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Mammary stem cells: angels or demons in mammary gland?
Xueman Chen1,2, Qiang Liu1,2 and Erwei Song1,2

A highly dynamic development process exits within the epithelia of mammary gland, featuring morphogenetic variation during
puberty, pregnancy, lactation, and regression. The identification of mammary stem cells (MaSCs) via lineage-tracing studies has
substantiated a hierarchical organization of the mammary epithelia. A single MaSC is capable of reconstituting the entirely
functional mammary gland upon orthotopic transplantation. Although different mammary cell subpopulations can be candidate
cells-of-origin for distinct breast tumor subtypes, it still lacks experimental proofs whether MaSCs, the most primitive cells, are the
‘seeds’ of malignant transformation during most, if not all, tumorigenesis in the breast. Here, we review current knowledge of
mammary epithelial hierarchy, highlighting the roles of mammary stem/progenitor cells and breast cancer stem cells (BCSCs) along
with their key molecular regulators in organ development and cancer evolution. Clarifying these issues will pave the way for
developing novel interventions toward stem/progenitor cells in either prevention or treatment of breast cancer (BrCa).
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INTRODUCTION
Human breast cancer (BrCa) is a highly heterogeneous disease.
In terms of gene expression profile, ~ 18 histological and at least
five molecular subtypes can be characterized to classify breast
tumors.1–3 Given that tumorigenesis is, in essence, a deregulated
organogenetic disorder, there might be normal mammary
epithelial counterparts that parallel to cancer cells.4 Accumulat-
ing evidence has shown that different tumor subclasses might
derive from distinct cell subpopulations within the mammary
epithelia.5–8 As such, elucidating normal epithelial differentia-
tion hierarchy is helpful to understand BrCa heterogeneity and
to identify the potential cancer cells of origin.
Mammary gland development in humans and mice takes

place predominantly after birth. Structurally, mammary glands
are constructed of ducts and lobules lined by hierarchical cells
that range from stem cells to progenitors to terminally
differentiated cells.4 Mammary stem cells (MaSCs), located at
the top of epithelium hierarchy, possess hallmark properties
including self-renewal and multi-directional differentiation.
Transplantation assays along with limiting dilution assay (LDA)
have demonstrated that one individual MaSC can recapitulate a
complete mammary gland that exhibits full developmental
capacity in vivo.9,10 Progenitor cells comprising at least three
subtypes are characterized by their proliferative potential.
In the context of cancer, albeit still under controversy, both
stem cells and progenitor cells are candidate cells-of-origin in
tumorigenesis.
In this review, we will provide an overview of mammary gland

development in both humans and mice, highlighting the
differentiation hierarchy where mammary stem/progenitor cells
may serve as cellular origin in BrCa. In addition, we will present a
brief introduction of breast cancer stem cells (BCSCs), as well as
critical molecular regulators involved.

MAMMARY GLAND ONTOGENY: STEM CELLS ON THE RIGHT
TRACK
The mammary gland is a unique organ featuring postnatal
development in that most of its patterning will not occur until
adulthood, both in mice and in humans.11 A female mouse has
five pairs of mammary epithelial placodes since embryogenesis.
The rudimentary placodes derive from the ectoderm at embryo
stage, gradually penetrate to shape mammary buds which sprout
with a lumen.12 A week later, a small underlying mammary branch
begins to invade the developing fat pad but keeps in a restricted
pace even after birth within three weeks. As the level of estrogen
arises during puberty, gland expands and comes with profound
morphogenesis—a branching, bilayer ductal structure formed by
an outer basal layer of myoepithelial cells, whose contraction
allows milk secretion, surrounding an inner luminal layer of cells,
which comprise ductal luminal cells (LCs) lining the inside of the
ducts and alveolar LCs to produce milk at parturition.13 The
pubescent mammary gland growth is mainly driven by specialized
club-like structures termed terminal end buds (TEBs), which
localize at the distal tip of the ducts and lead invasion through
the empty adipose tissue until reaching the end of the mammary
fat pad (MFPs).14 TEBs are subdivided into an outer layer of ‘cap’
cells (functionally referred to as MaSCs) and an inner layer of
‘body’ cells, whose progeny are traced to be myoepithelial and
luminal cells, respectively.15 The side branching of young adult
mammary gland is controlled by progesterone, while during
pregnancy, systemic hormones including estrogen, progesterone
and prolactin work in concert to induce alveolar expansion,
resulting in structural remodeling of the gland.16 Collectively,
highly ramified ducts proliferate and differentiate into secretory
lobuloalveolar buds with each estrous cycle. In the late pregnancy
and during lactation, mammary epithelia almost fill the MFP and
prolactin functions to establish the secretory state. Alveolar cells
secrete milk into the lumens under the contractile force of
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myoepithelial cells along with the ducts. At the end of lactation,
the lobuloalveoli undergo regression and the gland returns to a
virginal appearance.17 When it comes to another round of
pregnancy, the well-choreographed processes comprising prolif-
eration, differentiation and involution re-emerge, thereby con-
stituting a successive reproductive ‘mammary cycle’ (Figure 1).18

