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γδ T cells hold promise for adoptive immunotherapy because of their reactivity to bacte-
ria, viruses, and tumors. However, these cells represent a small fraction (1–5%) of the
peripheral T-cell pool and require activation and propagation to achieve clinical benefit.
Aminobisphosphonates specifically expand the Vγ9Vδ2 subset of γδT cells and have been
used in clinical trials of cancer where objective responses were detected. The Vγ9Vδ2 T
cell receptor (TCR) heterodimer binds multiple ligands and results in a multivalent attack
by a monoclonal T cell population. Alternatively, populations of γδ T cells with oligoclonal
or polyclonal TCR repertoire could be infused for broad-range specificity. However, this
goal has been restricted by a lack of applicable expansion protocols for non-Vγ9Vδ2 cells.
Recent advances using immobilized antigens, agonistic monoclonal antibodies (mAbs),
tumor-derived artificial antigen presenting cells (aAPC), or combinations of activating mAbs
and aAPC have been successful in expanding gamma deltaT cells with oligoclonal or poly-
clonalTCR repertoires. Immobilized major histocompatibility complex Class-I chain-related
A was a stimulus for γδT cells expressingTCRδ1 isotypes, and plate-bound activating anti-
bodies have expanded Vδ1 and Vδ2 cells ex vivo. Clinically sufficient quantities of TCRδ1,
TCRδ2, and TCRδ1negTCRδ2neg have been produced following co-culture on aAPC, and
these subsets displayed differences in memory phenotype and reactivity to tumors in vitro
and in vivo. Gamma delta T cells are also amenable to genetic modification as evidenced
by introduction of αβ TCRs, chimeric antigen receptors, and drug-resistance genes. This
represents a promising future for the clinical application of oligoclonal or polyclonal γδ T
cells in autologous and allogeneic settings that builds on current trials testing the safety
and efficacy of Vγ9Vδ2 T cells.
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INTRODUCTION
γδ T cells possess a combination of innate and adaptive immune
cell qualities rendering them attractive for immunotherapy (1–3).
They can produce inflammatory cytokines, directly lyse infected
or malignant cells, and establish a memory response to attack
pathogens upon re-exposure. γδ T cells are defined by expres-
sion of γ and δ heterodimer of T cell receptor (TCR) chains
(TCRγ/TCRδ) that directs intracellular signaling through associ-
ated CD3 complexes (4). The γδ T-cell lineage (1–5% of circulating
T cells) can be contrasted to the more prevalent αβ T cell lin-
eage (~90%) in peripheral blood, which expresses TCRα/TCRβ

Abbreviations: 2M3B1PP, 2-methyl-3-butenyl-1-pyrophosphate; AML, acute
myeloid leukemia; BrHPP, bromohydrin pyrophosphate; CLL, chronic lymphocytic
leukemia; CRC, colorectal cancer; EOC, epithelial ovarian cancer; FCL, follicle center
lymphoma; GI-cancer, cancers from the gastrointestinal tract; HIV, human immun-
odeficiency virus; HRPC, hormone-refractory prostate cancer; IC, immunocytoma;
MM, multiple myeloma; MZL, mantle zone lymphoma; N/D, not determined; NHL,
T-cell non-Hodgkin lymphoma; NSCLC, non-small-cell lung cancer; RCC, renal cell
carcinoma; TBI, total body irradiation; T-SPL, secondary plasma cell leukemia; Zol,
zoledronic acid.

heterodimers and also signals through associated CD3 complexes
(5, 6). CD4 and CD8 co-receptors on αβ T cells assist bind-
ing of TCRαβ chains to the major histocompatibility complex
(MHC) presenting processed peptides (7–9). In contrast, TCRγδ

directly binds to an antigen’s superstructure independent of the
MHC/peptide complexes and, as a result, CD4 and CD8 are
uncommon on γδ T cells (10, 11). Given that antigen recognition is
achieved outside of MHC/peptide-restriction, γδ T cells have pre-
dictable immune effector functions mediated through their TCR
and have potential use as universal (“off-the-shelf”) allogeneic
T-cell therapies (12).

