newly diagnosed as lung cancer was about 2.09 million (11.6% of all newly diagnosed cancers),

and the number of new deaths was about 1.76 million (18.4% of all sites) worldwide [1]. Small

cell lung cancer (SCLC) accounts for approximately 20% of lung cancer patients and belongs

to neuroendocrine tumor [2]. Different from other histopathological subtypes of lung cancer,
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SCLC is accompanied by rapid clinical progression. Almost all patients with SCLC have exten-

sive metastasis when diagnosed, and it has a poor prognosis. The 5-year relative overall sur-

vival (OS) rate is not more than 6%. In clinical practice, conventional treatments of SCLC

include chemotherapy, radiotherapy, surgery and immunotherapy. Chemotherapy for SCLC is

the main treatment currently, but there are still many problems such as drug resistance and

easy relapse [3, 4]. In the past few decades, the survival rate of SCLC patients has not been evi-

dently improved, and no molecular-targeted drugs have been shown to significantly prolong

the survival time of patients [5]. In recent years, studies have been reported that many molecu-

lar mechanisms altered in SCLC including induced expression of oncogene, such as MYC [6]

and FGFR1 [7], and deletion of tumor-suppressor genes, such as TP53, PTEN, RB, and FHIT
[8]. Changes in these related genes and signaling pathways promote cell proliferation and inhi-

bition of apoptosis, leading to early-stage metastasis of tumor cells, such as mutation, methyla-

tion or expression of PIK3CA, PTEN, AKT and other genes in the PI3K/AKT/mTOR pathway

[9].

Because of the complexity of biological characteristics and poor prognosis of SCLC, the key

biomarkers and specific targets for occurrence and development of SCLC are not well known.

Therefore, it is necessary to explore more genetic information to screen out potential or prom-

ising biomarkers for early-stage diagnosis and precision medical treatment of SCLC. In recent

years, gene chip technology and bioinformatics analysis has been widely used to identify

molecular changes in tumorigenesis and development and has been proved to be an efficient

method for identifying key genes in the research of genomics [10–12]. However, due to the

strong invasion and short life span of SCLC, the data of related gene chips are infrequent.

In this study, gene expression data obtained from GEO databases were integrated to con-

duct data mining and analysis of SCLC. Then, a series of co-differentially expressed genes have

been screened in SCLC. A series of analysis were carried out based on these genes, including

analysis of functional enrichment, protein-protein interaction network and human samples

validation. We identified numbers of hub genes analyzed the interaction between genes and

drugs. Our research may offer more insight into the molecular mechanisms or study of avail-

able drugs for this epidemic and destructive disease. The workflow for bioinformatics strategy

of SCLC was illustrated in Fig 1.

Materials and methods

SCLC gene expression data from GEO data repository

As a publicly genomics database, Gene Expression Omnibus (GEO) of NCBI (https://www.

ncbi.nlm.nih.gov/) collects submitted high-throughput gene expression data and can be used

for retrieving all datasets involving studies of SCLC. For our following analysis, it was consid-

ered reasonable for studies that met the following criteria: (1) Studies of human SCLC and cor-

responding adjacent or normal lung tissues. (2) There are detailed information of research

technology and platform. (3) All studies have been published in English. Based on these crite-

ria, three gene expression microarray datasets for SCLC, including GSE40275, GSE99316, and

GSE60052, were taken from GEO. Details of these microarray studies were shown in Table 1.

Data preprocessing and DEGs screening

The DEGs between SCLC and normal lung samples from GEO datasets, GSE40275 and

GSE99316, were screened by using GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r). GEO2R

is an online analysis tool for comparing two or more groups of data in the GEO series to iden-

tify DEGs under the same detection method. The matrix data (.TSV, from supplementary

files) of GSE60052 were normalized and log2 transformed by limma package of R [13]. The
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Fig 1. Workflow for bioinformatics strategy of key genes and biological pathways in SCLC.

https://doi.org/10.1371/journal.pone.0242194.g001
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application of the adjusted P-value (adj. P) can balance the detection of statistically significant

genes and the restriction of false positive. Probe sets without gene symbols were removed, and

genes with multiple probe sets were averaged. Next, |log2FC (fold change) |>1 and adj. P-

value<0.05 was considered to be statistically significant. To visualize the identified DEGs,

SangerBox (soft.sangerbox.com) and FunRich [14] were used to make volcano plots and Venn

diagrams, respectively.

Circular visualization of the DEGs

Circos (http://circos.ca/) was applied to display our data for a better understanding of DEGs,

including their gene symbols and locations on chromosomes [15].

Functional enrichment analysis of DEGs

Funrich is a publicly available software for Functional annotation and pathway enrichment

analysis of genes or proteins. In this study, Funrich was used to analyze the functional enrich-

ment of up-regulated and down-regulated DEGs, including molecular function, biological

process, cell composition and biological pathway. The results of the biological pathway analysis

were visualized by OmicShare tools (http://www.omicshare.com/tools), a free online platform

for data analysis.

Construction and analysis of protein-protein interaction (PPI) network

For the better view of the relationship among these DEGs, the PPI network was constructed

via using The Search Tool for the Retrieval of Interacting Genes (STRING) database (version

11.0; http://string-db.org/) [16]. In the present study, Cytoscape software (version 3.6.1) was

used to establish and visualize PPI networks [17]. As one of the characteristics of PPI network,

the network module contained specific biological significance. The salient modules in this PPI

network were explored by The Cytoscape plug-in Molecular Complex Detection (MCODE)

[18]. The thresholds were set as follows: Degree cutoff = 2, Node Score Cutoff = 0.2, and

K-Core = 2. Next, the pathway enrichment analysis of the DEGs in different modules was per-

formed by FunRich and visualized by the OmicShare tools.

Screening of hub genes

The hub genes in the PPI network were screened by cytohubba, a plug-in of Cytoscape software

(version 3.6.1). The genes with degree score�75 were considered as hub genes.

Table 1. Details of associated microarray datasets from GEO database in SCLC studies.

