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Abstract

Background: Sex-specific differences regarding the transmissibility and the course of infection are the rule rather than the
exception in the epidemiology of sexually transmitted infections (STls). Human papillomavirus (HPV) provides an example:
disease outcomes differ between men and women, as does the potential for transmission to the opposite sex. HPV
vaccination of preadolescent girls was recently introduced in many countries, and inclusion of boys in the vaccination
programs is being discussed. Here, we address the question of whether vaccinating females only, males only, or both sexes
is the most effective strategy to reduce the population prevalence of an STI like HPV.

Methods and Findings: We use a range of two-sex transmission models with varying detail to identify general criteria for
allocating a prophylactic vaccine between both sexes. The most effective reduction in the population prevalence of
infection is always achieved by single-sex vaccination; vaccinating the sex with the highest prevaccine prevalence is the
preferred strategy in most circumstances. Exceptions arise only when the higher prevaccine prevalence is due to a
substantially lower rate of natural immunity, or when natural immunity is lifelong, and a prolonged duration of
infectiousness coincides with increased transmissibility. Predictions from simple models were confirmed in simulations
based on an elaborate HPV transmission model. Our analysis suggests that relatively inefficient genital transmission from
males to females might render male vaccination more effective in reducing overall infection levels. However, most existing
HPV vaccination programs have achieved sufficient coverage to continue with female-only vaccination.

Conclusions: Increasing vaccine uptake among preadolescent girls is more effective in reducing HPV infection than
including boys in existing vaccination programs. As a rule, directing prophylactic immunization at the sex with the highest
prevaccine prevalence results in the largest reduction of the population prevalence.
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Introduction

Key issues in the allocation of limited public health resources for
the control of sexually transmitted infections (STTs) are (a) whether
interventions are as effective for males as for females; and (b)
whether directing interventions at both males and females adds to
the population-level impact of directing interventions at one sex
alone. These topics have been addressed in relation to gonorrhea
and chlamydia prevention strategies [1-3], and with respect to sex-
specific interventions against HIV [4-6]. They are also especially
relevant for the question of whether or not to include males in
human papillomavirus (HPV) vaccination programs. Vaccine-
preventable HPV imposes a significant burden on global health; it
has been associated with over 70% of cervical cancers [7], over
80% of anal cancers [8], and a smaller yet substantial proportion
of penile, vulvar, vaginal, and head and neck cancers [8-10]. HPV
vaccination programs are currently directed at females only,
because HPV-related morbidity and mortality are higher among
women than among men. The rationale for male inclusion would
be twofold: men benefit directly from immunization against HPV-
related diseases, and vaccination of boys could help to further
decrease the circulation of HPV in the population and indirectly
improve the protection of women.

In many countries, vaccination against infection with the two
most common oncogenic papillomavirus types, HPV16 and
HPV18, was recently introduced or will be introduced soon.
Among women without previous exposure to these types,
vaccination against HPV16 and HPV18 has shown high, sustained
efficacy against persistent type-specific infections and precancerous
lesions of the cervix, vulva, and vagina [11,12]. Recent data also
suggest high efficacy against vaccine-type infections and external
genital lesions in men [13]. In addition, the vaccine Gardasil
(Merck) also prevents infection with HPV6 and HPV11, types that
are associated with anogenital warts [11,14], most commonly
found in men [15]. Gardasil has been licensed for use in males up
to 26y of age, both by the United States Food and Drug
Administration and the European Medicines Agency. The vaccine
Cervarix (GlaxoSmithKline) targets only HPV types 16 and 18
and has not (yet) been licensed for use in males.

The primary target for HPV vaccination currently is girls in age
groups when HPV16/18 infection is not yet common, 1.e., before
or just after initiation of sexual activity. In the US, the Advisory
Committee on Immunization Practices has recommended HPV
vaccination for routine use in preadolescent girls and young
women since 2006, and is currently considering inclusion of males
into the vaccination program [16]. Despite limited data, HPV
vaccination for boys is already licensed in several countries, and it
is expected that other countries will consider licensure once more
data become available. But the question of whether or not HPV
vaccination should be recommended for boys depends only in part
on vaccine efficacy, since a program directed at girls already
confers health benefits for boys via a reduced transmission of HPV
[14]. In Australia, where coverage rates for ongoing vaccination of
12- to 13-y-old girls approach 80%, a modeling study estimated
that the current female-only vaccination program will achieve
73% of the maximum possible vaccine-conferred benefit to males
[17].