Functional responses by γδ T cells can be stratified by
the variable (V) region of the TCRδ chain. In humans, the
TCRδ locus (TRD) lies within the TCRα locus (TRA). Three
unique Vδ alleles, TRDV1, TRDV2, and TRDV3, code for TCRδ1,
TCRδ2, and TCRδ3, respectively. Additionally, shared Vδ and
Vα variable regions exist in TRDV4/TRAV14, TRDV5/TRAV29,
TRDV6 /TRAV23, TRDV7 /TRAV36, and TRDV8/TRAV38-2 loci.
Recombination of these shared V alleles with a TRA junction
region (TRAJ ) results in TCRα14, TCRα29, TCRα23, TCRα36,
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and TCRα38-2, respectively, but recombination of these shared V
alleles with TRD junction (TRDJ ) and diversity (TRDD) regions
results in TCRδ4, TCRδ5, TCRδ6, TCRδ7, and TCRδ8, respectively
(13). Expression of TCRγδ heterodimers on the T-cell surface in
the thymus inhibits recombination of TCRβ-chain locus during
the CD4negCD8neg stage thereby committing the T cell to the γδ

T-cell lineage (14). This double negative status is typically main-
tained upon exit from the thymus, most likely because co-receptors
are dispensable for functional TCRγδ binding to antigens (15).
However, the thymus is not required to complete all γδ T-cell
development, as many γδ T cells directly take up residence in
peripheral tissues following exit from the bone marrow and exhibit
immediate effector functions against pathogens (16). Thymus-
independent “resident” γδ T cells can be found in the mucosa,
tongue, vagina, intestine, lung, liver, and skin and can comprise up
to 50% of the T-cell populations in intestinal epithelial lympho-
cytes (17, 18). In contrast, circulating γδ T cells can be found in
the blood and lymphoid organs, and are dominated by γδ T cells
preferentially expressing TCRδ2 isotype (commonly referred to as
Vδ2 cells). Indeed, γδ T cells expressing the TCRδ1 isotype (com-
monly referred to as Vδ1 cells) are frequently found within tissues
(19, 20). Vδ2 cells have preferred pairing with TCRγ9 (Vγ9Vδ2
cells), but broad γ-chain pairing is observed in Vδ1 cells and
Vδ1negVδ2neg cells, a generic grouping of all other non-Vδ1/Vδ2 T
cells (12, 19). Therefore, γδ T cells are distributed across an array
of anatomical locations with a range of TCRγδ variable region
expression.

Human TCRγδ ligands are MHC/peptide complex-independent
and are therefore conserved amongst unrelated individuals. Most
of the known human ligands are specific for TCRδ1 or TCRδ2.
TCRγ1/TCRδ1 (alternatively termed Vγ1Vδ1) heterodimers have
specificity for MHC Class-I chain-related A (MICA) (21, 22), a
molecule participating in evasion of immune surveillance follow-
ing viral infection and expressed on tumor cells as it is involved
in the cellular stress response (23). MICA is also one of the
ligands for NKG2D, which is expressed on γδ T cells, αβ T
cells, and natural killer (NK) cells (23, 24). Both Vγ1Vδ1 and
Vγ2Vδ1 recognize non-polymorphic MHC molecule CD1c (25),
and Vγ5Vδ1 is a receptor for α-galactosylceramide-CD1d com-
plexes commonly described in the activation of natural killer T
(NKT) cells which, like γδ T cells, have both innate and adap-
tive immune functions and recognize conserved ligands amongst
unrelated individuals (26, 27). γδ T cells can have specificity for
virus as cytomegalovirus (CMV)-reactive Vγ8Vδ1 cells have been
isolated from umbilical cord blood from infected newborns (28).
Vδ1 cells have also been associated with immunity to human
immunodeficiency virus (HIV), but the precise HIV ligands for
TCRδ1 have not been determined (29). Bacterial alkylamines and
Listeria monocytogenes are recognized by Vδ2 cells when paired
with Vγ2 (30–32). Vγ9Vδ2 cells are the most extensively studied
sub-group of human γδ T cells and their ligands include phospho-
antigens [isopentenyl pyrophosphate (IPP)], F1-ATPase expressed
on the cell surface, apolipoprotein A-I, and Mycobacterium tuber-
culosis (33–37). Moreover, Vγ9Vδ2 cells controlled and prevented
lethal Epstein–Barr virus (EBV)-transformed leukemia xenografts
in immunocompromised mice (4), and in vitro and in vivo data
suggested that Vδ1 cells are also specific for EBV (38, 39). In

contrast to Vδ1 and Vδ2 cells, very little is known about human γδ

T cells expressing other TCRγδ alleles except for indirect evidence
of Vδ3 cell’s immunity against CMV and HIV (40, 41). Given
the multivalent nature of γδ T cells, harnessing γδ T cells popu-
lations with polyclonal TCR repertoire is attractive for adoptive
immunotherapy.

