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Carbendazim (CBZ), a kind of widely used pesticide, is harmful to human health and
environmental ecology. Therefore, it is of great importance to detect CBZ in real samples.
Herein we report the stable growth of vertically-ordered mesoporous silica films (VMSF) on
the glassy carbon electrode (GCE) using boron nitride-reduced graphene oxide (BN-rGO)
nanocomposite as an adhesive and electroactive layer. Oxygen-containing groups of rGO
and 2D planar structure of BN-rGO hybrid favor the stable growth of VMSF via the
electrochemically assisted self-assembly (EASA) method. Combining the good
electrocatalytic activity of BN-rGO and the enrichment effect of VMSF, the proposed
VMSF/BN-rGO/GCE can detect CBZwith high sensitivity (3.70 μA/μM), a wide linear range
(5 nM–7 μM) and a low limit of detection (2 nM). Furthermore, due to the inherent anti-
fouling and anti-interference capacity of VMSF, direct and rapid electrochemical analyses
of CBZ in pond water and grape juice samples are also achieved without the use of
complicated sample treatment processes.

Keywords: vertically-ordered mesoporous silica films, boron nitride, graphene, carbendazim, electrochemical
sensors, anti-fouling detection

INTRODUCTION

As a low-cost pesticide with broad spectrum activity, carbendazim (CBZ) plays a key role in
controlling pests and diseases or weeds in agricultural production (Wei et al., 2018). Due to the stable
characteristic of the benzimidazole ring, CBZ is stable and difficult to degrade. With the extensive
and uncontrolled use of CBZ, the accumulation of CBZ residues can be found in the environment
(e.g., soil and water), which may result in the long-term adverse effects on the ecological safety and
water ecosystem (Ghorbani et al., 2021; Baigorria and Fraceto, 2022). Moreover, CBZ will cause
serious health effects through the respiratory system and direct contacts, such as skin inflammation,
eye irritation, disruption of the endocrine system, and hormonal disorder (Zhu et al., 2019; Farooq
et al., 2020; Rai andMercurio, 2020). Therefore, highly sensitive and accurate detection of CBZ in the
environment is of significance for human health and environmental protection.
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At present, sorts of methods for detecting CBZ have been
developed, for example, mass spectrometry (Grujic et al., 2005),
UV-vis spectroscopy (Pourreza et al., 2015), surface-enhanced
Raman scattering (SERS) (Furini et al., 2015), gas
chromatography (Lesueur et al., 2008), and high-performance
liquid chromatography (Yamaguchi et al., 2011; Subhani et al.,
2013). However, these techniques inevitably need expensive
equipment, complex sample pretreatment steps, and a long
analysis cycle (Yang et al., 2018). By contrast, the
electrochemical method has the advantages of high sensitivity,
low cost, rapidity, and convenient operation (Govindasamy et al.,
2017a; Govindasamy et al., 2017b; Akilarasan et al., 2018; Keerthi
et al., 2018), which has been applied for CBZ determination
(Mekeuo et al., 2021). Due to the electrode fouling caused by the
undesirable adsorption of biological macromolecules or
microorganisms, complicated pretreatments of real samples are
often required for electrochemical sensors and inevitably produce
damage to the analytes. Therefore, designing anti-fouling and
anti-interference electrode interfaces for direct electrochemical
analysis of complex real samples is greatly important (Zhou et al.,
2020).