Two recent studies have calculated the cost-effectiveness of
extending HPV programs in the US to include boys [18,19]. The
outcomes appear very sensitive to the precise modeling assump-
tions used, but a common finding is that the cost-effectiveness of
male vaccination depends crucially on female vaccine coverage—
male vaccination being a more attractive option when immuni-
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zation rates of girls are low. This finding is in line with other
modeling studies, estimating few additional benefits from male
vaccination at 70% to 80% coverage of girls, particularly if vaccine
efficacy 1s high and the duration of vaccine protection is lifelong
[20,21]. A basic question that has not been addressed so far is
whether infection levels are more effectively reduced by stimulat-
ing vaccine uptake in girls when female coverage is low, or by
extending coverage to males. This question is highly relevant in
view of the relatively low coverage achieved so far in numerous
countries that have introduced HPV vaccination. In the US, only
44% of female adolescents 13 to 17 y of age had received =1 dose
of HPV vaccine as of 2009 [22]. Only 27% had received three
doses, required for optimal vaccine protection against incident and
persistent HPV16/18 infection [23]. In the Netherlands, the
difference between coverage of =1 dose and three doses is small,
the latter figure being 53% as of 2010 [24].

Here, we address the question of whether increasing protection
of females only, of males only, or of both males and females, is the
most effective strategy for reducing the prevalence of an STI in a
heterosexual population. In addressing this question, we allow for
differences between the sexes in the transmissibility, the course of
infection, the degree of natural immunity, or any combination
thereof. We do not consider sex-related differences in disease-
associated mortality. Throughout we restrict ourselves to prophy-
lactic interventions that are applied before girls or boys become
sexually active, which precludes the targeting of highly sexually
active individuals.

Methods

We use mathematical models of infection and transmission in
heterosexual populations. These transmission models allow us to
investigate how prophylactic vaccine is best distributed between
males and females in order to lower the population prevalence of
infection. The central idea is that immunization benefits not only
the individual but also the population at large, because vaccination
confers indirect protection to nonvaccinated individuals by
lowering transmission of vaccine-preventable disease (herd immu-
nity). This is especially important for STIs, as immunization of
individuals of a single sex offers indirect protection against
infection to members of the opposite sex. In principle, vaccinating
a substantial proportion of one sex may suffice to eliminate
infection from the entire heterosexual population [25].

To derive general rules for allocating prophylactic vaccine
between two sexes, we first use a standard model of heterosexual
transmission. The standard transmission model partitions the
population into fractions that are susceptible (), infectious (), and
resistant (R) to infection, resistance being due to natural immunity
or to vaccination. In the heterosexual transmission model, each
compartment is split in two sexes (males and females, indexed by
the suffix £). Taken together, the change in the proportion of
susceptible, infectious, and resistant individuals of either sex is
described by the following set of ordinary differential equations:

Sk =d(1—v)— 2. Sk + (1 —fi)ou Iy — dS
Iy =MeSi — oIy —dly 1)
Rk =d Vi +fk0(k1k 7de

We do not incorporate infection-induced mortality, and we
assume that the heterosexual population is in demographic
equilibrium. By taking equal birth and death rates ¢ in males
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and females, each sex constitutes half of the heterosexual
population. The parameter v, denotes the effective vaccine
coverage among individuals of sex £, i.e., the fraction vaccinated
times the probability that the vaccinee is protected against
infection by vaccine types. The parameter A; denotes the sex-
specific force of infection, which is the product of the rate ¢ at
which sexual contacts are made, the probability f; that infection is
transmitted from the opposite sex &', and the probability that a
sexual partner is infectious:

Cﬁkllk/

M=—or"T7-"——
4 S+ 1+ Ry

2)

In this standard model, sexual activity is assumed equal between the
sexes. Of importance, males and females may differ in the
transmission probability B, as well as in the rate oy at which they
recover from being infectious. Throughout, we assume that the
duration of infectiousness corresponds to the duration of infection.
The parameter f; denotes the sex-specific fraction of individuals who
become immune following infection; such immunity is assumed to
be lifelong. Note that the model is generic in the sense that
individuals may intermittently go through susceptible and infectious
stages (with =/, =0), as in susceptible-infected-susceptible (SIS)
models, or go through the susceptible, infectious, and immune
stages only once (with f;=f,, = 1), as in susceptible-infected-resistant
(SIR) models. The susceptible-infected model, without recovery
from infection (o= o1, = 0), is also a special case of this model.