GSE Reference PMID Platform Sample Tumor type Country Lastest update

Normal lung Tumor

GSE40275 None GPL15974 Human Exon 1.0 ST Array [CDF: Brainarray Version 43 15 SCLC Austria 2012

9.0.1, HsEx10stv2_Hs_REFSEQ]

GSE99316 23714854 GPL570 [HG-U133_Plus_2] 1 23 SCLC Japan 2019

Affymetrix Human Genome

U133 Plus 2.0 Array

GSE60052 27093186 GPL11154 Illumina HiSeq 2000 7 79 SCLC USA 2019

(Homo sapiens)

SCLC, small cell lung cancer.

https://doi.org/10.1371/journal.pone.0242194.t001
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Verification of hub genes expression levels

At first, the expression of these hub genes was validated in Oncomine database. As one of the

world’s largest tumor gene microarray database and integrated data analysis platform, Onco-

line (oncomine.org) is designed to excavate cancer genetic information. The database hitherto

has collected data from 729 gene expression data sets and over 90,000 cancer and normal tissue

samples. It can be used to uncover the differential expression of a single gene in SCLC tissue

and its related normal tissues [19]. To figure out the expression levels of hub genes in SCLC,

SCLC gene expression data from the study of Garber et al [20] and Bhattacharjee et al [21] in

the Oncomine database were investigated and visualized by GraphPad Prism. Thresholds for

the data type was restricted to mRNA. Then, the expression levels of hub genes were further

verified by quantitative real-time PCR (RT-qPCR) through tissue samples of SCLC patients

and paired adjacent non-cancerous ones.

Construction and analysis of hub gene-drug interaction network

The hub gene-drug interaction networks were constructed by Comparative Toxicogenomics

Database (CTD) [22], a platform for analysis chemotherapeutic drugs which could inhibit or

induce the mRNA or protein expression of hub genes. The hub gene-drug interaction was

investigated in CTD database and visualized by the OmicShare tools.

Human SCLC samples

All 7 SCLC tissues and 7 paired adjacent non-cancerous tissue samples of PPFE (Formalin-

fixed and paraffin embedded) were collected from patients who had been diagnosed as SCLC

from May 2019 to May 2020 at Taihe Hospital of Hubei University of Medicine, China. The

PPFE samples were stored at room temperature until total RNA was extracted. All SCLC

patients were diagnosed and graded according to the pathological characteristics in the

Department of Pathology, Taihe Hospital. All human samples were obtained by informed con-

sent (IFC) from patients, and this study was supported and approved by by the Ethics Com-

mittee of Taihe Hospital.

RNA isolation and reverse transcription PCR

Quantitative real-time PCR (RT-qPCR) were performed according to methods published pre-

viously [23, 24]. Total RNA was extracted from the PPFE samples by using RNeasy FFPE Kit

(cat. no. 73504, QIAGEN, Germany). Total RNA of 1 μg was reversely transcribed in a 20 μl

reaction using RevertAid First Strand cDNA Synthesis Kit (cat. no. #K1622, Thermo Scientific,

USA) according to the manufacturer’s protocol. The reaction products were then diluted with

40 μl RNase-free water. The real-time PCR reaction was composed of 2 μl cDNA, 10 μl of Pow-

erUp™ SYBR™ Green Master Mix (cat. no. A25741, Thermo Scientific, USA) and 0.5 μl of for-

ward and reverse primers (0.5 μM). RT-qPCR was conducted in an ABI Prism 7500 analyzer

(Applied Biosystems, USA) for 40 cycles (95˚C for 15 sec, 58˚C for 15 sec, 72˚C for 30 sec)

after an initial 120s denaturation at 95˚C. HPRT1 was endogenous reference gene. All reac-

tions were run in triplicate. The relative RNA levels of SCLC samples were calculated by using

the 2−ΔΔCt method. All primers of the hub genes and HPRT1 were synthesized by Sangon Bio-

tech (Shanghai, China), and the information of their sequences were listed in Table 2.

Statistical analysis

Statistical analysis was performed through GraphPad Prism (version 8.2.1, San Diego, CA)

software. Student’s t-tests were used for the comparison of two sample groups. Differences
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were considered as statistically significant when P< 0.05 (�P< 0.05, �� P< 0.01, ��� P<
0.001).

Results

1 Identification of DEGs in SCLC

117 SCLC samples and 51 normal lung samples were involved in this study (Table 1 and S1

Table). There were 3337 DEGs (1752 upregulated and 1585 down-regulated) in GSE40275,

510 DEGs (326 up-regulated and 184 down-regulated) in GSE99316-GPL570, and 2304 DEGs

(953 up-regulated and 1351 down-regulated) in GSE60052 which were identified between

SCLC tissues and normal lung tissues as shown in volcano plots (Fig 2A–2C). The Venn dia-

gram analysis of these DEGs mapped that 208 DEGs, including 102 up-regulated genes and

106 down-regulated genes, were consistently found in the three data sets (Fig 2D–2E and S2

Table). All 208 DEGs are listed in Table 3. As shown in Fig 2F, we screened top 20 differentially

expressed up-regulated and down-regulated genes respectively by the cut-off criteria.

Chromosome mapping of DEGs presented gene distribution on chromosomes, with chro-

mosomes 1 containing the most dysregulated genes in SCLC (Fig 2G). Interestingly, four

genes showed dysregulation on the X chromosome in SCLC (FHL1, SRPX, HMGB3 and

WNK3), while no genes on the Y chromosome was affected.

2 Functional annotation and pathway enrichment analysis

Funrich, as a tool for the analysis of genes and proteins, was used for GO functional annotation

and biological pathway enrichment analysis of DEGs.

There are three categories, including biological process (BP), cellular component (CC) and

molecular function (MF), involved in GO functional annotation. In Fig 3, the top 10 enriched

GO projects were displayed. Analysis of GO BP suggested that up-regulated DEGs were signif-

icantly enriched in cell cycle, regulation of nucleobase, nucleoside, nucleotide and nucleic acid

Table 2. RT-PCR primers of 8 most significant hub genes and reference gene, HPRT1.