γδ T-CELL CLINICAL EXPERIENCE
Immunotherapy with γδ T cells requires their activation and
expansion as they comprise only a small percentage of circu-
lating T cells. Interleukin-2 (IL-2) and activating CD3 antibody
(OKT3), commonly used for the propagation of αβ T cells directly
from peripheral blood mononuclear cells (PBMC), do not reli-
ably expand γδ T cells without further manipulation and so
alternative approaches are needed. Aminobisphosphonates, e.g.,
Zoledronic Acid (Zol), used in the treatment of bone-related dis-
eases, e.g., osteoporosis, resulted in in vivo propagation of γδ

T cells, and the use of aminobisphosphonates has been subse-
quently translated into laboratory practice to grow γδ T cells ex
vivo (Figure 1A) (42, 43). Aminobisphosphonates inhibit choles-
terol synthesis and result in the accumulation of phosphoantigen
intermediates in the mevalonate–CoA pathway, including IPP, a
ligand for Vγ9Vδ2 (44). However, only the Vγ9Vδ2 T-cell subset is
reactive to cells treated with phosphoantigens (45, 46). Synthetic
phosphoantigens, e.g., bromohydrin pyrophosphate (BrHPP) (47)
and 2-methyl-3-butenyl-1-pyrophosphate (2M3B1PP) (48), can
mimic aminobisphosphonates and stimulate Vγ9Vδ2 T cells for
proliferation.

These reagents have been transitioned to the clinic for inves-
tigational treatments of cancer and HIV (Table 1) (49, 50).
Six trials have evaluated the ability of aminobisphosphonates
or BrHPP to generate in vivo expansions of Vγ9Vδ2 T cells to
fight leukemia/lymphoma (51, 52), melanoma (52), renal cell
carcinoma (RCC) (52, 53), hormone-refractory prostate cancer
(HRPC) (54), breast cancer (55), and HIV (56). These trials
established safety of large Vγ9Vδ2 T cell expansions in vivo and
generated a total of nine objective responses (11.3%; N = 80) but
no complete responses (CR) as anti-tumor therapies. Six clinical
trials have used either Zol, BrHPP, or 2M3B1PP to expand autol-
ogous Vγ9Vδ2 T cells ex vivo and these cells were directly infused
(three trials with added IL-2 infusion and three without) for treat-
ment of RCC (57–59), non-small cell lung cancer (NSCLC) (60,
61), and colorectal cancer (CRC) (62). Direct infusion of Vγ9Vδ2
T cells was established as a safe regimen and a total of eight objec-
tive responses (11.3%; N = 71) were detected, including one CR
(1.4%; N = 71) (62). Three trials have evaluated the combination
of adoptive transfer of ex vivo expanded Vγ9Vδ2 T cells followed
by Zol administration to boost their in vivo proliferation. Mul-
tiple myeloma (63), RCC (64), and multiple metastatic tumors
(melanoma, CRC, gastrointestinal tumors, ovarian cancer, breast
cancer, cervical cancer, and bone cancer) (65) were treated with this
combination, which was established to be safe, and four objective
responses (13.8%; N = 29) were observed, two of which were CRs
(6.9%; N = 29) treating intermediate-stage RCC (64) and breast
cancer (65). Thus, adoptive transfer and in vivo expansions of
Vγ9Vδ2 T cells are safe therapeutic modalities and can result in
objective clinical responses in the treatment of cancer.
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FIGURE 1 | Methodologies for expanding γδT cells ex vivo.
(A) A generalized schematic for the use of aminobisphosphonates (Zol,
zoledronic acid) or synthetic phosphoantigens (BrHPP, bromohydrin
pyrophosphate; 2M3B1PP, 2-methyl-3-butenyl-1-pyrophosphate) and
interleukin-2 (IL-2) to expand γδ T cells from peripheral blood
mononuclear cells (PBMC). (B) Plate-bound MHC class-I chain-related
(MICA) and IL-2 were used to expand γδ T cells from colon and ovarian
tumor tissues. (C) Immobilized antibodies (Ab) were used to expand γδ T
cells from PBMC in three scenarios: (top) PBMC directly stimulated with
anti-pan-TCRγδ Ab and IL-2, (middle) PBMC depleted of CD4 and CD8 T
cells followed by two rounds of stimulus with anti-CD3 Ab (OKT3), IL-2,