To test the rules for sex-specific vaccine allocation in more
detail, we employed computer simulation of a HPV transmission
model that has been introduced in earlier studies [26,27]. Briefly,
this model stratifies the population not only by sex but also by age
and level of sexual activity. It gives a detailed description of the
sexual contact network in the Netherlands, and thus explicitly
acknowledges the considerable heterogeneity in the risk of HPV
infection. Heterogeneous sexual activity is known to impede the
elimination of STIs from an at-risk population [28,29]. Hence, this
model is more realistic than the standard transmission model. In
addition, it contains a description of the various stages through
which women may progress to cervical cancer and incorporates
the effect of population-based screening for precancerous lesions.
It is assumed that women remain infectious until naturally
occurring viral clearance or treatment for cancer or precancerous
lesions. Only a single infection stage for men is considered, as it is
assumed that male HPV infection is generally cleared within 1 y
[30].

The HPV transmission model describes the dynamics of one
particular strain of HPV, under the assumption that the
transmission dynamics of types of oncogenic HPV are indepen-
dent of one another. The model has been parameterized to match
prevaccine data on type-specific HPV infection and cervical
disease in the Netherlands [31-33]. Results of female-only, male-
only, and two-sex vaccination are illustrated for HPV16, assuming
100% vaccine efficacy among those naive to HPV16. This is close
to the value observed in clinical trials regarding HPV16-positive
precancerous lesions in the per-protocol treatment arm [11,12].
Analyses of types other than HPVI16 yield qualitatively similar
outcomes, although the overall impact of vaccination diminishes
with smaller type-specific efficacy.

Results

Sex-Specific Immunization to Eliminate Infection
Sustained transmission of an infectious disease in heterosexual
populations requires that the basic reproduction number R,
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(defined as the number of secondary infections caused by one
typical infectious individual if all contacts are with susceptible
individuals) is greater than one over two generations of
transmission—from men to women and back to men [34]. The
projected reproduction number in a partly vaccinated population,
R,, is related to the basic reproduction number R, without
vaccination as follows [35]:

R,=Ro/(1—ve)(1 =) (3)

Here, v denotes the immunization coverage among females, and
un denotes the immunization coverage among males. This
equation implies that it makes no difference whether the fraction
of susceptible males or females is diminished in order to reduce the
basic reproduction number. Indeed, the critical immunization
coverage v. needed to achieve R,<1 is the same whether only
males or only females are vaccinated:

1

o L
¢ RosRom

)
Here, Ry is the basic reproduction number for heterosexual
transmission from women to men and Ry,, is the basic
reproduction number for heterosexual transmission from men to
women. Note that reducing either sex-specific reproduction
number below one may neither be necessary nor sufficient to
achieve R,<<1. Also note that low or waning vaccine efficacy may
cause even complete coverage of a single sex to be insufficient for
elimination. We refer to others for an analysis of conditions in
which vaccination of both sexes may be needed to achieve R, <1
[35,36].

There is no combined allocation scheme for a fixed amount of
vaccine that reduces the reproduction number R, more effectively
than male-only or female-only vaccination (Figure 1A). Thus, if
the objective of control is to eliminate infection from the
heterosexual population with as few vaccine doses as possible, it
1s best to vaccinate either girls or boys but not both. Moreover, the
choice between vaccinating males or females is arbitrary if vaccine
efficacy is the same between the sexes. Sex-specific differences in
key epidemiological parameters have no bearing on the effective-
ness of viral elimination by vaccinating either sex. Yet, as long as
coverage remains below the level required for elimination, it does
matter which sex is being vaccinated in light of sex-specific
differences in the prevalence of infection.