Porous materials have aroused growing attention in the
construction of rapid and portable sensors (Cui et al., 2020;
Cui et al., 2021; Duan et al., 2021; Liu et al., 2022; Wei et al.,
2022). Especially, vertically-ordered mesoporous silica films
(VMSF) are a kind of porous material with perpendicularly
ordered nanochannels and uniform pore size on a nanometer
scale (Walcarius, 2021; Ma et al., 2022a). VMSF has advantages of
high permeability, molecular selectivity, molecular sieving,
insulation, and good mechanical and chemical stability, which
has been widely employed as the anti-fouling coating for direct
electrochemical analysis (Yan and Su, 2016; Huaxu Zhou et al.,
2021). Arising from the high density of silanol groups on the
channel walls and ultrasmall size of channels, molecular
selectivity, and performance of VMSF could be modulated by
modification of functional groups and confined growth of
nanomaterials, broadening its practical applications (Lu et al.,
2018; Yan et al., 2020a). For example, graphene quantum dots
(GQD), a 0D graphene materials (Yan et al., 2019), are
characterized by an atomically thin planar carbon structure
with ultrasmall size (He et al., 2019; Mao et al., 2019),
abundant active sites (Kaixin Li et al., 2018; Ge et al., 2019;
Wan et al., 2021), tunable chemicophysical properties (Nan Li
et al., 2018; Pang et al., 2018; Yan et al., 2018), and efficient
heterogeneous electron transfer capacity (Huang et al., 2018; Tian
et al., 2018; Gong et al., 2021a), could be confined into the
nanochannels of VMSF to serve as the recognition,
enrichment, and catalysis element, leading to the ultrasensitive
electrochemical analysis of heavy metal ions and
neurotransmitter in complex real samples (Lu et al., 2018).
Currently, VMSF supported by indium tin oxide (ITO)
electrode is rather stable and could be fabricated by using
electrochemically-assisted self-assembly (EASA) and Stöber-
solution approaches (Zhou et al., 2019; Walcarius, 2021).
Premodification of molecular glues [e.g., organosilanes (Nasir
et al., 2018; Gong et al., 2021b) or reduced graphene oxide (rGO)
nanosheets (Yan et al., 2020b; Ma et al., 2022b)] and pretreatment

process [e.g., electro-activation (Xuan et al., 2021; Wang et al.,
2022) or plasma (Zhu et al., 2022)] can stably prepare VMSF on
the other commercial conductive electrodes (e.g., metal electrode
or carbonaceous electrode). As our group reported recently, the
introduction of rGO as an adhesive and electroactive layer onto
the electrode surface is capable of maintaining the well-oriented
nanochannel structures of VMSF and greatly improving the
sensitivity and selectivity of electrochemical sensors (Xi et al.,
2019; Yan et al., 2021). Note that rGO hybrids with functional
materials have been reported to further extend the scope of
analytes (Kogularasu et al., 2017; Muthumariappan et al.,
2017) and provide a versatile platform for VMSF-graphene-
based electrochemical sensing platform (Lin Zhou et al., 2021;
Zhou et al., 2022).

Thanks to the similar 2D planar structure to graphene, boron
nitride (BN) has received more attention and it has several
advantages of high specific surface area, good chemical and
thermal stability, and excellent catalytic activity (Weng et al.,
2016; Wang et al., 2021). Although the bulk BN is electrically
insulating, the hybrid of graphene and BN could exhibit excellent
electrochemical properties due to the smaller band gap (Qun Li
et al., 2018). In this work, we report that VMSF could be stably
grown onto the GCE by using a hybrid of BN and reduced
graphene oxide (BN-rGO) as the adhesive and electroactive layer.
BN-rGO modified GCE provides oxygen-containing groups,
hydrophobic π-conjugated structure, and relatively planar
substrate, favoring the stable growth of VMSF. And the
obtained VMSF/BN-rGO/GCE displays good electrochemical
performance to CBZ with high sensitivity and a low detection
limit, owing to the excellent electrochemical activity of BN-rGO
and enrichment effect of VMSF through strong hydrogen
bonding. Furthermore, due to the excellent anti-fouling and
anti-interference ability of VMSF, direct electrochemical
analysis of CBZ in pond water and grape juice samples was
achieved with good stability.

MATERIALS AND METHODS

Chemical and Materials
All chemicals and reagents of analytical grade were used as
received without further purification. And ultrapure water
(18.2 MΩ cm) was used to prepare all aqueous solutions
throughout this work. GO aqueous solution (1 mg/ml) was
supplied from Hangzhou Gaoxi Tech. Boron nitride (99.9%),
carbendazim (CBZ, 97%), Sodium phosphate monobasic
dihydrate (NaH2PO4.2H2O, 99%), cetyltrimethylammonium
bromide (CTAB), tetraethoxysilane (TEOS, 98%), potassium
hydrogen phthalate (KHP, 99.8%), potassium ferricyanide (K3