Analogous to TEBs in mouse mammary gland, the main lobular
structure of human breast is named terminal ductal lobular units
(TDLUs) where the branching ducts terminate and most breast
tumors arise.19 Throughout development and pregnancy, TDLUs
exist in dynamically diverse morphological forms, varying from
undifferentiated Lob1-type state (in the virgin gland) to
differentiated Lob2 and Lob3 with more ductules, further
Lob4 secretory acinar structures (during pregnancy), ultimately
regressing back in Lob2 type (after parturition). It is worth noting
that Lob1 structures are the most predominant population (with a
moderate level of Lob2 rather than Lob3/Lob4) in nulliparous or
post-menopause women.20,21 However, the human breast covers
more fibrous connective tissue while the mouse mammary tissue
owns a larger number of adipocytes,19 thus making it different in
transplantation assays.
Despite morphogenetic differences in the ductal tree, there are

striking functional parallels between mouse and human mammary
tissue, as supported by breast tumorigenesis in genetically
engineered mouse models.19 The consistent massive expansion
of mammary epithelia that occurs during puberty and pregnancy
as well as each reproductive cycle further points to a stem-like cell,
namely MaSC, with inherent longevity and remarkable regenera-
tive capability residing in the mammary epithelia.22 Emerging
evidence has shown that MaSCs serve as a pioneering but good
force in both mouse and human mammary gland development
and organ homeostasis maintenance, until they go awry in cancer.

IDENTIFICATION OF MASCS
To begin with the definition of MaSC, it is traditionally
characterized as a cell that can self-renew to maintain the stem
cell pool, despite massive cell apoptosis post weaning, and can
differentiate into mature epithelial cells of either myoepithelial or
luminal lineage via a series of lineage-restricted progenitor
intermediates. Both symmetric and asymmetric divisions con-
tribute to MaSC self-renewal while the latter generates more
differentiated progeny—morphologically distinct progenitor cells
with proliferative potential towards two main terminally

differentiated cells that construct the entire mammary epithelia.
Apart from self-renewal and directional differentiation, long-term
survival and expansion of MaSCs may allow increased suscept-
ibility to neoplastic transformation.23 In addition, sequential
accumulation of deleterious genetic and/or epigenetic alterations
in MaSCs that persist over their whole lifespan, may render them
as vulnerable targets of BrCa formation or relapse.24 Thus the
tumorigenicity of MaSCs needs further consideration and more in-
depth investigation, though many technical obstacles lie in reality.
The discovery of MaSCs dates back to the late 1950s, when the

serial transplantation assay was originally applied in de-
epithelialized MFPs of syngeneic mice for mammary gland
reconstitution (see Figure 2a for schematic of MFP transplanta-
tion). To date, it’s still the gold standard for stem cell assays. The
pioneering work from DeOme et al. showed that portions of the
normal mammary epithelia from donor mice, when transplanted
into recipient fat pads cleared of endogenous epithelium, could
reproduce an entire functional mammary epithelial tree.25 The
epithelium-free MFPs of mice allowed in-situ transplantation and
growth of normal, pre-neoplastic and malignant mammary tissues,
leading to repopulation of normal mammary gland and develop-
ment of mammary tumors, respectively. Successful engraftments
obtained from randomly distributed cells within the mammary
gland at any developmental stages further implied the existence
of widespread repopulating cells.26–28 Subsequent studies have
demonstrated that the reconstitution ability in the mammary
gland was ascribed to the proliferative activity of a single cell with
stem-like phenotypes, inferred to be MaSC. Moreover, the progeny
of primary transplanted cells exhibited serial transplantability at a
clonal level to generate ductal-lobular epithelial outgrowths.
Unlike pre-neoplastic/neoplastic cells to be almost unlimitedly
passaged, the normal ones always undergo senescence after finite
(generally five to eight) transplant generations.27,29 Operationally,
cells with these properties were termed mammary repopulating
units (MRUs) or simply MaSCs, the former of which is actually more
preferable except that the outgrowth is definitively progeny of a
transplanted single microscopically visualized mammary epithelial
cell (MEC).30