Sex-Specific Immunization to Reduce the Population
Prevalence of Infection

If the fraction of individuals developing natural immunity is the
same among males and females (i.e., fr=f,), the steady-state
prevalence of infection prior to the introduction of vaccine is
highest in sex £ either if transmissibility is lower in this sex given
equal recovery rate o, or if recovery is slower in this sex given
equal transmission probability B (Text S1). The prevaccine
prevalence will thus be highest among women in case of a higher
male-to-female transmission probability than vice versa, or a
slower recovery of infection in women as compared to men. The
difference in prevalence between the sexes can be leveled by
vaccination only if vaccine is predominantly directed at the sex
with the highest prevaccine prevalence of infection. Such a
strategy makes sense from the perspective of prevalence reduction.
Indeed, if the objective of vaccination is to achieve the largest
reduction in population prevalence, one should start by vaccinat-
ing the sex with the highest prevalence of infection (Text S2).
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Figure 1. The differential impact of sex-specific immunization on the reproduction number and on the prevalence of a
heterosexually transmitted infection. (A) The effect of immunization coverage among females (vs) and males (v,,) on the projected reproduction
number in a partly vaccinated population R,. (B) The effect on the equilibrium prevalence of infection among men, /,,, and women, I;. Darker colors
correspond to lower values; the region where R,<1 corresponds to /,+=0, i.e., elimination of infection from the heterosexual population. In this
example, Ry=3.45 and women have both a slower recovery from infection and a lower probability of transmitting infection than men. The largest
reduction in the reproduction number is achieved by allocating all vaccine to a single sex; the choice between vaccinating males or females is
arbitrary. The largest reduction in the equilibrium prevalence of infection is achieved by allocating all vaccine to females, for any given coverage

below the threshold required for elimination.
doi:10.1371/journal.pmed.1001147.g001

Following this line of reasoning, expanding the vaccination
program to include both sexes could be considered reasonable
once the difference in prevalence between the sexes is leveled.
Note that this can be achieved at a level of immunization much
smaller than the critical coverage needed for viral elimination
(Text S1). Yet up to the point of elimination, increasing the
immunization coverage of the sex with the highest prevaccine
prevalence remains the most effective strategy for lowering
infection levels in the heterosexual population (Text S2). The
same principle applies if one adopts a global minimization
criterion, applicable to the situation wherein an allocation scheme
for a given total amount of vaccine v<<y, is desired (Text S3).
Results are unaltered if a lower recovery rate coincides with a
lower transmissibility to the opposite sex, e.g., female-only
vaccination is the preferred strategy if op<e,, together with
Br<Pm (Figure 1B).

Vaccinating the sex with the highest prevaccine prevalence of
infection may not achieve the largest reduction in population
prevalence if there is a trade-off along the lines o> together
with B;<B, i.e., when a faster recovery of infection coincides with
a lower transmissibility to the opposite sex. As algebraic analyses
become intractable in such an instance, we resorted to simulation
by drawing random values for sex-specific recovery rates and
transmission probabilities from a uniform distribution between 0
and 1. We retained #= 10,000 combinations that yielded a basic
reproduction number larger than one (conditional on a contact
rate of one partner per year and a death rate of 0.02 deaths per
year). The remaining set of parameters was split into equal-sized
subsets on the condition that the highest recovery rate and
transmission probability occurred in the same sex or not. Next, we
determined which allocation scheme minimizes the total preva-
lence of infection at a certain vaccine coverage v, taken either close

@ PLoS Medicine | www.plosmedicine.org

to the prevaccine situation or close to the critical immunization
coverage.

Interestingly, vaccinating the sex with the highest prevaccine
prevalence always yielded the largest reduction in heterosexual
infection levels in a SIS system (Table 1), but not necessarily in a
SIR system (Table 2). Whenever vaccination of the high-
prevalence sex was not the most effective strategy, reduced
recovery of infection was the cause of the higher prevaccine
prevalence. Conversely, if the higher prevaccine prevalence was
due to a reduced transmissibility to the opposite sex, vaccinating
the sex with higher prevalence was always the most effective
strategy. An intuitive explanation for this finding is that, in a SIR
system, vaccinating those who experience the highest force of
infection is more effective than vaccinating those who experience
the longest duration of infectiousness. In a SIS system, vaccinating
individuals with longer infectious periods becomes more important
because individuals may become reinfected and go through
multiple infectious periods. Another interesting finding is that
allocation rules defined on the basis of sex-specific reproduction
numbers invariably performed poorly in minimizing the popula-
tion prevalence of infection.

