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ABSTRACT: Coronoids, polycyclic aromatic hydrocarbons with geometrically defined cavities, are promising model structures of
porous graphene. Here, we report the on-surface synthesis of C168 and C140 coronoids, referred to as [6]- and [5]coronoid,
respectively, using 5,9-dibromo-14-phenylbenzo[m]tetraphene as the precursor. These coronoids entail large cavities (>1 nm) with
inner zigzag edges, distinct from their outer armchair edges. While [6]coronoid is planar, [5]coronoid is not. Low-temperature
scanning tunneling microscopy/spectroscopy and noncontact atomic force microscopy unveil structural and electronic properties in
accordance with those obtained from density functional theory calculations. Detailed analysis of ring current effects identifies the
rings with the highest aromaticity of these coronoids, whose pattern matches their Clar structure. The pores of the obtained
coronoids offer intriguing possibilities of further functionalization toward advanced host−guest applications.

Coronoids are macrocyclic conjugated hydrocarbons
formed by circularly fused benzenoid rings, featuring a

cavity.1−3 Kekulene is a representative coronoid with a single
layer of benzene rings around the cavity, belonging to the
family of cycloarenes. The first synthesis of kekulene in 19784

provided fundamental information about the nature of
macrocyclic conjugation and aromaticity, pointing out that
kekulene is better represented by Clar’s model rather than the
so-called Kekule ́ structure. Other examples of cycloarenes are
cyclo[d,e,d,e,e,d,e,d,e,e]decakisbenzene,5 predicted to have in-
triguing electronic and magnetic properties,6−9 septulene,10

and octulene.11 In 2016, we reported a C216 coronoid,1 a
macrocyclic molecule with 216 sp2 carbon atoms distributed in
more than one layer of circularly fused benzene rings (Figure
1). The C216 coronoid can also be regarded as a nano-
graphene with a cavity arising upon removal of the central
benzene ring from a C222 nanographene (Figure 1). Detailed
characterization of C216 was compromised by its vanishing
solubility, which also limited further synthetic studies of large
coronoids. Very recently, Tan and co-workers reported a
synthesis of mesityl-substituted C108 coronoid, which formed
molecular bilayers.12

On the other hand, on-surface chemistry offers an alternative
method to synthesize nanographenes and to explore their
structure and electronic properties via state-of-the-art scanning
probe microscopy and spectroscopy.13−15 Recently, kekulene
was studied using noncontact atomic force microscopy (nc-
AFM), which corroborated its structure in accordance with
Clar’s model.16 Additionally, the on-surface synthesis of a
C108 coronoid (Figure 1) was achieved,17 which represents a
smaller homologue of the C216 coronoid. However, to date,
no other coronoids have been synthesized on surfaces.
Coronoids can also serve as models for graphene with

nanoscale cavities, namely nanoporous graphene, which,
depending on the size and structure of the pores, has intriguing

electronic and magnetic properties.18−20 Nanoporous graphene
with zigzag-edge cavities stands out21 since it is related to
nanographenes and graphene nanoribbons with zigzag
edges.22,23 However, all reported coronoids have inner and
outer armchair edges, and coronoids hosting a cavity with
zigzag edges have never been synthesized.
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Figure 1. From nanographenes to coronoids. Clar sextets are filled in
light blue. See Figure S3 for pore size determination.
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In this work, we targeted an exemplary coronoid (C168)
with outer armchair edges and a large pore (1.45 nm, C−C
distance) featuring inner zigzag edges. Conceptually, this
molecule can be obtained via removal of a kekulene from the
aforementioned C216 coronoid (Figure 1). Using 5,9-
dibromo-14-phenylbenzo[m]tetraphene (1) as a precursor,
we achieved a thermally activated on-surface synthesis of the
C168 coronoid through dehalogenative aryl−aryl coupling and
subsequent cyclodehydrogenation on Au(111) (Figure 2a).
C168 is obtained by the coupling of six molecules 1 and is
hereafter called [6]coronoid. The on-surface synthesis also led
to the formation of a coronoid consisting of five molecules 1,
namely C140 ([5]coronoid), which adopts a strain-driven
nonplanar conformation. The on-surface structural and
electronic characterization of these coronoids was performed
by scanning tunneling microscopy/spectroscopy (STM/STS)
and nc-AFM, which were supplemented by density functional
theory (DFT) calculations supporting the experimental results
and shedding light on the aromaticity of [5]- and [6]-
coronoids.
For the synthesis of [6]coronoid we have designed the U-

shaped precursor 1, having a benzo[m]tetraphene core with a
preinstalled zigzag edge as well as two bromo groups carefully
positioned to allow for the macrocyclization on surface (see
the SI for the synthesis of characterizations of 1). When 1 was
deposited onto a Au(111) surface held at 200 °C, the
homolytic cleavage of C−Br bonds readily took place, initiating
aryl−aryl coupling.24 A temperature increase to 380 °C
promoted the cyclodehydrogenation of the obtained nano-
structures.25−27 The final products of this sequence consisted
of various chainlike structures, as well as some macrocyclic
molecules (Figure S1) including highly symmetrical ones
(Figure 2b,f). The yields of [5]- and [6]coronoids could be
increased by applying high-dilution conditions,28 with the
highest yields of 30% and 6%, respectively, when the