As stem cells exist in the mammary gland, plenty of strategies
are thereafter developed to identify and purify MaSCs based on
their morphological or biological properties.13 Previously, the ‘cap’
cells that line the outside of the TEBs, and the pale or light-
staining cells with low cellular complexity (that is, few cytoplasmic
organelles),26 which were afterwards known as undifferentiated
large light cell (ULLC) and small light cells (SLCs) by electron
microscopy, were hypothesized to represent the undifferentiated
mammary stem/progenitor cell population. Later on, label
retention experiments identified mouse MECs that retained their
template DNA strands during asymmetric division harbored stem
cell characteristics.31 However, no direct evidence for regenerative
capacity had ever been presented for cells isolated via these
approaches. Also, the side-population cells defined by Hoechst
33342 dye efflux, though once stand for the MaSC-enriched
fraction,32,33 has been found abundant in luminal progenitor
population.22

PROSPECTIVE ISOLATION OF MASCS
To better enrich for cells with stem cell characteristics,
fluorescence-activated cell sorting (FACS) is employed, and
according to the expression of specific cell-surface makers, all
kinds of cell subsets including MaSCs can be isolated from freshly
dissociated mammary gland preparations. Stem cell antigen-1
positive (Sca1+) cells used to be identified as a subpopulation of
label-retaining MECs and to some degree capable of mammary
reconstitution. In 2006, it was reported in NATURE that mouse
MaSCs could be recognized and highly purified by cooperated
makers—CD24 (heat-stable antigen) and CD29 (β1-integrin) or

Figure 1. Mouse mammary gland develops postnatally under the
control of systemic hormones. See text for detailed descriptions. E,
estrogen; Pg, progesterone; Prl, prolactin.
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CD49f (α6-integrin).9,10 It was the first time to provide functional
evidence that a single cell within the Lin−CD24+/medCD29hi/CD49fhi

but exceptionally Sca1low/− population, when orthotopically trans-
planted into mice at limiting dilutions, displayed the stem cell
hallmark features of self-renewal and multi-lineage differentiation.
Subsequent studies confirmed the above-mentioned molecular
phenotype for effective enrichment of putative MaSCs.34,35 Another
breakthrough came in 2015 when protein C receptor (Procr), a novel
Wnt target in mammary epithelia, was found able to mark a rare
unique subset of multipotent mouse MaSCs via lineage tracing.36

Lineage-tracing assay is a method most commonly used in
combination with genetically engineered mouse models to
address putative cell-of-origin of various tumors, whose outcome
is determined by the ‘all-or-none law’—all tumor cells/an entire
tumor or not, by labeling and tracking target cells and their
progeny in vivo. Procr-expressing basal cells out-competed total
CD24+CD29hi basal cells in increased in vitro colony-forming
efficiency and in extraordinary in vivo repopulating activity upon
implantation, representing a highly purer population of MaSCs.
The emerging surface maker profile of mouse MaSCs thus far is
Lin−Procr+CD24+/medCD29hiCD49fhiSca1low/−.
In regard to the detection of human MaSCs, they were poorly

purified compared to mouse counterparts due to a lack of reliable
makers. Initially, the technology ‘mammosphere culture’ was
developed in nonadherent conditions, following the example of
neural stem cell-enriched ‘neurospheres’.37 Unfortunately, the
yield of MaSCs is less than 1% from such cultured mammospheres.
To further refine this approach, a lipophilic fluorescent dye PKH26
was used to label cells with slow-cycling and quiescent traits
during mammosphere growth.38 Subsequent FACS for those
retaining this label, followed by in vivo assay in humanized mouse
mammary glands, further confirmed their stem cell nature.38 Cell-
surface markers also hold promise for the purification of human
MaSCs. Studies showed that Lin−CD49f+EpCAMneg–low or CD10+