[Fe(CN)6], 99.5%), humic acid (HA, 90%), starch soluble (Starch,
99%), hematin porcine (Heme, 95%), albumin from bovine serum
(BSA, 96%), lauryl sodium sulfate (SDS, 98.5%) were gotten from
Aladdin. Sodium phosphate dibasic dodecahydrate
(Na2HPO4.12H2O, 99%) was obtained from Macklin. Lignin
alkali was received from Solarbio. Sodium nitrate (NaNO3)
was purchased from Wuxi Zhangwang Chemical Reagent.
Hexaammineruthenium (III) chloride (Ru(NH3)6Cl3, 98%) was
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purchased from Sigma. Potassium chloride (KCl, 99.5%), calcium
chloride (CaCl2, 95%), natrium bicarbonate (NaHCO3, 95%),
sodium chloride (NaCl, 99.5%), magnesium chloride (MgCl2,
95%), potassium dihydrogen phosphate (KH2PO4, 99%) were
obtained from Hangzhou Gaojing Fine Chemical Reagent. Pond
water was obtained from the campus of Zhejiang Sci-Tech
University. Grape juice was bought from supermarkets.

Measurements and Instrumentations
X-Photoelectron spectroscopy (XPS) data was obtained from
PHI5300 electron spectrometer (PE Ltd., United States) at 250W,
14 kV,MgK α radiation. A transmission electronmicroscopy (TEM)
image was collected from anHT7700microscope (Hitachi, Japan) at
an acceleration voltage of 100 kV. Cyclic voltammetry (CV) and
differential pulse voltammetry (DPV) tests were performed on an
Autolab (PGSTAT302N) electrochemical workstation (Metrohm,
Switzerland) at room temperature. A routine three-electrode system
was used, with Ag/AgCl (saturated with KCl) as the reference
electrode, platinum electrode as the counter electrode, bare GCE,
or modified GCE as the working electrode. The DPV arguments
were as follows: step potential, 0.005 V; pulse time, 0.05 s; pulse
amplitude, 0.05 V; interval time, 0.2 s.

Synthesis of BN-rGO Dispersion
Boron nitride nanosheets (BN) were prepared according to the
method previously reported with slight modification (Du et al.,
2013). Briefly, 0.1 g of original boron nitride powder was
dispersed into 5 ml H2SO4 (98%, w/w) and stirred for
30 min. Then, 0.1 g KMnO4 was added to the
aforementioned solution at 0°C and stirred for another 12 h.
After the addition of 0.5 ml of H2O2 (30%, w/w), the resulting
suspension was centrifuged at 3,000 rpm for 5 min to remove
the supernatant. After being washed with water and baked at
40°C for 24 h, BN was obtained.

0.0002 g BN was dispersed in 20 ml GO (0.1 mg/ml) solution
and ultrasonicated for 0.5 h. Then, 60 μL ammonia water and
6 μL hydrazine hydrate (50%, w/w) were added to the
aforementioned dispersion, followed by incubation in an
aqueous bath at 60°C for 3.5 h. The obtained mixture was
centrifuged at 3,000 rpm for 5 min, and the supernatant was
taken to obtain the BN-rGO dispersion.

Preparation of the VMSF/BN-rGO/GCE
Prior to the electrode modification, GCE (3 mm diameter) was
polished with 0.3 and 0.05 μm alumina powder, and then
ultrasonically cleaned with absolute alcohol and distilled water.
An illustration of the preparation of the VMSF/BN-rGO/GCE
electrode is displayed in Scheme 1. As seen, 5 μl BN-rGO
dispersion was primarily dropped onto a freshly cleaned GCE,
and dried at 60°C. The resulting electrode was named BN-rGO/
GCE. Then the VMSF was prepared on the BN-rGO/GCE by
using the electrochemically assisted self-assembly (EASA) as
previously reported (Xi et al., 2019). Briefly, a constant
potential (–2.2 V) was applied to the BN-rGO/GCE for 5 s.
After being aged at 80°C for 10 h, VMSF with the surfactant
micelles (SM) inside the nanochannels was grown on the BN-
rGO/GCE, termed as SM@VMSF/BN-rGO/GCE. Removal of SM
could be performed by immersing the SM@VMSF/BN-rGO/GCE
into the 0.1 M HCl-ethanol solution under moderate stirring for
5 min, to obtain VMSF/BN-rGO/GCE.