and IL-4, and (bottom) PBMC were depleted of non-adherent cells,
stimulated with anti-CD2 Ab (S5.2), interferon-γ (IFNγ), and IL-12, then
stimulated with OKT3 and IL-2. (D) Schematic for the use of artificial
antigen presenting cells (aAPC) to expand γδ T cells from PBMC in two
scenarios: (top) PBMC was depleted of CD56+ NK cells then of other
non-γδ T cells (TCRγ/δ+ magnetic bead kit) so that γδ T cell were isolated
by “negative selection” and co-cultured recursively with aAPC, IL-2, and
IL-21 for 2–3 rounds of stimulation; (bottom) PBMC was depleted of
CD14+ monocytes and “positively selected” with TCRγδ magnetic beads
then co-cultured recursively with anti-TCRγδ Ab-loaded aAPC, IL-2, and
IL-21 for 2–3 rounds of stimulation.

Allogeneic γδ T cells have also been infused but were part
of heterogeneous cell populations (Table 1). Patients with acute
myelogenous leukemia (AML) and acute lymphoblastic leukemia
(ALL) were treated with αβ T cell-depleted hematopoietic stem
cell transplant (HSCT), which resulted in 100 objective responses
(65%; N = 153) with 36 durable CRs (24%; N = 153) (66–69).
These complete remissions could be directly correlated to the ele-
vated persistence of donor-derived Vδ1 cells in the peripheral
blood of the patients, suggesting that these cells were involved
in long-term clearance of leukemia. Increases in peripheral Vδ1
cells have also been correlated with CMV re-activation in patients
with leukemia following allogeneic HSCT (40, 70). Most recently,

haploidentical PBMC were depleted of CD4+ and CD8+ cells
using magnetic beads and were administered to patients with
refractory hematological malignancies followed by Zol and IL-
2 infusions (71). Three of the four patients treated experienced
short-lived CRs (2, 5, and 8 months) and the other patient
died of infection 6 weeks after treatment. Expansion of γδ T
cells was observed the week after treatment suggesting that they
may have directed the anti-tumor response. Currently, clini-
cal trials of direct infusion of activated, homogenous popu-
lations of Vδ1 cells, or other non-Vγ9Vδ2 cells have yet to
be undertaken but hold promise as future avenues of medical
intervention.
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Table 1 | Clinical responses from γδT cells.

Year Treatment Disease (N ) Total (N ) OR (%) CR (%) Reference

1996 Allogeneic HSCT depleted of αβ T cells with TBI ALL 74 43/74 (58%) 25/43 (58%) (68)

AML

CLL

2003 Pamidronate and IL-2 MM (8) 19 3/19 (16%) 0/19 (0%) (51)

FCL (4)

CLL (4)

MZL (2)

IC (1)

2007 Zol vs. Zol and IL-2 HRPC (18) 18 3/18 (17%) 0/18 (0%) (54)

2007 2M3B1PP-expanded autologous Vδ2 T cells and IL-2 RCC (7) 7 3/7 (43%) 0/7 (0%) (57)

2007 Allogeneic HSCT depleted of αβ T cells ALL (77) 153 100/153 (65%) 36/153 (24%) (66)

AML (76)

2008 BrHPP-expanded Vδ2 T cells and IL-2 RCC (10) 10 0/10 (0%) 0/10 (0%) (58)

2009 Zol and IL-2 HIV (10) 10 N/D N/D (56)

2009 Zol-expanded Vγ9Vδ2 T cells, Zol, and IL-2 MM (6) 6 0/6 (0%) 0/6 (0%) (63)

2010 Zol-expanded Vγ9Vδ2 T cells NSCLC (10) 10 0/10 (0%) 0/10 (0%) (60)

2010 Zol and IL-2 Breast cancer (10) 10 1/10 (10%) 0/10 (0%) (55)

2010 BrHPP-expanded Vδ2 T cells and IL-2 RCC (18) 28 0/28 (0%) 0/28 (0%) (59)

GI-cancer (4)