basal phenotype could enrich for human MRUs, which exhibited
reconstruction ability when transplanted into subrenal capsule or
cleared MFPs of NOD-SCID mice that had undergone fibroblast-

associated ‘humanization’, a supplementary procedure to rees-
tablish a stromal environment characteristic of that in human
breast tissue (Figure 2a).39,40 Nevertheless, distinct strategies often
accompany with diverse results. For example, one report indicated
that cells with repopulating potential in humanized mouse MFPs
were derived only from the aldehyde dehydrogenase 1-positive
(ALDH1+) cells.41 This is in contrast with another study that
outgrowths beneath renal capsule were restricted to the ALDH1low

basal cell compartment.42 In addition, it remains controversial
whether human mammary stem/progenitor cells reside in only
basal epithelial subset39,40 or both luminal and basal cell
populations.43

MOLECULAT REGULATORS OF MASC SIGNALING PATHWAY
Based on the purification approaches for MaSCs, subsequent
experiments were undertaken to unravel the molecular mechan-
isms that govern MaSC ‘stemness’ and differentiation along a
particular lineage. Both Wnt/β-catenin and Notch are classical
signaling pathways in regulating MaSC fates. The Wnt receptor
LRP5 is the first single biomarker to some extent to enrich for
MaSCs, and more importantly, functionally involved in stem cell
maintenance.44 A 6.4-fold increase was observed in the absolute
number of MaSCs from the MMTV-wnt-1 transgenic mice,9 and
Wnt3A-treated MaSCs exhibited a competitive advantage to
repopulate the mammary gland,36,45 conferring Wnt proteins as
self-renewal factors for MaSCs. Notch signaling plays an active role
in different developmental stages of mammary gland, generally
starting with the asymmetric cell fate determination.46 It has been
shown that MaSCs are Notch signal-generators with the ligands
expressed on their surface, while the downstream progenitor/
luminal subtypes expressing Notch receptors receive the
signals.38,47 Endogenous Notch signaling restricts the renewal of
MaSCs,47 and the tumor suppressor p53 arrests MaSC expansion
as Notch does.48,49 ΔN-p63, an isoform of the basal-restricted p63
transcriptional factor, exerts opposite effect. Specifically, its
expression in MaSCs induced by Wnt signaling44 contributes to

Figure 2. Schematic for mammary fat pad transplantation. (a) mammary gland reconstitution. (b) MaSCs upon oncogenic transformation as
cell-of-origin model (albeit unconfirmed). In both cases, fibroblasts are co-injected with human MECs for humanization.
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stemness maintenance, whereas its downregulation via Notch
proteins50 is predisposed to luminal lineage commitment.51

Furthermore, Slug and Sox9 work in concert to determine MaSC
state.52 Other potential molecular pathways or transcriptional
modulators involve Hedgehog, Bim-1, c-myc and so on, all of
which affect MaSC activity either in vitro or in vivo.53,54 Collectively,
a complex signaling pathway network underlies the self-renewal
and lineage commitment of MaSCs. Figure 3 delineates that the
Hedgehog, Notch and Wnt/β-catenin signaling pathways form a
loop where Notch and Hedgehog or Wnt pathways feature
bidirectional regulation. Notch signaling governs Slug and Sox9 in
a closed-loop, and Bmi-1 serves downstream of Wnt-mediated
c-myc or Hedgehog signaling directly, all of which contribute to
MaSC self-renewal. However, the signals or effectors conducting
normal mammary development are frequently subverted in
cancers.

DIFFERENTIATION HIERARCHY AND IMPLICATIONS FOR
BREAST TUMORIGENESIS
As mentioned above, a differentiation hierarchy within the
mammary epithelia is constructed as mammary gland develops.
A stem cell can asymmetrically segregate into an identical
progeny and a committed progenitor cell. Multi-lineage differ-
entiation of mammary epithelial progenitors also exists in normal
adult human breast. Bipotent progenitors are supposed to yield
myoepithelial and luminal progenitors. On the one hand, the
myoepithelial progenitor subpopulation differentiate into highly
elongated myoepithelial cells that reside in a basal position; on
the other hand, the luminal progenitor cells (LPCs) commit to
either ductal or alveolar sublineage at distinct developmental
stages—puberty or pregnancy, respectively.19