RESULTS AND DISCUSSION

Characterization of VMSF/BN-rGO/GCE
XPS was first employed to characterize the BN-rGO composite and
the results were shown in Figure 1. As revealed in Figure 1A, there
exist seven characteristic carbon 1 s XPS peaks located at 285.7,

SCHEME 1 | Illustration of the preparation of VMSF/BN-rGO/GCE electrode.
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286.0, 287.2, 287.8, 288.4, 289.2, and 290.4 eV, which are assigned to
C-C/C=C, B-C, C-O, C-O-C, C=O, π-π* bond and O-C=O bond,
respectively. Two obvious nitrogen 1 s XPS peaks were observed at
398.4 and 399.3 eV (Figure 1B), corresponding to B-N and N-O
bonds, respectively. The B-N and B-O bonds of boron 1s produce
two XPS peaks at 190.8 and 191.7 eV (Figure 1C). And two oxygen
1s XPS peaks corresponding to the B-O and C-O bonds are
displayed at 531.8 and 533.5 eV. Figure 2 depicts the FT-IR
spectra of the BN-rGO composite. It could be found that GO
has four characteristic peaks at ~1,078 cm−1 (C-O), ~1,240 cm−1

(C-O-C), and ~1,618 cm−1 (C=C), and ~1720 cm−1 (C=O). After the
chemical reduction of GO to rGO, intensities of oxygen-containing
groups remarkably decrease and an absorption peak at ~1,559 cm−1

(C=O) is observed. In comparison with BN and rGO, BN-rGO
nanocomposite possesses characteristic absorption bands of BN at
815 cm−1 (B-N), ~1,382 cm−1 (B-N-B), and that of rGO at
1,547 cm−1 (C-O), showing the successful preparation of BN-rGO
nanocomposite.

VMSF was grown onto the BN-rGO/GCE by using the EASA
method (Xi et al., 2019) and its morphology was characterized by

FIGURE 1 | High resolution XPS spectra of BN-rGO: (A) C1s, (B) N1s, (C) B1s, and (D) O1s.

FIGURE 2 | FT-IR spectra of GO, rGO, BN, and BN-rGO.
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TEM. It can be seen from the top-view TEM image that VMSF
has hexagonal and regular nanopores with a uniform pore
diameter of 2.6 nm (Figure 3A). And cross-sectional TEM
image reveals that the nanochannels of VMSF are
perpendicularly oriented and parallel to each other
(Figure 3B). The integrity and permeability of VMSF were

investigated by cyclic voltammetry (CV) using two kinds of
conventional charged electrochemical probes, namely
positively charged Ru(NH3)6

3+ and negatively charged
Fe(CN)6

3–. As shown in Figures 3C, D, no obvious redox
signals for both Ru(NH3)6

3+ and Fe(CN)6
3– are observed at

the SM@VMSF/BN-rGO/GCE, which is due to the

FIGURE 3 | Top-view (A) and cross-sectional view (B) TEM images of VMSF. The insets are corresponding magnified images. CV curves obtained from the BN-
rGO/GCE, SM@VMSF/BN-rGO/GCE and VMSF/BN-rGO/GCE electrodes in 0.05 M KHP containing 0.5 mM [Fe(CN)6]

3– (C) and [Ru(NH3)6]
3+ (D). The scan rate was

50 mV/s.

FIGURE 4 | (A) CV curves obtained from the bare GCE, rGO/GCE, BN-rGO/GCE, and VMSF/BN-rGO/GCE electrodes in 0.1 M PBS (pH 6.0) containing 1 μM
CBZ. Inset is the corresponding DPV curves. The scan rate was 50 mV/s. (B) CV curves of 1 μMCBZ in 0.1 M PBS (pH 6.0) at the VMSF/BN-rGO/GCE at different scan
rates (80–320 mV s−1). The inset is the relationship between the oxidation peak currents and scan rates.
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impermeable SM inside the nanochannels of VMSF and further
indicates the obtained VMSF onto the BN-rGO/GCE is intact.
After the extraction of SM from the nanochannels,
electrochemical signals of two charged probes are recovered to
a certain extent at the VMSF/BN-rGO/GCE. And VMSF/BN-
rGO/GCE displays apparent charge permselectivity, namely
attracting Ru(NH3)6

3+ and repelling Fe(CN)6
3–, compared to

the BN-rGO/GCE. This is because silanol groups onto the
inner walls of VMSF are deprotonated to produce a negative
charge under the experimental condition. Note that the current
magnitude of Ru(NH3)6

3+ at the VMSF/BN-rGO/GCE is

comparable to that of the BN-rGO/GCE, suggesting the high
permeability of VMSF.