Gene name Full name Primer sequence(5’!3’) Tm(˚C) Product(bp)

CDC20 cell division cycle 20, aliases: CDC20A Forward: AGTTCGCGTTCGAGAGT 55.7 195

Reverse: GAACCTTGGAACTGGAT 50

BUB1 budding uninhibited by benzimidazoles-1, aliases: BUB1A Forward: TATAGCAGGCTGATTGGGCT 58.5 107

Reverse: TGGCTTAAACAGGTCAGTGT 57

TOP2A Topoisomerase II alpha Forward: GTGTCACCATTGCAGCCTGT 61 152

Reverse: GAACCAATGTAGGTGTCTGG 56

UBE2C ubiquitin conjugating enzyme E2 C Forward: CTCATGGTATATGAAGACCT 51 132

Reverse: GCATATGTTACCCTGGGTGT 57

BUB1B BUB1 mitotic checkpoint serine/threonine kinase B Forward: TGCTCTGAGTGAAGCCATGT 59 99

Reverse: TGAAGCGTGGACATGATCCG 60

RRM2 ribonucleotide reductase regulatory subunit M2 Forward: GGGAATCCCTGAAACCCGAG 60 70

Reverse: CCATCGCTTGCTGCAAAGAA 59.7

CCNA2 cyclin A2 Forward: GGATGGTAGTTTTGAGTCACCAC 59 202

Reverse: CACGAGGATAGCTCTCATACTGT 59

MAD2L1 mitotic arrest deficient 2 like 1 Forward: ACGGTGACATTTCTGCCACT 60 105

Reverse: TGGTCCCGACTCTTCCCATT 60.5

HPRT1 hypoxanthine phosphoribosyl-transferase 1 Forward: GGACTAATTATGGACAGGACTG 55 195

Reverse: GCTCTTCAGTCTGATAAAATCTAC 55

https://doi.org/10.1371/journal.pone.0242194.t002
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Fig 2. Identification of differentially expressed genes (DEGs) between SCLC and normal tissues. Volcano plots displayed the number of DEGs

verified from the three GEO datasets. (A) volcano plots of GSE40275, (B) volcano plots of GSE99316, (C) volcano plots of GSE60052. Green denotes a

lower expression level, red denotes a higher expression level and black denotes that the gene has no different according to the cut-off criteria. Venn

diagram demonstrates the overlapping DEGs, including (D) 102 upregulated and (E) 108 downregulated genes among the three datasets. (F) Heat

map of top20 DEGs for upregulated and downregulated genes. Green denotes a lower expression level, red denotes a higher expression level and black

denotes that the gene has no different according to the cut-off criteria. Each column denotes a dataset and each row denotes a gene. The number in

each rectangle denotes a normalized gene expression level. (G) Chromosome mapping of DEGs. Blue denotes down-regulated DGEs, and red denotes

up-regulated DGEs.

https://doi.org/10.1371/journal.pone.0242194.g002
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metabolism (Fig 3A). For analysis of CC, the genes were significantly enriched in nucleus,

nucleoplasm, kinetochore, and chromosome (Fig 3C). The analysis of MF for these genes

mainly included DNA binding (Fig 3E).

Analysis of GO BP indicated that down-regulated DEGs were most but not significantly

enriched in cell growth and/or maintenance, and transmembrane receptor protein tyrosine

kinase signaling pathway (Fig 3B). For analysis of CC, the genes were manifestly enriched in

extracellular, extracellular space, and extracellular matrix (Fig 3D). Finally, analysis of MF of

these genes showed that they were apparently enriched in extracellular matrix structural con-

stituents (Fig 3F).

Furthermore, pathway enrichment analysis was carried out for up-regulation and down-

regulation DEGs. Candidate genes of up-regulated DEGs were mainly enriched in mitotic cell

cycle/ M-M/G1 phases, DNA replication, and ATM pathway (Fig 4A and Table 4). Moreover,

a critical gene CDC20 was particularly enriched in cell cycle and DNA replication in pathway

enrichment analysis for up-regulated genes (Table 4 and S3 Table). The notably enriched path-

ways for down-regulated DEGs were epithelial-to-mesenchymal transition, amb2 integrin sig-

naling, and interleukin-6 (IL-6) signaling pathway (Fig 4B). However, Interleukin-6 (IL-6), a

crucial gene associated with inflammation was significantly enriched in amb2 Integrin signal-

ing, Interleukin-mediated signaling, and cytokine signaling in the immune system in pathway

enrichment analysis for down-regulated genes (Table 4 and S3 Table).

3 Analysis of PPI network and modules

As results, the PPI network showed that a total of 178 nodes and 2466 protein pairs were

acquired with a score > 0.4. The main nodes in this network were the up-regulated DEGs (Fig

5A and S4 Table). Furthermore, two modules (module 1 and module 2) with score >4 were

detected by MCODE (Fig 5B–5C). All nodes in module 1 with an MCODE score of 56.094 (65

nodes, 1795edges) were up-regulated DEGs, while all nodes in modules 2 with an MCODE

score of 4.60 (11nodes, 23edges) were down-regulated DEGs in SCLC samples.

Table 3. Two hundred and eight differentially expressed genes (DEGs) were identified and confirmed from three

GEO datasets, including 102 up-regulated genes and 108 down-regulated genes in SCLC tissues, compared to nor-

mal lung tissues.