We evaluated the impact of a small proportion of men who have
sex with men (MSM) in the general population on the
performance of the rule of vaccinating the sex with higher
prevaccine prevalence (Text S4). Performance of this rule was
somewhat reduced by the inclusion of MSM into a SIS system, but
not in a SIR system. Performance was further reduced by an
increasing proportion of bisexual men among MSM, both in SIS
and in SIR systems. However, with 5% of the population being
MSM, of whom 80% were bisexual, the strategy of vaccinating the
high-prevalence sex still achieved minimum possible population
prevalence in over 90% of SIS systems, and over 80% of SIR
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Table 1. Success rate of two allocation strategies in minimizing the total population prevalence in a two-sex transmission model
without natural immunity.

Conditions Population to Which Vaccination Is Directed

Sex with Highest Prevalence of Sex with Highest Reproduction

Sex-Specific Parameters Vaccine Coverage Infection Number

o, B highest in the same sex v=0.05v. 100% 58.1%
v=0.95v 100% 58.1%

a, B highest in different sexes v=0.05v. 100% 58.6%
v=0.95v, 100% 58.6%

The success rate of an allocation strategy is calculated as the percentage of random parameter combinations for which this strategy achieves the largest reduction in
the total population prevalence of infection. n= 10,000 random combinations of sex-specific recovery rates o and transmission probabilities B were drawn from uniform
distributions between 0 and 1, conditional on Ry>1 with contact rate c=1 and death rate d=0.02 deaths per year. Allocation strategies were evaluated at 5% and 95%

doi:10.1371/journal.pmed.1001147.t001

systems. Largest reductions in prevalence among MSM were
observed with male-only vaccination.

At the start of this section, we made the assumption that a similar
fraction of males and females become immune following infection
(i.e., fr=fm). It appears that the strategy of vaccinating the high-
prevalence sex always remains the most effective strategy, whenever
the probability of developing natural immunity in this sex is larger
than in the other sex (Text S2). If the high-prevalence sex has a
smaller probability of developing natural immunity, vaccinating this
sex might not be the most effective strategy. In that case, the higher
prevaccine prevalence is not caused by differences in transmissibility
or recovery of infection, but by a lower degree of natural immunity.

When Should Existing Allocation Schemes Be
Reconsidered?

Suppose a single-sex vaccination program is in place, but this
program does not achieve the maximum possible reduction in the
population prevalence of infection. Would it be more effective to
increase the coverage in the existing single-sex program, or to
switch to universal vaccination? The outcome likely depends on
the immunization coverage that has already been achieved. Close
to the critical immunization coverage v, (on the verge of viral
elimination), one should continue the existing single-sex program.
But at very low immunization coverage (close to the prevaccine
situation), one should switch to a vaccination program directed
only at the other sex. Between these extremes lies some threshold
value below which switching to a two-sex vaccination strategy

with lifelong natural immunity.

of the critical immunization coverage v, required for elimination of infection from the heterosexual population.

might be considered. Numerical analyses demonstrate that this
value is well below 50% immunization coverage for almost all
possible parameter combinations (Figure 2). Note that a two-sex
vaccination strategy can only be considered a marginally attractive
option, because elimination is achieved with fewer vaccine doses if
Immunization remains directed at a single sex. Taken together,
most existing HPV vaccination programs appear to have achieved
sufficient coverage to continue with female-only vaccination, even
if vaccinating males from the onset would have brought about a
stronger reduction in the population prevalence of infection.

Application of Allocation Rules to a Detailed HPV
Transmission Model

So far, HPV wvaccination has been primarily aimed at
preadolescent girls because, in later life, they carry the highest
risk of complications from infection. Computer simulation suggests
that female vaccination also is the most effective strategy to reduce
HPV prevalence in the heterosexual population (Figure 3A). The
predicted impact of vaccination depends on the heterogeneity in
sexual activity in the at-risk population. A more heterogeneous
sexual contact network leads to a lower degree of herd immunity
and, consequently, to a lower impact of vaccination at a given
coverage (Figure 3B). In view of this heterogeneity and the
generally high transmissibility of vaccine-preventable types of
HPV, viral elimination does not appear to be a reasonable goal of
vaccination. Instead, one should aim for a maximum reduction in
the population prevalence of HPV infection.