Understanding the normal cellular hierarchy in mammary
epithelia is an important prerequisite to identify the cells-of-
origin in BrCa. There are at least five definitive molecular subtypes
in BrCa, including luminal A, luminal B, HER2-positive, basal-like,
and ‘claudin-low’ or ‘normal-like’.19,55,56 Based on the gene
expression patterns, all these subclasses are largely determined
by the presence or absence of ER or PgR, and the amplification/
overexpression of HER2/ERBB2 locus.1,2,55 The idea existed for long
that transformed basal stem/progenitor cells gave rise to basal-like
BrCa with high levels of basal cell markers such as K5 and K14,
while luminal subtype expressing high levels of LC markers
(e.g., K8 and K18) arose from LPCs.57 However, gene expression
profiling of different mammary cell subpopulations uncovered
similarities to specific subtypes of BrCa, revealing a new

perspective of relationship between human breast epithelial
hierarchy and cancer subclasses.5,6 In this comparative molecular
study, the MaSC/basal cells featured a gene signature closest to
the ‘claudin-low’ and ‘normal-like’ rather than basal subtype,
which was reversely most concordant with the luminal progenitor
signature. In addition, the relatively mature LC signature genes
shared more similarities to luminal A and B profiles. However, due
to the existence of dedifferentiation state or cell plasticity during
neoplastic development, a small progenitor subset within mature
populations is not exclusively the real cellular target.16 And more
experimental clues are needed to address cell-of-origin for the
HER2-positive subtype.
Notably, LPCs have been the best-known candidate of cellular

origin for BRCA1-associated basal-like BrCa. LPCs can be distin-
guished from MaSCs via a combination of cell-surface markers,
displaying a CD29loCD24+CD61+ phenotype in mice or
EpCAMhiCD49f+ in humans. Various studies have revealed their
colony-forming ability in vitro. As mentioned, pre-neoplastic
human tissue from BRCA1 mutation carriers harbored an
expanded luminal progenitor population whose expression
profiles are closely aligned with that of basal tumors arising in
BRCA1 heterozygous women.5 Subsequent studies concerning
genetic predisposition of progenitor cell transformation and
BRCA1/p53-deficient transgenic mouse models further indicate a
luminal-to-basal mammary tumor conversion under BRCA1-
mutated background.7,58,59

In concert with cells of origin, initiating genetic alterations
contribute largely to the molecular profile of BrCa, for example,
depletion of BRCA1/2 in any of the tested cell populations initiates
basal-like while PTEN knockout causes normal-like cancers.60 The
oncogenic PIK3CAH1047R mutant expression, along with TP53
deletion or not, in lineage-committed basal (Lgr5, K5 or K14-Cre
mouse model; see Figure 4 for detail schematic representation) or
luminal cells (K8-Cre mouse model) triggers dedifferentiation of
cells into a multipotent stem-like state, generating luminal-like or
basal-like cells, respectively, thereby leading to the development
of multi-lineage mammary tumors with intratumoural
heterogeneity.61,62

Regarding MaSCs-of-origin, their correlation with tumorigenesis
is thus far supported by the fact that their absolute counts
increased in premalignant mammary tissue from MMTV-wnt-1
mice.9 Although infrequently reported, they can’t be simply
excluded. As scientists recently demonstrated that only oncogene-
targeted stem cells, but not progenitor cells, were responsible for
the induction of basal cell carcinoma upon hedgehog activation,63

it might not take long to unveil whether MaSCs behave during
tumor initiation. In fact, there are some technological problems in
directing oncogenic lesion into MaSCs due, in part, to their rarity,
slow-cycling state and absent specific markers. Figure 2b proposes
a schematic to address the tumorigenic capacity of MaSCs upon
lentivirus-delivered oncogenic transformation followed by cleared
MFP transplantation. Theoretically, any mammary cell population
with proliferative potential can be candidate targets for transfor-
mation, only if it obtains mutations that revoke regenerative
capacity and block the access to differentiate into a post-mitotic
state.64

BREAST CANCER STEM CELLS (BCSCS) AS DEVIL LEADERS IN
CANCER ONSET
Cancer stem cells (CSCs) are mainly characterized by their
potential of self-renewal and multipotency, which are typically
accepted as stem cell hallmarks.65 As reflected by their alternative
terms such as tumor-initiating cells (TILs) or cancer-propagating
cells, CSCs are responsible for most, if not all of the onset
of tumorigenesis, as well as the maintenance of tumor
propagation.64,66,67 Human breast tumors harbor a small cell
fraction named BCSCs with features reminiscent of normal MaSCs,