Electrochemical Behavior of VMSF/
BN-rGO/GCE
In order to testify the detection performance, CV and DPV
responses of 1 μM CBZ at the bare GCE, rGO/GCE, BN-rGO/
GCE, and VMSF/BN-rGO/GCE were compared in Figure 4A. As
shown, CBZ can produce weak redox peaks at the bare GCE
electrode, corresponding to the redox reaction of CBZ (Scheme 2)

SCHEME 2 | Electrochemical reaction mechanism of CBZ.

FIGURE 5 | (A) DPV curves obtained from the VMSF/BN-rGO/GCE in response to different concentrations of CBZ (0.005, 0.01, 0.1, 0.5, 1, 2, 3, 5 and 7 μM). The
supporting electrolyte is 0.1 M PBS (pH 6.0); Inset is amplified DPV curves. (B) Calibration plot for CBZ. The error bars represent the standard deviation (SD) of three
measurements.

TABLE 1 | Comparison of the analytical performances of various analytical methods for the determination of CBZ.

Materials Method Range (μM) LOD (μM) Ref

N, P-CQDs, and Au NPs FL 0.005–1.57 0.002 Yang et al. (2018)
N-CQDs/AuNCs FL 1–100 0.83 Yang et al. (2020)

SERS 150–1,000 37.85
SAX/PSA HPLC-UV 0.26–1.57 0.015 Phansawan et al. (2015)
NPG/GCE Electrochemistry 10–70 0.24 Gao et al. (2019)
CMC-MWCNTs/GCE Electrochemistry 0.03–10 0.015 Zhou et al. (2018)
CPE/FS@Ag Electrochemistry 0.05–10 0.00094 Ozcan et al. (2021)
NP-Cu/rGO/GCE Electrochemistry 0.5–30 0.09 Tian et al. (2019)
VMSF/BN-rGO/GCE Electrochemistry 0.005–7 0.002 This work

N, P-CQDs: N, P-doped carbon quantum dots; Au NPs: FL, fluorescence; gold nanoparticles; N-CQDs: nitrogen-doped carbon quantum dots; AuNCs: gold nanocluster; SAX/PSA:
strong anion exchange/primary secondary amine; NPG: nanoporous gold; CMC: carboxymethyl cellulose; MWCNTs: multi-walled carbon nanotube; CPE: carbon paste electrode; FS:
silver nanoparticles on fumed silica; NP-Cu: nanoporous copper.
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(Cui et al., 2017). After modification of rGO on the GCE
electrode, remarkably increased current signals are observed at
the rGO/GCE, suggesting the good electrocatalytic activity of
rGO. The introduction of BN into the rGO nanosheets could
further enhance the current signals, indicating the higher
electrocatalytic activity of the BN-rGO composite. Due to the

enrichment effect of hydrogen bonds between the silanol groups
of VMSF and secondary amine groups of CBZ, peak currents
obtained at the VMSF/BN-rGO/GCE further increase. And the
magnitude of oxidation peak current at the VMSF/BN-rGO/GCE
is about 2-3-fold higher than that obtained at the rGO/GCE or
BN-rGO/GCE and 30-fold higher than that obtained at the bare

FIGURE 6 | Current ratio (I/I0) obtained from VMSF/BN-rGO/GCE and BN-rGO/GCE for the detection of 1 μM CBZ in 0.1 M PBS containing 50 μg/ml HA (A),
starch (B), lignin (C), SDS (D), BSA (E), or Heme (F). Insets are corresponding DPV curves of VMSF/BN-rGO/GCE (red line) and BN-rGO/GCE (black line) in the absence
(top) or presence (bottom) of fouling species. The error bars represent the SD of three measurements.
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GCE (inset of Figure 4A). Figure 4B shows the CV curves of
1 μM CBZ at the VMSF/BN-rGO/GCE at various scan rates. As
demonstrated, both oxidation and reduction peak currents have a
good linear relationship with scan rate in the range of
80–320 mV s−1, indicating the adsorption-controlled
electrochemical process.