Regulation Number DEGs (Gene symbol)

Up-regulated 102 TOP2A,UBE2C,CENPF,PRC1,ASPM,NUSAP1,EZH2,CCNE2,HELLS,MELK,PBK,

CDC20,TYMS,ARHGAP11A,UBE2T,DEPDC1,KIF2C,CHEK1,KIAA0101,MKI67,BRIP1,

CDKN2A,CKAP2,HMGB3,ANLN,NCAPG,PTTG1,RFC4,MSH2,BUB1B,CENPK,

ATAD2,TTK,PFN2,BUB1,CCNA2,RRM2,AURKA,ECT2,KIF14,WDHD1,HMGB2,STIL,

PCNA,KIAA1524,MPHOSPH9,GINS1,UHRF1,ZWINT,SPAG5,DEPDC1B,GMNN,

RMI1,MPO,POLE2,DSP,NEK2,MCM6,MCM2,CLSPN,SMC4,WNK3,CBX3,FOXM1,

POLQ,HES6,CENPL,BRCA1,CDCA7,CDC25C,CDCA2,HDAC2,BIRC5,MAD2L1,

C11orf80,RAD54L,IQGAP3,SKP2,FEN1,CBX5,PIGX,MYBL2,NCAPH,CCDC34,

PAFAH1B3,GTSE1,ESPL1,GPT2,SLC4A8,TFAP2A,ZNF670,CCNF,OIP5,MCM10,

C18orf54,CENPM,RPAIN,FRMD5,IRAK1BP1,ZNF367,DDX11,SPC24
Down-

regulated

106 NFKB1,SOX17,DDR2,NLRP3,SPSB1,WISP2,GFPT2,MAFF,PDE4D,COL6A1,IL6ST,

BCL6B,AKAP13,SOX7,ETS1,SLC2A3,CRISPLD2,CSF3,SOCS2,CH25H,UNC13D,

SAMD4A,TNFRSF1A,SCARA5,ADAMTS8,KLF9,NFKBIZ,RASGRF1,FLI1,AHNAK,

FBLN1,SRPX,SYNPO2,EHD2,THBS1,FOSL2,LAMA4,DAMTS9,GUCY1A3,LTBP4,

FGFR4,CEBPD,TNNC1,CCL2,LRP1,TBX4,SELPLG,ERG,SLIT2,RNASE1,JUNB,HAS2,

TMEM2,MYCT1,PPP1R15A,GADD45B,TIMP3,SELP,OSMR,RGS2,CD74,UTRN,TNS1,

PTRF,COLEC12,EMCN,ENG,MT1M,MYH11,EMP1,SPOCK2,CD93,MUC1,SOCS3,

IL1R1,FHL1,CDH5,FBP1,VWF,IL6,PTGDS,ZFP36,ADAMTS1,TGFBR2,SUSD2,PAPSS2,

SGMS2,FOLR1,EDNRB,TPSB2,GKN2,SERPINA1,AQP1,SLC39A8,FBLN5,FMO2,GPX3,

ICAM1,CYP4B1,EPAS1,CLDN18,CLIC5,STEAP4,PGC,AQP4,AGER

https://doi.org/10.1371/journal.pone.0242194.t003
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Furthermore, the biological pathways enrichment analysis of two modules were shown in

Fig 6 and S5 Table. The mitotic cell cycle pathway was identified as the most significant path-

way in module 1 (Fig 6A), and amb2 Integrin signaling was the most significant pathway in

module 2 (Fig 6B).

4 Hub genes screening

For seeking hub genes in the PPI networks, all these node pairs were identified by cytohubba.

As shown in Table 5, the genes, CDC20, BUB1, TOP2A, RRM2, CCNA2, UBE2C, MAD2L1,

Fig 3. Functional annotation and pathway enrichment analysis for DGEs. (A) BP enrichment of up-regulated DEGs; (B) BP enrichment of down-

regulated DEGs; (C) CC enrichment of up-regulated DEGs; (D) CC enrichment of down-regulated DEGs; (E) MF enrichment of up-regulated DEGs;

(F) MF enrichment of down-regulated DEGs. X axis denotes detailed appellations of functional annotation and pathway enrichment; Y axis denotes

percentage of genes or–log10(P-value). Red line denotes P = 0.05, the reference value for cut-off criteria of statistical analysis; Yellow line denotes–

log10(P-value).

https://doi.org/10.1371/journal.pone.0242194.g003
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and BUB1B, were hub genes with higher node degrees, and they were all up-regulated genes in

module 1.

5 Verification of hub gene mRNA expression levels

Firstly, the mRNA expression levels of CDC20, BUB1, TOP2A, RRM2, CCNA2, UBE2C,

MAD2L1, and BUB1B were significantly increased in SCLC samples compared with normal

lung samples based on the Oncomine database, which was consistent with the above bioinfor-

matics investigation (Fig 7). Secondly, further study was conducted to verify the expression

levels of these hub genes by RT-qPCR through tissue samples of SCLC patients and paired

adjacent non-cancerous ones. The mRNA levels of eight hub genes in SCLC tissues were sig-

nificantly overexpressed compared to those in paired adjacent ones. (Fig 8).

6 Analysis of hub gene-drug interaction network

CTD was used to study the interaction between hub genes and available therapeutic drugs of

cancer. As results, multiple drugs could alter the expression of these eight hub genes, including

Fig 4. Enriched biological pathways of up-regulated DEGs (A) and down-regulated DEGs (B).

https://doi.org/10.1371/journal.pone.0242194.g004

Table 4. The top 10 enriched biological pathways of up-regulated and down-regulated DEGs.

Term of up-regulated DEGs Overlap P-value Term of down-regulated DEGs Overlap P-value

Cell Cycle, Mitotic 34/317 5.58E-28 Epithelial-to-mesenchymal transition 16/185 6.33E-11

DNA Replication 24/261 1.36E-17 amb2 Integrin signaling 7/40 1.77E-07

Mitotic M-M/G1 phases 20/242 1E-13 Interleukin-6 signaling 3/8 6.51E-05

ATM pathway 20/307 8.88E-12 IL6-mediated signaling events 5/47 0.000137

Mitotic Prometaphase 13/99 1.1E-11 IL23-mediated signaling events 5/66 0.000683

M Phase 14/158 3.62E-10 IL12-mediated signaling events 6/111 0.001187

Mitotic G1-G1/S phases 13/140 9.35E-10 Signaling by Interleukins 5/92 0.003028

Cell Cycle Checkpoints 12/118 1.56E-09 Integrin-linked kinase signaling 15/154 0.00356

PLK1 signaling events 11/104 5.3E-09 Cytokine Signaling in Immune system 7/193 0.004573