deposition rate of 1 onto Au(111) was set at 0.23
monolayer/hour (see Figure S2 for further details). The
higher yield of [5]coronoid is most likely due to the ability of
pentameric intermediates to undergo intramolecular head-to-
tail coupling before the incorporation of the sixth building
block, prevented by the high-dilution conditions.
To assess the exact chemical structure of the observed

macrocycles, we acquired constant-height frequency-shift nc-
AFM images using a CO-functionalized tip,29 which clearly
revealed the formation of [6]- and [5]coronoid (Figure 2c,g).
[6]Coronoid is planar on the Au(111) surface and displays the
expected armchair/zigzag configurations of its outer/inner
edges, as further confirmed by the excellent agreement of the
experimental results with simulated nc-AFM images (Figure
2d) based on the DFT-optimized structural model (Figure 2e).
The size of the inner cavity is measured to be 1.40 ± 0.05 nm
(C−C distance of two opposing zigzag edges), in accordance
with the DFT-calculated value of 1.45 nm (see the SI for
details). The [5]coronoid also reveals an armchair/zigzag
configuration of outer/inner edges (Figure 2f,g), while the size
of the inner cavity is reduced to 1.10 ± 0.05 nm (diameter of
the inscribed circle through the central carbon atoms of the
zigzag edges measured from the nc-AFM data). Again, this
value agrees with the pore size of 1.09 nm estimated from the
DFT-optimized geometry of the [5]coronoid on Au(111)
(Figure 2i). For the [5]coronoid, two out of five inner edges
appear as brighter/higher features in both the STM and nc-
AFM images (Figure 2f,g). Such a nonplanar structure is in line
with a partial flattening of the more distorted gas-phase
geometry of [5]coronoid (Figure S3b) upon adsorption. For
quantification, we acquired z-dependent nc-AFM images
(Figure 2j) and recorded the frequency shift (Δf) of the
CO-functionalized tip while it approached the molecule to a
specific location (Figure 2k). This allowed us to extract a
height difference between the highest (blue) and lowest (red)

Figure 2. On-surface synthesis and characterization of [6]- and [5]coronoids. (a) Synthetic scheme. (b,f) High-resolution STM images. (c,g) nc-
AFM images acquired with a CO-functionalized tip. (d,h) Simulated nc-AFM images of the DFT-optimized structures shown in panels (e,i). (j) 3D
view of tip height (z) dependent nc-AFM images of [5]coronoid. (k) Frequency shift (Δf) vs Δz curves at different molecular sites (the colors of
the curves correspond to those of the dots and the dashed lines in panels g and j, respectively). Scanning parameters: (b) Vb = −20 mV, It = 100
pA; (c) Δz = +150 Å with respect to STM set point: Vb = −5 mV, It = 100 pA; (f) Vb = −20 mV, It = 100 pA; (g) Δz = +170 Å with respect to
STM set point: Vb = −5 mV, It = 100 pA; (j) Δz with respect to STM set point (Vb = −5 mV, It = 100 pA) is indicated for each layer.
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part of the molecule of 180 ± 10 pm, in good agreement with a
DFT-calculated value of 170 pm (determined from the
optimized geometry in Figure 2i). This height difference is
substantially smaller than the value calculated for the
[5]coronoid in the gas phase (360 pm, Figure S3b), which
reflects the effect of van der Waals interactions with the
Au(111) surface upon flattening the molecule.
To characterize the electronic properties of the [5]- and

[6]coronoids, we performed constant-height differential
conductance dI/dV measurements and constant-current dI/
dV mappings at the detected positive (PIR) and negative ion
resonances (NIR) (Figure 3a−j). Gas-phase orbital calcu-

lations (Figure 3k) show for [6]- and [5]coronoid,
respectively, 6 and 5 close-lying frontier orbitals both for
occupied and unoccupied levels. This is reflected in DFT
calculations of the molecules on Au(111), where both the
HOMO and LUMO are hybridized with the respective close-
lying molecular orbitals into singular frontier ion resonances
(see Figure S4 for details) that can be assigned to the

experimentally measured PIR and NIR signatures. Hence, the
experimental HOMO−LUMO gaps of the [6]- and [5]-
coronoids on Au(111) are 2.2 and 2.5 eV, respectively. DFT
calculations predicted the gas-phase HOMO−LUMO gaps of
the [5]- and [6]coronoid, C216 and C222, to be 2.30, 2.25,
2.15, and 1.77 eV, respectively (Figure 3k), highlighting the
trend of increasing gap with increasing pore size and
decreasing number of carbon atoms.
The [6]coronoid could potentially constitute a building

block for extended nanoporous graphene with larger cavities
than those reported so far20,30−32 and thus be of interest in the
framework of graphene antidot lattices.33 We calculated the
electronic properties of such hypothetical periodic layer via
tight binding (TB) simulations (see Figure S5 for details),
which reveal a band gap of 0.63 eV (between frontier bands
localized at each cavity rim), considerably reduced compared
to the [6]coronoid HOMO−LUMO gap (TB) of 1.51 eV.
Carbon macrocycles are known to have peculiar aromaticity

properties, leading to intriguing concepts, such as super-
aromaticity,7,34 and represent an ideal playground for studying
fundamental aspects of the π-electron clouds. To display the
aromaticity pattern of the [6]- and [5]coronoid, we performed
nucleus-independent chemical shift (NICS) calculations at 1 Å
above the center of each carbon ring (NICSzz(1), Figure 4a,d).
The results qualitatively match between similar locations of
[6]- and [5]coronoids, indicating that the nonplanarity of the