Table 2. Success rate of two allocation strategies in minimizing the total population prevalence in a two-sex transmission model

Conditions

Population to Which Vaccination Is Directed

Sex with Highest Prevalence of Sex with Highest Reproduction

Sex-Specific Parameters Vaccine Coverage Infection Number

o, B highest in the same sex v=0.05v. 100% 58.5%
v=0.95v, 100% 58.5%

o, B highest in different sexes v=0.05v, 72.6% 45.9%
v=0.95v, 38.9% 12.1%

The success rate of an allocation strategy is calculated as the percentage of random parameter combinations for which this strategy achieves the largest reduction in
the total population prevalence of infection. n= 10,000 random combinations of sex-specific recovery rates o and transmission probabilities  were drawn from uniform
distributions between 0 and 1, conditional on Ry>1 with contact rate c=1 and death rate d=0.02 deaths per year. Allocation strategies were evaluated at 5% and 95%
of the critical immunization coverage v, required for elimination of infection from the heterosexual population.

doi:10.1371/journal.pmed.1001147.t002
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Figure 2. The immunization coverage in a girls-only vaccination program below which vaccination of boys is more effective in
reducing prevalence. (A) The threshold coverage for combinations of recovery rate o and a,,, given equal transmission probabilities 3 =0.9. (B) The
threshold coverage for combinations of transmission probability ¢ and B, given equal rates of recovery o.=0.1. Contact rate c=1 and death rate
d=0.02 deaths per year. The set of parameters for which male vaccination is an attractive option becomes increasingly restricted with higher female

immunization coverage. Vaccinating males is rarely attractive if at least 40% coverage has been achieved among females.

doi:10.1371/journal.pmed.1001147.g002

The higher impact of vaccinating girls relative to boys in this
detailed model can be understood in terms of different recovery
rates between the sexes. The model effectively assumes a
prolonged duration of infectiousness in females as compared to
males, because women more often develop a persistent infection.
In addition, we made the simplifying assumptions that males and
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females have a similar degree of natural immunity, and that the
probability of male-to-female transmission is the same as that of
female-to-male transmission. Based on the previously derived
allocation rules, female vaccination could already be expected to
yield the largest reduction in population prevalence. Reasoning
further, it can be predicted that male vaccination can only become
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Figure 3. The effectiveness of HPV vaccination depends on which sex is being vaccinated and on the heterogeneity in sexual
behavior. (A) The equilibrium prevalence of HPV16 infection in relation to immunization coverage by vaccinating girls only, boys only, or both girls
and boys at an equal rate. (B) The equilibrium prevalence of HPV16 infection in relation to female immunization coverage for various assumptions of
heterogeneity in sexual behavior. Results in (A) assume three dynamic activity classes plus an age-specific partner preference function. The default
parameters were obtained by fitting this model to prevaccine data on HPV16 infection in the Netherlands [26].
doi:10.1371/journal.pmed.1001147.g003
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the more effective strategy under conditions where male-to-female
transmissibility is lower than female-to-male transmissibility, or
where females have a smaller degree of natural immunity than
males.

Incorporating decreased male-to-female transmissibility in our
HPV transmission model (while maintaining a constant R, by
simultaneously increasing female-to-male transmissibility) lowers
the total prevaccine prevalence of infection and changes the
relative effectiveness of vaccinating girls or boys (Figure 4A). At a
0.6-fold lower probability of transmission in a partnership where
the man rather than the woman is infectious, vaccinating boys
becomes as effective as vaccinating girls in reducing the population
prevalence of HPV infection. A further reduction of male-to-
female transmissibility decreases the threshold for elimination
because of a lowered R and causes vaccination of boys to become
more effective than vaccination of girls.

Modeling a relatively smaller degree of natural immunity in
females (which is achieved by increasing the loss of infection-
induced immunity by a factor ten among women in the HPV
transmission model) raises the total prevaccine prevalence of
infection and causes vaccination of boys to become the most
effective strategy (Iigure 4B). If the rate at which infection-induced
immunity is lost among men increases, the total prevaccine
prevalence is raised even further, but vaccination of girls remains
the most effective strategy. Again, the allocation rules derived from
the standard model of heterosexual transmission are confirmed in
this detailed HPV transmission model.

Discussion

By exploring various two-sex transmission models, we demon-
strate that directing prophylactic intervention at a single sex more
effectively reduces heterosexual STI transmission than any
allocation that includes both sexes. In addition, we demonstrate
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that a strategy of protecting the sex with the highest endemic
prevalence generally achieves the largest reduction in the
population prevalence. The implication of our finding is that the
prevaccine prevalence of infection might be a good proxy to
determine which individuals should be vaccinated in order to
achieve the highest impact of vaccination at the population level.