Aurora B signaling 8/41 5.38E-09 CDC42 signaling events 16/755 0.005622

https://doi.org/10.1371/journal.pone.0242194.t004
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Fig 5. Construction and analysis of PPI network. (A) PPI network constructed by the DEGs of three GEO datasets. The significant modules,

module1(B) and module2(C), identified from the PPI network by MCODE method. The red nodes denote upregulated DEGs, and the green nodes

denote downregulated DEGs.

https://doi.org/10.1371/journal.pone.0242194.g005

Fig 6. Biological pathway enrichment analysis of two modules. The top 10 biological pathways enrichment analysis of DEGs in module 1(A) and

module 2(B) by FunRich, respectively, P< 0.05. X axis denotes rich factor, namely the enrichment levels; Y axis denotes the top 10 significantly

enriched pathways of two modules. The color of the dot indicates the different P-value, and the size of the dot denotes the number of candidate genes

enriched in the corresponding pathway.

https://doi.org/10.1371/journal.pone.0242194.g006
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CDC20, BUB1, TOP2A, RRM2, CCNA2, UBE2C, MAD2L1, and BUB1B. For example, Suniti-

nib, Methotrexate and Fluorouracil could inhibit the expression of CDC20 while Irinotecan

could promote the expression of CDC20 (Fig 9A).

Discussion

Due to the insufficiency in effective targeted therapy options, SCLC is considered a “neglected

sibling” compared to NSCLC. The mutations of epidermal growth factor receptor (EGFR)

Table 5. Hub genes with high node degrees.

Gene symbol Degree score Type MCODE cluster

CDC20 78 Up-regulated Cluster 1

BUB1 77 Up-regulated Cluster 1

TOP2A 77 Up-regulated Cluster 1

RRM2 76 Up-regulated Cluster 1

CCNA2 76 Up-regulated Cluster 1

UBE2C 76 Up-regulated Cluster 1

MAD2L1 75 Up-regulated Cluster 1

BUB1B 75 Up-regulated Cluster 1

https://doi.org/10.1371/journal.pone.0242194.t005

Fig 7. Analysis of expression of hub genes in the Oncomine database. Relative mRNA expression levels of (A) CDC20, (B) BUB1, (C)

TOP2A, (D) UBE2C, (E) BUB1B, (F) RRM2, (G) CCNA2, and (H) MAD2L1 in normal lung and SCLC samples. The expression level data

were standardized by log2 conversion and median centered. Data are presented as violin plot with minimum (from bottom to top), 25th

percentile, median, 75th percentile, and maximum. The black dots denote the sample size. Data were analyzed using paired student’ s t-

test. Differences were considered as statistically significant when P< 0.05 (�P< 0.05, �� P< 0.01, ��� P< 0.001).

https://doi.org/10.1371/journal.pone.0242194.g007
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kinase, the fusion of the anaplastic lymphoma kinase (ALK), and ROS Proto-Oncogene 1

Receptor Tyrosine Kinase (ROS1), result in an immense improvement in the remedy of suffer-

ers with NSCLC [25–28]. However, these genetic variations are not common in SCLC, and tar-

geted drugs for NSCLC are not effective for SCLC [29]. Therefore, novel biomarkers with high

efficiency, high sensitivity and high specificity are urgently needed for diagnosis and prognosis

of SCLC.

Compared with single array analysis, multiple arrays integration is considered as a better

method to enhance detection capabilities and improve the reliability of results [30]. In this

study, we analyzed three SCLC data sets from GEO to gain insight into gene expression pat-

terns on a genome-wide scale. Then, 208 DEGs (102 up-regulated and 108 down-regulated)

and eight hub genes have been identified and used for further analysis. Chromosome mapping

of 208 DEGs displayed that chromosome 1 contained the most dysregulated genes in SCLC.

Previously studies affirmed that early-stage development of lung cancer was associated with X

chromosome inactivation in females. The inactivation test of X-chromosome could be used to

screen women who are prone to malignant tumors, including lung cancer [31]. Our findings

suggested that the abnormal expression of FHL1, SRPX, HMGB3 and WNK3 on the X chromo-

some may be related to SCLC in females [32]. However, there is no differential expression

gene in Y chromosome in our present study.

A PPI network was constructed for the purpose of predicting the protein functional associa-

tion of 208 identified DEGs. As a result, up-regulated genes were predominantly enriched in

mitotic cell cycle, DNA replication, mitotic M-M/G1 phases, and ATM pathway in SCLC.

Fig 8. The relative expression of eight hub genes in human SCLC samples (n = 7) and paired adjacent non-cancerous tissue samples

(n = 7) were detected using RT-qPCR. (A) CDC20, (B) BUB1, (C) TOP2A, (D) UBE2C, (E) BUB1B, (F) RRM2, (G) CCNA2, and (H)

MAD2L1. HPRT1 was internal reference gene.analyze.

https://doi.org/10.1371/journal.pone.0242194.g008
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Meanwhile, down-regulated genes were mainly enriched in epithelial-to-mesenchymal transi-

tion, amb2 Integrin signaling, and IL-6 signaling pathway in SCLC. Among the top 10 biologi-

cal pathways enrichment analysis for down-regulated genes, 9 pathways were closely related to

IL-6 and immune system. (Table 4 and S3 Table) It indicated that the immune level of SCLC

was relatively low, and application of IL-6 inhibitors, immunotherapy or activation of immu-

nity might be the potential strategies for the treatment of SCLC.

In the current study, the eight hub genes selected by cytohubba were overexpressed in

SCLC tissues compared to paired adjacent non-cancerous tissues. Lastly, seven of those hub

genes, namely CDC20, TOP2A, BUBI, BUBIB, UBE2C, CCNA2 and MAD2L1 (all P-values

<0.05), were closely related to the cell cycle pathway. Additionally, the mRNA expression of

hub genes were searched for by mining the Oncomine database and human samples, which

further validated the bioinformatics analysis. Although previous studies have authenticated

that most of these disordered hub genes were closely related to the diagnosis, treatment and

prognosis of various diseases, the precise functions and molecular mechanism of them in the

occurrence and development of SCLC have not yet been clearly illuminated.