Figure 3. A simplified signaling pathway network where Wnt/β-
catenin, Notch and Hedgehog pathways, along with critical
transcription factors including Bmi-1, c-myc, Slug and Sox9, interact
with one another and contribute to the maintenance of MaSC state.
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and uniquely, holding tumorigenic property. The identification of
CSCs in BrCa can be traced back to 2003 when a CD44+CD24− /low

population was found able to generate heterogeneous tumors
upon serial transplantation into immune-deficient hosts.68 The
BrCa cell hierarchy of which CSCs located at the apex remains
unclear relative to the normal ones.
It was long believed that BCSCs are derived from normal stem

cells, which acquire heritable changes like somatic mutation, and
function as intermediate between transformed MaSCs and
cancerous breast. However, contrasting evidence has emerged
that normal MaSCs arise from the basal layer of mammary
epithelia while breast TILs reside in the luminal layer, both of
which are under the control of distinct epithelial-to-mesenchymal
transition (EMT) programs.69 Given that CSCs are not directly
arisen from normal stem cells, scientists have put up with a plastic
model of tumorigenicity that transit-amplifying cells, often termed
progenitor cells, can initially acquire somatic alteration or heritable
epigenetic changes, and then pass them onto CSC population by
self-dedifferentiation.70 In this way, progenitor cells may be the
actual targets of oncogenic events, followed by plasticity-induced
progenitor dedifferentiation that can give rise to CSCs, resulting in
tumor initiation or metastatic dissemination. Thus, progenitors
rather than stem cells within a tumor should be more preferable
therapeutic targets in clinical practice.

NONCODING RNAS REGULATING STEMNESS AND
DIFFERENTIATION
Mounting studies of long and short noncoding RNAs (ncRNAs)
help unveil mechanisms of the stemness maintenance of both
MaSCs and BCSCs, the organogenesis in mammary gland, as well
as the BrCa onset and development.71

MicroRNAs (miRNAs) are well-known as posttranscriptional
negative gene regulators by pairing to their target mRNAs. It is
worth noting that our team led the way in finding let-7 as a critical

regulator in BCSC fates—the reduced expression of let-7 could not
only enhance the self-renewal of BCSCs by upregulating HRAS but
also facilitate their differentiation through high levels of HMGA2;
while let-7 overexpression repressed mammosphere formation,
neoplasia and metastasis in NOD/SCID mice.72 Additional
stemness-related miRNAs that we found include miR-30 and
miR-34c.73,74 Among the miR-200 family, miR-200c targeting the
self-renewal gene Bmi-1 not only strongly prevents murine MaSCs
from generating normal mammary outgrowth, but also represses
tumorigenicity of human BCSCs in vivo.75 Polyl isomerase Pin1 was
identified as another key target of miR-200c to regulate stemness
of mouse MaSCs and human primary BCSCs,76 and to induce EMT,
a stem cell property demonstrated in both normal and cancer
stem cells.69,77 Also, miR-22 overexpression facilitates EMT,
invasiveness and metastasis of MaSCs and BCSCs by, on the
one hand, targeting TET1, TET2 and TET3, on the other
hand, upregulating genes associated with stemness and EMT
(for example, BMI1, ZEB1 and ZEB2).78 Moreover, miR-93 can
modulate the fates of normal and malignant MaSCs by regulating
their proliferation and differentiation states.79 And miR-27b is
involved in the generation of BCSCs when its downregulation
activates ENPP1.80 Our previous review has listed the reported
BCSC-associated miRNAs and their functions.81 Here, a brief
summary of miRNAs regulating the biology of BCSCs is given in
Table 1.
Besides miRNAs, long noncoding RNAs (lncRNAs) emerge as

new players in stem cell signaling via multiple biological
mechanisms, functioning as molecular guides/decoys/scaffolds
or competitive RNAs (ceRNAs) to miRNAs.82 Defined roles of
lncRNAs in stemness signaling and lineage commitment can be
exemplified by Pinky and lncTCF7 demonstrated in neural and
liver cancer stem cells, respectively. The neural-specific lncRNA
Pinky associates with the splicing regulator PTBP1, regulating the
expression of key transcripts involved in neuronal differentiation
and neurogenesis from neural stem cells.83 lncTCF7 promotes the