Figure 3. Differential conductance measurements and DFT
simulations of [6]- and [5]coronoids. (a,f) dI/dV spectra. (b,c,g,h)
dI/dV maps. (d,e,i,j) DFT-calculated local density of states at the
frontier PDOS peaks (see Figure S4) of the two systems on Au(111)
at the PBE level of theory. (k) Gas phase electronic characterization
of the four indicated systems at the B3LYP/6-311+G** level of
theory. The red and blue dots represent the occupied and unoccupied
states, respectively The HOMO and LUMO wave functions are
displayed. For the [5]coronoid, the LUMO is doubly quasidegenerate
and both orbitals are shown.

Figure 4. Aromaticity of [6]- and [5]coronoid. (a,d) NICSzz(1)
patterns. (b,e) HOMA analysis. (c,f) ACID analysis (isovalue 0.05 au)
and currents induced in the delocalized electrons. Red arrows show
diatropic currents. All calculations performed at the B3LYP/6-
311+G**//B3LYP/6-311G** level of theory.

Journal of the American Chemical Society pubs.acs.org/JACS Communication

https://dx.doi.org/10.1021/jacs.0c05268
J. Am. Chem. Soc. 2020, 142, 12046−12050

12048

http://pubs.acs.org/doi/suppl/10.1021/jacs.0c05268/suppl_file/ja0c05268_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.0c05268/suppl_file/ja0c05268_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.0c05268/suppl_file/ja0c05268_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.0c05268?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c05268?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c05268?fig=fig3&ref=pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.0c05268/suppl_file/ja0c05268_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.0c05268?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c05268?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c05268?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c05268?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c05268?fig=fig4&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://dx.doi.org/10.1021/jacs.0c05268?ref=pdf


latter does not significantly affect its aromaticity. Moreover, the
NICSzz(1) patterns resemble the Clar structure of these
coronoids (compare Figures 1 and 4), with each Clar sextet
showing strong aromatic character (from −22 ppm to −27
ppm), similar to benzene (−29 ppm). The hexagons
connecting the aromatic phenanthro[2,3,4,5-pqrab]perylene
substructures (at the “bridges” between the fused precursor
units) exhibit positive NICS value (16 ppm, Figure 4a,d)
reminiscent of perylene.35 In this regard, the [6]- and
[5]coronoids can be well represented by alternatingly fused
perylene and pyrene constituents (Figure S6). To shed further
light on the observed aromaticity pattern, we performed a
harmonic oscillator model of aromaticity (HOMA) analysis
(Figure 4b,e), which qualitatively matches the NICSzz(1)
patterns of [6]- and [5]coronoid. Further, we studied the
induced currents due to an applied magnetic field by analyzing
the anisotropy of the induced current density (ACID) (Figure
4c,f). The valence electrons are delocalized throughout the
[6]- and [5]coronoids. Each phenanthro[2,3,4,5-pqrab]-
perylene substructure displays a macroscopic diatropic current
on its outer edge (red arrows in Figure 4c,f). Within these
substructures, the most aromatic sextets exhibit local diatropic
currents.
In conclusion, we have achieved the successful on-surface

synthesis of large, planar [6]- and nonplanar [5]coronoids
featuring outer armchair and inner zigzag edges. Our study
provides a complete characterization of their fundamental
structural and electronic properties, revealing a HOMO−
LUMO gap of 2.2 and 2.5 eV on Au(111), respectively. Both
coronoids present similar aromaticity pattern and homoge-
neously distributed π-electron clouds, and the location of the
most aromatic sextets matches their Clar structure. The [6]-
and [5]coronoid have unprecedentedly large pores of 1.40 ±
0.05 and 1.10 ± 0.05 nm, respectively. Our synthetic strategy
opens new avenues toward coronoids with diversified outer
and inner edge structures and offers a rich playground to
investigate fundamental electronic properties of coronoids.
Further, lateral fusion of these coronoids potentially leads to
nanoporous graphene.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/jacs.0c05268.

Methods, precursor synthesis and characterizations,
additional computational details, and additional exper-
imental and theoretical results (PDF)

■ AUTHOR INFORMATION
Corresponding Authors
Marco Di Giovannantonio − Empa, Swiss Federal
Laboratories for Materials Science and Technology, nanotech@
surfaces Laboratory, 8600 Dübendorf, Switzerland;
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