As an evolutionarily conservative process, cell cycle plays an imperative role in cell growth

and differentiation. Dysregulations of cell cycle are considered as a hallmark of human cancer

[33]. In the treatment of cancer, many strategies for the cell cycle have been implemented.

Increasingly studies have revealed that several genes related to cell cycle such as CDC20,

TOP2A, BUBI, BUBIB, and UBE2C, are related to the occurrence and development of cancer,

which were also identified in the present study.

Cell division cycle protein 20 (CDC20), locating in chromosome 1, is a promoter for the

anaphase-promoting complex (APC). Early research has demonstrated that CDC20 is highly

Fig 9. Construction of gene-drug interaction network among eight hub genes and corresponding available chemotherapeutic drugs. The

available chemotherapeutic drugs could induce or reduce the expression level of these hub genes, including (A) CDC20, (B) BUB1, (C)

TOP2A, (D) UBE2C, (E) BUB1B, (F) RRM2, (G) CCNA2, and (H) MAD2L1, in mRNA or protein. The red arrow denotes that chemotherapy

drugs promote the expression of hub gene; the green arrow indicates that chemotherapy drugs inhibit the expression of hub gene. In this

network, the number of arrows between drugs and genes represents the number of supports in previous literature.

https://doi.org/10.1371/journal.pone.0242194.g009
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expressed in multiple tumors, and is related to the poor prognosis of patients with gastric can-

cer, liver cancer, bladder cancer, colon cancer [34], and NSCLC [35]. Subsequent studies have

indicated that the inhibition of CDC20 expression could reduce the colony formation rate of

lung cancer cells in NSCLC and SCLC [36]. Therefore, CDC20 may be viewed as a novel or

latent target for the amelioration of SCLC.

Topoisomerase II alpha (TOP2A) gene, encoding a 170 kDa nuclear enzyme that regulates

the DNA topological state during the process of DNA transcription and replication. It cata-

lyzes the fracture and reconnection of double stranded DNA, thus changing the topological

structure of DNA [37]. Numerous studies indicated that TOP2A is highly expressed in a variety

of malignant tumors, such as colorectal cancer [38], meningioma [39], breast cancer [40],

adrenocortical carcinoma [41], NSCLC [42] and SCLC [43, 44]. Topoisomerase II Inhibitors

have been illustrated as active agents in SCLC cell lines [45, 46], and levels of TOP2A are

important determinants of drug response in SCLC [47]. In our current study, TOP2A was

overexpressed in SCLC and mostly enriched in mitotic cell cycle pathway. Consequently, the

results of our study are in concert with those of previous studies, suggesting that TOP2A may

be a direct or indirect factor in the occurrence and deterioration of SCLC

The multidomain protein kinases BUB1 (aliases: BUB1A) and BUB1B (aliases: BUBR1) are

key elements of the mitotic checkpoint for spindle assembly [48]. BUB1 plays an important

role in chromosome assembly and kinetochore localization in cells [49–51]. While BUB1B is

associated with stabilizing centromere-microtubule junction and chromosome alignment [52].

Upregulation of BUB1B can prevent aneuploidy and cancer and prolong healthy lifetime [53].

Abnormal expression of BUB1 and BUB1B were resulted in the prognosis of patients with

brain tumor [54], glioblastoma [55], colorectal cancer [56], and NSCLC [57], and resulted in

the impairment of mitotic checkpoint function. Therefore, future studies on BUB1 and BUB1B
combining genetic approaches may provide an effective strategy for clinical anti-tumor treat-

ment and could be the focus of SCLC research in the future.

As reported, ubiquitin-conjugating enzyme E2C (UBE2C), belonging to the E2 ubiquitin-

conjugating enzyme family, plays crucial roles in a variety of malignancies, namely breast can-

cer [58], colorectal cancer [59], melanoma [60], and hepatocellular carcinoma [61]. Otherwise

a study declared that poorer OS of NSCLC patients were related to UBE2C overexpression

[62]. Upregulation of UBE2C-mediated autophagy promoted NSCLC progression [63].

Ribonucleotide reductase regulatory subunit M2 (RRM2) is a significant enzyme in DNA

replication. High expression of RRM2 was uncovered in glioblastoma [64] with promoting

tumorigenicity [65], prostate cancer [66], NSCLC [67], and breast cancer. Overexpression of

RRM2 was strongly associated with worse survival in breast cancer and increased expression

was shown in tamoxifen resistant patients [68]. Recently, a study [69] showed that chemother-

apy resistance was associated with RRM2/EGFR/AKT signaling pathway in NSCLC.

Cyclin A2 (CCNA2), belonging to cyclin family, is a regulator of cell cycle. It activates

cyclin dependent kinase 2(CK2) and promotes transformation through G1/S and G2/M [70].

CCNA2 was overexpressed in bladder cancer [71], ER+ breast cancer and related to tamoxifen

resistance [72], hepatoma with promoting cell proliferation [73] and lung adenocarcinoma

[74]. CCNA2 might have prognostic value for progression free survival(PFS) and OS in

patients with lung cancer [75].

As an integral part of the mitotic spindle assembly checkpoint, mitotic arrest defect 2 like 1

(MAD2L1) is manifestly enriched in the cell cycle pathway and ensures that all chromosomes

are arranged correctly on the metaphase plate [76, 77]. The deletion of tumor suppressor

MAD2L1 could lead to premature degradation of cyclin B, mitosis failure in human cells and

tumorigenesis [78]. MAD2L1 is overexpressed in multiple cancerous, such as breast cancer

[79, 80] and gastric cancer [81], and lung cancer [82]. Recent studies [83–85] demonstrated
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that the prognosis of SCLC patients with high MAD2L1 expression is worse than that with low

MAD2L1 expression. It implies that MAD2L1 may be a promising therapeutic target for SCLC.