Figure 4. Schematic diagram of Cre-loxP system-based genetically modified mice using lineage-tracing assay to track cellular origin of cancer.
The double dotted lines arrow unproved results. PIK3CA-targeted and/or TP53-deleted MaSCs with GFP labeling are supposed to generate a
totally GFP+ mammary tumor with all the cells labeled by GFP.
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self-renewal of human hepatocellular carcinoma stem cells
through TCF7-activated Wnt pathway.84 The direct evidence of
lncRNAs regulating BCSCs lies on lncRNA-ROR, whose upregula-
tion accounts for the expansion of CD24−CD44+ cell population
and the induction of EMT.85 Mechanically, it functions as a ceRNA
to miR-205, thus preventing its target gene ZEB2, also an EMT
inducer, from being degraded. Another lncRNA PINC was reported
to modulate differentiation of mammary epithelial progenitors via
interaction with polycomb repressive complex 2,86 whereas proofs
of stem cell involvement are still lacking. Basically, there are
various lncRNAs involved in EMT of BrCa cells, including HOTAIR,
MALAT1, BCAR4 and lncRNA-ATB. However, it needs to be
demonstrated with further studies that these lncRNAs can directly
regulate MaSCs or BCSCs during mammary gland or BrCa
development.
The technical problems such as difficulty in the precise

purification of stem cells due to a lack of unique cell-surface
markers may, to a large extent, restrict the identification of potent
regulatory ncRNAs. But, linking stemness and EMT to specific
ncRNAs will help elucidate the mechanisms of breast tumorigen-
esis and development, paving the path for putative therapeutic
ncRNA targets to be rendered onto clinic application.

CONCLUDING REMARKS AND FUTURE TRANSLATIONAL NOTES
In recent years, tremendous progress has been made in
delineating the mammary epithelial hierarchy where mammary
stem/progenitor cells drive mammary gland development and
induce breast tumorigenesis upon malignant transformation.
However, there are still many challenges, especially experimental
techniques, lying ahead for the MaSC field. First, lacking unique
cell-surface marker precludes precise purification and enrichment
of MaSCs and descendent progenitors. Second, the stemness of
MaSCs is hard to maintain during in vitro cell culture due to their
predisposition to differentiation, even if using mammosphere
assays. Third, lineage tracing can only be conducted in mice in the
presence of established cell-lineage specific promoters for cells of
interest since differences between human and rodent organs and
cells cannot be ignored. Fourth, oncogenic transformation of
MaSCs via lentiviral transduction is not yet achieved and requires
further technical improvement. Another complex issue is the
heterogeneity of MaSCs, whether, at least in part, attributed to the
dedifferentiation of progenitors or more differentiated cells.
Moreover, mounting evidence has suggested that the mammary

microenvironment and MaSC niche may impact on mammary
gland development and breast oncogenesis, for example, it still
remains elusive how stromal fibroblasts or extracellular matrix
contribute to normally developed and/or cancerous mammary
gland. Finally, the cell hierarchy within the BrCa tissue is hitherto
well-veiled: do BCSCs hold the predominance and give birth to
other BrCa cells? where are BCSCs from? All these issues open
wide for exploration and await more definite clarification.
Since all efforts of these translational findings aim at clinical

application, it is evident that identification of the cell of origin
harbors clinical implications including new preventive and/or
therapeutic approaches for the onset/relapse/progression of BrCa.
The novel biomarkers expressed by the cell of origin may enable
earlier detection of BrCa and further effective prevention, such as
chemoprevention applied in BRCA1/2 mutation carriers with high
susceptibility to BrCa. Also, the altered expression of critical
regulatory molecules, either proteins or ncRNAs, associated with
the stemness or tumorigenicity can be clinically useful in early-
diagnostic and prognostic evaluation of BrCa. Last but not the
least, the gene signature of the cell of origin will help unveil key
signaling pathways and initiating mutations where new targeting
therapies could be built for the treatment of early-stage BrCa.
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Table 1. Functional miRNAs involved in BCSC biology

Stem cell biology Functions miRNAs involved

Self-renewal Anti-BCSC Let-7 family (let-7a, let-7b, let-7c, let-7d, let-7e, let-7f, let-7g, let-7i, miR-98), miR-200 family
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