Optimization of Experimental Conditions
To achieve the optimal detection performance, the influences
of pH value of supporting electrolyte and preconcentration
time on the electrochemical detection of CBZ were studied.
Supplementary Figure. S1A shows the DPV responses of the
VMSF/BN-rGO/GCE to 1 μM CBZ in 0.1 M PBS at different
pH values. With the pH increasing from 4.0 to 8.0, the
oxidation peak shifts negatively and exists a favorable linear
relationship with the pH (inset of Supplementary Figure S1A)
with the slope of −62 mV/pH. This suggests that the electron
transfer is accompanied by an equal number of protons in the
redox reaction of CBZ at the VMSF/BN-rGO/GCE according
to the Nernst equation (Ilager et al., 2021). Moreover, the
maximal oxidation peak current is obtained at the pH of 6.0,
which is used for subsequent detection of CBZ. Since
mechanical stirring could accelerate the diffusion of CBZ to
the underlying electrode surface along the nanochannels of
VMSF, the influence of stirring time on detection performance
was investigated. As displayed in Supplementary Figure S2,
the oxidation peak current of CBZ at the VMSF/BN-rGO/GCE
increases with the increasing stirring time and reaches a
plateau at 4 min. Therefore, 4 min was employed as the best
preconcentration time for the following study.

Electrochemical Determination of CBZ in
Buffer Solution
Under optimal experimental conditions, VMSF/BN-rGO/GCE
was utilized to detect CBZ with different concentrations and
the results were shown in Figure 5. As can be seen, as the CBZ
concentrations increase, the measured oxidation peak current
signals increase gradually in the range from 5 nM to 7 μM.
There is a good linear relationship between oxidation peak
currents and CBZ concentration. And the obtained linear
fitting equation was I (μA) = 3.70 C (μM)—0.0512 (R2 =
0.997), with a limit of detection (LOD) of 2 nM. Table 1
compares the analytical performances between the proposed
VMSF/BN-rGO/GCE and other reported sensors for CBZ

detection. As presented, VMSF/BN-rGO/GCE has a
relatively wide linear range and a lower LOD.

Anti-interference and Anti-fouling
Performance
Due to the intrinsic anti-interference and anti-fouling
capacities, we investigated the performance of the VMSF/
BN-rGO/GCE by comparing the oxidation peak currents of
CBZ in the absence and presence of various ions (CO3

2-, PO4
3-,

Mg2+, K+
, and Na+) and biologically related species (HA,

starch, lignin, SDS, BSA, and heme). The results shown in
Supplementary Figure S3 and Figure 6 suggest that the
presence of interferents has no obvious influence on the
CBZ detection. Moreover, the anti-fouling performance of
the VMSF/BN-rGO/GCE and BN-rGO/GCE was compared
in Figure 6. As seen, BN-rGO/GCE has a much reduced
oxidation peak current after the addition of biologically
related species into the buffer solution. By contrast, VMSF/
BN-rGO/GCE remains comparable signals for these six
interfering species, indicating the great potential of VMSF/
BN-rGO/GCE in complex samples. However, arising from the
hydrolysis of VMSF, the proposed sensor could not be used in
strong alkaline solutions for a long time.

Electrochemical Determination of CBZ in
Real Samples
We selected pond water and grape juice as actual samples to
investigate the feasibility of the sensor in practical application.
The pond water (20-fold diluted) and grape juice (50-fold
diluted) samples were only diluted by 0.1 M PBS (pH = 6.0)
prior to determination. Then a series of CBZ solutions with
known concentrations were added to the aforementioned
diluted pond water and grape juice samples. By comparing
the detected concentrations detected by VMSF/BN-rGO/GCE
with the known concentrations, good recoveries, and low RSD
values are observed at the VMSF/BN-rGO/GCE, proving that
the proposed sensor can quantitatively detect CBZ in real
samples.

CONCLUSION

In summary, we have reported a simple electrochemical method
for highly sensitive detection of CBZ using the VMSF/BN-rGO/
GCE sensor. A layered nanocomposite consisting of BN and rGO
could act as a conductive and stabilized layer for the stable growth
of VMSF by using the EASA method. Arising from the excellent
electrocatalytic performance of BN-rGO nanocomposite and the
good anti-fouling capacity, the proposed VMSF/BN-rGO/GCE
sensor can realize the direct and highly sensitive detection of CBZ
in complex sample of pond water and grape juice samples.
Integration with flexible electrodes and wireless devices will
make the present sensor more useful in environmental
monitoring and food quality control (Table 2).

TABLE 2 | Recovery of CBZ in diluted pond water and grape juice.

Sample Added (μM) Found (μM) RSD (%) Recovery (%)

Pond water 0.300 0.313 3.3 104
1.00 0.976 0.7 97.6
2.00 2.04 0.2 102

Grape juice 0.300 0.303 4.0 101
1.00 0.963 2.0 96.3
2.00 2.02 2.1 101
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