The interaction between eight hub genes and anti-tumor drugs were analyzed for the better

understanding of the possibility of these genes as promising therapeutic targets for SCLC. As a

result, we discovered that multiple drugs could change the expression of these hub genes.

As shown in Fig 9A, Sulforafan and Irinotecan promoted the expression of CDC20, while

Sunitinib, Methotrexate, Fluorouracil, Dasatinib and Oxaliplatin inhibited the expression of

CDC20. This suggested that Sunitinib, Methotrexate, Fluorouracil, Dasatinib, and Oxaliplatin

might be viewed as targeted drug for the treatment of SCLC patients with high expression of

CDC20. Interestingly, the interaction between Cisplatin or Paclitaxel and CDC20 were contro-

versial, and the conclusions drawn in different studies were inconsistent. In the same way,

Sunitinib, Nocodazole, Topotecan, Cyclosporine, Dasatinib, Etoposide, Fluorouracil, Irinote-

can, Methotrexate, and Azathioprine might be viewed as targeted drugs for the treatment of

SCLC patients with high expression of BUB1. (Fig 9B) Methotrexate, Oxaliplatin, Carboplatin,

Teniposide, Sunitinib, Cyclosporine, Aurofusarin, Dasatinib, Daunorubicin, Dronabinol, Eto-

poside, Fluorouracil, and Irinotecan might be viewed as targeted drugs for the treatment of

SCLC patients with high expression of TOP2A. (Fig 9C) Vincristine, Cyclosporine, Methotrex-

ate, Oxaliplatin, Topotecan and Cytarabine might be viewed as targeted drugs for the treat-

ment of SCLC patients with high expression of UBE2C. (Fig 9D) Methotrexate, Oxaliplatin,

Topotecan, Dasatinib, Etoposide and Fluorouracil might be viewed as targeted drugs for the

treatment of SCLC patients with high expression of BUB1B. (Fig 9E) Methotrexate, Oxalipla-

tin, Sunitinib, Bicalutamide, Afureserti, Azathioprine, Dasatinib, Hydroxyurea and Topotecan

might be viewed as targeted drugs for the treatment of SCLC patients with high expression of

RRM2. (Fig 9F) Camptothecin and Fenretinide might be viewed as targeted drugs for the treat-

ment of SCLC patients with high expression of MAD2L1. (Fig 9H) Surprisingly, no confirmed

one could be viewed as targeted drug for the treatment of SCLC patients with high expression

of CCNA2. (Fig 9G) However, further experimental study, including in vivo and in vitro exper-

iments and clinical studies, are needed to explore the relationship between these hub genes

and the prognosis of SCLC patients, and whether SCLC patients can benefit from these drugs.

At present, some related studies on the SCLC core genes have been published. Liao et al

screened five hub genes from four GEO datasets (GSE60052, GSE43346, GSE15240 and

GSE6044) by the raw data analysis by R software, functional annotation and pathway enrich-

ment analysis, PPI network analysis, enrichment analyzes of two significant modules, and

analysis of the expression levels of hub genes in the Oncomine database [84]. Wen et al dis-

cerned 10 hub genes from two GEO databases (GSE6044 and GSE11969) by using GEO2R

tool, GO functional annotation and KEGG pathway enrichment analysis, PPI network, mod-

ule analysis, hub genes selection, and validation of the mRNA expression levels of hub genes

in the Oncomine database [86]. Mao et al identified 19 hub genes and 32 miRNAs from two

GEO datasets (GSE6044 and GSE19945). Further analysis performed by functional annotation

and pathway enrichment analysis of DEGs, PPI network, module analysis, hub genes screen-

ing, and miRNA-gene regulatory network [87]. Compared with the published literatures, we

all found DEGs at RNA level based on GEO database and analyzed by bioinformatics methods.

We constructed functional annotation and pathway enrichment analysis, PPI network, enrich-

ment analyzes of significant modules, and verification of the expression levels of hub genes in

the Oncomine database of DEGs by using similar methods. But we excluded two GEO data-

sets, including GSE6044 and GSE11969 which were in above published reports. The reasons

are as follows: As reported, the human genome contains about 20,000 to 4,5000 genes encod-

ing proteins [88]. But the number of probes in GSE6044 was only 8,793 genes, a lot less than

20,000~50,000 genes in that three GEO datasets. Therefore, the inadequacy of these data may
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lead to incomplete analysis. Secondly, the database related technology platform was applied

10 more years ago and had not been updated recently, therefore GSE6044 was ruled out. For

GSE11969, all expression data with log2 (fold change) is less than 2, which is completely differ-

ent from other GEO data sets. It may be unreasonable. Therefore, GSE11969 was excluded.

More advantages of this study were as follows: Firstly, RT-qPCR were performed to validate

the mRNA expression levels of hub genes by human samples. Secondly, this study screened

potential prognostic biomarkers or therapeutic targets in SCLC and performed hub gene-drug

interaction network analysis.

In the present paper, we have discussed that the overexpression of eight hub genes was

closely related to the occurrence and development of SCLC, indicating that these hub genes

might be acted as promising prognostic markers or therapeutic targets for SCLC. But our

research also has limitations. Firstly, the data utilized in this study were all collected from pub-

lic databases, but the quality of the data cannot be evaluated. Secondly, the sample capacity of

relevant data is comparatively small. Thirdly, our study focused only on genes that changed

significantly in multiple data sets, the characteristics of race, region, gender, age, tumor classifi-

cation, stage, and smoking status were not considered integrally. Therefore, a lot of valuable

biological information may be ignored in our research. Finally, as results, all eight hub genes

were overexpressed in SCLC, but the corresponding mechanism has not been fully elucidated.

Therefore, more molecular evidence is needed. Moreover, the current research in SCLC lacked

prognostic data related to these hub genes, such as survival curves, which brought limitations

to the clinical application value of hub genes. In this paper, the expression levels of eight hub

genes were mainly analyzed. Whether these hub genes could be used as biomarkers or thera-

peutic targets of SCLC required further study.