Our results provide a justification, under most circumstances,
for the intuitively plausible strategy of targeting intervention at the
subgroups that harbor most infections and that act as a reservoir
for transmission. An alternative strategy that uses allocation rules
defined on the basis of sex-specific reproduction numbers would
also be intuitively plausible but performs poorly in minimizing the
population prevalence of infection. Our results can be viewed as a
generalization of a recently formulated argument for prioritization
of vaccination to groups with the highest product of incidence and
force of infection [37]. Although we have already identified several
exceptions (e.g., arising from different degrees of natural immunity
throughout the population), it would be logical and prudent to
further test the generality of the rule of targeting intervention at
the subgroups with the highest endemic prevalence.

The allocation that achieves the largest reduction in the
population prevalence of infection for a fixed amount of vaccine
is not necessarily the most attractive from an economic point of
view. The cost per vaccine dose delivered is subject to logistics, and
universal vaccination could sometimes be a cost-effective alterna-
tive to single-sex vaccination. For example, the variable costs of
vaccine purchase and delivery could be low compared to the total
costs of running a vaccination program. In addition, the marginal
cost of increasing vaccine uptake might depend on the coverage
already achieved and might be different between the sexes. Males
and females, or in the case of preadolescent vaccination, their
parents, likely have different perceptions of the risk from HPV
infection and different attitudes towards vaccination, although
more research is needed to reliably measure vaccine acceptability
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Figure 4. The effectiveness of male-only or female-only HPV vaccination depends on sex-specific differences in viral
transmissibility and natural immunity. (A) The equilibrium prevalence of HPV16 infection in relation to immunization coverage for different
assumptions regarding viral transmissibility. (B) The equilibrium prevalence of HPV16 infection in relation to immunization coverage for different
assumptions regarding natural immunity. Solid lines represent a strategy of vaccinating preadolescent girls, and dotted lines represent a strategy of
vaccinating preadolescent boys. Natural immunity is lost over time at a rate « (per year). Default parameters, =0.8 and k =0.04 for both sexes, were
obtained by fitting this model to prevaccine data on HPV16 infection in the Netherlands [26].

doi:10.1371/journal.pmed.1001147.g004
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[38]. Finally, differences in cost-effectiveness between sex-specific
vaccination programs are determined by the relative benefits of
preventing infections in men and women. For example, HPV
prevention programs started off offering vaccine to females
because it is on average more beneficial to prevent HPV infection
in a woman than in a man. Directing interventions at the sex most
affected by disease makes sense from an equity perspective, and
will also have the strongest impact on heterosexual transmission if
infection is more prevalent in this sex.

Our analysis adds new arguments to the ongoing debate about
whether males should also be offered HPV vaccination [39]. A
common rationale for including boys in existing vaccination
programs is that they experience not only a direct benefit, but that
vaccinating males also creates herd immunity that helps to protect
women [40]. The herd immunity argument can as well be used
against male vaccination, for men already derive a substantial
benefit from female-only vaccination [14,17]. A recent modeling
study concluded that heterosexual males would benefit almost to
the same extent as females from a girls-only HPV vaccination
program, due to herd immunity [21]. We show that, once routine
vaccination of one sex is in place, increasing the coverage in that
sex 1s much more effective in bolstering herd immunity than
switching to a policy that includes both sexes. Universal
vaccination against HPV should therefore only become an option
when vaccine uptake among girls cannot be further increased.
Adding boys to current vaccination programs seems premature,
because female coverage rates still leave ample room for
improvement in most countries that have introduced HPV
vaccination [41]. So far, only three countries have achieved a
three-dose coverage of 70% or more in females [14,22,24,42].

We have focused on a heterosexual population. Often,
bisexuality acts as a bridge for transmission between heterosexual
and homosexual subpopulations. This bridging phenomenon is
especially important for the persistence of ST1Is, such as hepatitis B
virus [43,44]. Because of bisexuality, MSM can be expected to
derive some benefit from a reduced transmission of HPV in the
general population. Our study shows that female-only vaccination
will never achieve the maximum possible reduction in HPV
prevalence among MSM, but the realized reductions could
constitute a 