Conclusions

In conclusion, our bioinformatics analysis identified 208 DEGs, eight hub genes (CDC20,

BUB1, TOP2A, RRM2, CCNA2, UBE2C, MAD2L1), and the mitotic cell cycle pathway that

might play an momentous role in the development and prognosis of SCLC. As shown in data-

base analysis and confirmed by human samples, overexpression of these hub genes indicated a

poor prognosis for patients with SCLC. These results indicated that a comprehensive study of

these DGEs will help us to understand the pathogenesis and progression of SCLC. However,

since this study is mainly based on data analysis, further basic mechanism studies and clinical

studies are needed to confirm these hypotheses in SCLC. We hope that this study can furnish

certain new genomic basis for the individualized treatment of SCLC.
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Mad2 and BubR1 modulates tumourigenesis and paclitaxel response in MKN45 gastric cancer cells.

Cell Cycle. 2014; 13(22):3590–601. https://doi.org/10.4161/15384101.2014.962952 PMID: 25483095;

82. Kato T, Daigo Y, Aragaki M, Ishikawa K, Sato M, Kondo S, et al. Overexpression of MAD2 predicts clini-

cal outcome in primary lung cancer patients. Lung Cancer. 2011; 74(1):124–31. https://doi.org/10.1016/

j.lungcan.2011.01.025 PMID: 21376419;

83. Wu Y, Tan L, Chen J, Li H, Ying H, Jiang Y, et al. MAD2 Combined with Mitotic Spindle Apparatus

(MSA) and Anticentromere Antibody (ACA) for Diagnosis of Small Cell Lung Cancer (SCLC). Med Sci

Monit. 2018; 24:7541–7. https://doi.org/10.12659/MSM.909772 PMID: 30346937;

84. Liao Y, Yin G, Wang X, Zhong P, Fan X, Huang C. Identification of candidate genes associated with the

pathogenesis of small cell lung cancer via integrated bioinformatics analysis. Oncol Lett. 2019; 18

(4):3723–33. https://doi.org/10.3892/ol.2019.10685 PMID: 31516585;

85. Ni Z, Wang X, Zhang T, Li L, Li J. Comprehensive analysis of differential expression profiles reveals

potential biomarkers associated with the cell cycle and regulated by p53 in human small cell lung can-

cer. Exp Ther Med. 2018; 15(4):3273–82. https://doi.org/10.3892/etm.2018.5833 PMID: 29545845;

86. Wen P, Chidanguro T, Shi Z, Gu H, Wang N, Wang T, et al. Identification of candidate biomarkers and

pathways associated with SCLC by bioinformatics analysis. Mol Med Rep. 2018; 18(2):1538–50.

https://doi.org/10.3892/mmr.2018.9095 PMID: 29845250;

87. Mao Y, Xue P, Li L, Xu P, Cai Y, Chu X, et al. Bioinformatics analysis of mRNA and miRNA microarray

to identify the key miRNA-gene pairs in small-cell lung cancer. Mol Med Rep. 2019; 20(3):2199–208.

https://doi.org/10.3892/mmr.2019.10441 PMID: 31257520;

88. Consortium E. The ENCODE (ENCyclopedia of DNA elements) Project Science. 2004; 306(5696):636–

40. https://doi.org/10.1126/science.1105136 PMID: 15499007

PLOS ONE Potential target genes and crucial pathway in SCLC

PLOS ONE | https://doi.org/10.1371/journal.pone.0242194 November 13, 2020 22 / 22

https://doi.org/10.1016/s0006-2952%2800%2900384-1
https://doi.org/10.1016/s0006-2952%2800%2900384-1
http://www.ncbi.nlm.nih.gov/pubmed/11007956
https://doi.org/10.1096/fj.201800667R
http://www.ncbi.nlm.nih.gov/pubmed/30138038
https://doi.org/10.1371/journal.pone.0091771
http://www.ncbi.nlm.nih.gov/pubmed/24622579
https://doi.org/10.18632/oncotarget.12614
http://www.ncbi.nlm.nih.gov/pubmed/27738335
https://doi.org/10.7150/jca.33457
https://doi.org/10.7150/jca.33457
http://www.ncbi.nlm.nih.gov/pubmed/31413739
https://doi.org/10.1016/j.pathol.2019.03.011
https://doi.org/10.1016/j.pathol.2019.03.011
http://www.ncbi.nlm.nih.gov/pubmed/31230818
https://doi.org/10.1053/j.gastro.2007.03.027
http://www.ncbi.nlm.nih.gov/pubmed/17570218
https://doi.org/10.1006/geno.1998.5233
http://www.ncbi.nlm.nih.gov/pubmed/9615237
https://doi.org/10.1073/pnas.0306069101
http://www.ncbi.nlm.nih.gov/pubmed/15070740
https://doi.org/10.7150/jca.33433
https://doi.org/10.7150/jca.33433
http://www.ncbi.nlm.nih.gov/pubmed/31777591
https://doi.org/10.1016/j.canlet.2007.03.021
http://www.ncbi.nlm.nih.gov/pubmed/17498870
https://doi.org/10.4161/15384101.2014.962952
http://www.ncbi.nlm.nih.gov/pubmed/25483095
https://doi.org/10.1016/j.lungcan.2011.01.025
https://doi.org/10.1016/j.lungcan.2011.01.025
http://www.ncbi.nlm.nih.gov/pubmed/21376419
https://doi.org/10.12659/MSM.909772
http://www.ncbi.nlm.nih.gov/pubmed/30346937
https://doi.org/10.3892/ol.2019.10685
http://www.ncbi.nlm.nih.gov/pubmed/31516585
https://doi.org/10.3892/etm.2018.5833
http://www.ncbi.nlm.nih.gov/pubmed/29545845
https://doi.org/10.3892/mmr.2018.9095
http://www.ncbi.nlm.nih.gov/pubmed/29845250
https://doi.org/10.3892/mmr.2019.10441
http://www.ncbi.nlm.nih.gov/pubmed/31257520
https://doi.org/10.1126/science.1105136
http://www.ncbi.nlm.nih.gov/pubmed/15499007
https://doi.org/10.1371/journal.pone.0242194