CRC (3)

Breast cancer (2)

EOC (1)

2011 Zol-expanded Vγ9Vδ2 T cells NSCLC (15) 15 0/10 (0%) 0/10 (0%) (61)

2011 BrHPP-expanded Vδ2 T cells, Zol, and IL-2 RCC (11) 11 1/11 (9%) 1/11 (9%) (64)

2011 Zol and IL-2 RCC (12) 12 0/12 (0%) 0/12 (0%) (53)

2011 Zol-expanded Vγ9Vδ2 T cells and Zol Melanoma (7) 18 3/12 (25%) 1/12 (8%) (65)

CRC (3)

GI-cancer (2)

EOC (2)

Breast cancer (2)

Cervical cancer (1)

Bone cancer (1)

2012 Zol and IL-2 RCC (7) 21 2/21 (10%) 0/21 (0%) (52)

Melanoma (6)

AML (8)

2013 Zol-expanded Vγ9Vδ2 T cells CRC (6) 6 5/6 (83%) 1/6 (17%) (62)

2014 CD4/CD8-depleted haploidentical PBMC, Zol, and IL-2 T-NHL (1) 4 3/4 (75%) 3/4 (75%) (71)

AML (1)

SPL (1)

MM (1)

A survey was taken of clinical trials that reported the use of aminobisphosphonates, synthetic phosphoantigens, direct infusion of ex vivo expanded γδ T cells,

combinations of aminobisphosphonates/synthetic phosphoantigens/ex vivo expanded γδT cells, and allogeneic transplants containing γδT cells. The year reported is

the year of publication.The total number (N) of each disease treated and overall patients treated with each regimen are reported. Overall responses (OR) and complete

responses (CR) from these reports are listed as numbers of patients responding over total patients with frequencies of response below. The OR was pooled partial

and complete responses by RECIST (when applicable and reported) or by disease-free progression (when RECIST was not applicable or reported). References to the

clinical trials are included in the far right column.
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EX VIVO PROPAGATION OF NON-Vγ9Vδ2 γδ T CELLS
Populations of γδ T cells outside of the Vγ9Vδ2 subset have been
grown with immobilized TCRγδ agonists. Plate-bound recombi-
nant MICA and IL-2 were used to sustain the proliferation of γδ

T-cell cultures ex vivo from epithelial ovarian cancer and CRC
tumor infiltrating lymphocytes (TILs) and resulted in high fre-
quencies of Vδ1 cells (Figure 1B) (72). In addition, plate-bound
pan-TCRγδ-specific antibody and IL-2 led to proliferation of both
Vδ2 and Vδ1 cells (Vδ2 >>Vδ1) from peripheral blood derived
from both healthy donors and patients with lung cancer or lym-
phoma (Figure 1C, top) (73, 74). Similarly, OKT3 has been used in
combination with IL-2 and IL-4 to stimulate CD4/CD8-depleted
T cells from healthy peripheral blood, which resulted in expan-
sion of Vδ2 and Vδ1 cells (Vδ2 >Vδ1), albeit with reduced cell
numbers compared to the TCRγδ monoclonal antibody (mAb)-
stimulated cells (Figure 1C, middle) (75). A more complex cocktail
of cytokines [IL-2, IL-12, and Interferon-γ (IFNγ)] has also been
used with OKT3 and CD2-specific antibodies to expand γδ T cells,
but the Vδ repertoires were not reported (Figure 1C, bottom) (76).
Transition of these immobilized antigens and antibodies into clini-
cal manufacture will streamline the application of these expansion
strategies for γδ T cells and could be the source of clinical trials
with non-Vγ9Vδ2 cells.

Highly polyclonal γδ T cells have been generated through co-
culture of patient or healthy donor γδ T cells with irradiated
artificial antigen presenting cells (aAPC), IL-2, and IL-21 (77–80).
The aAPC (clone#4) are derived from the chronic myelogenous
leukemia (CML) cell line K562 following genetic modification
with T-cell co-stimulatory molecules (CD86 and CD137L), Fc
receptors for antibody loading (introduced CD64 and endogenous
CD32), antigens (CD19), and cytokines (a membrane-bound IL-
15), and have been produced as a master cell bank (MCB) (81).
This MCB is currently used in the production of αβ T cells for can-
cer treatments in clinical trials at MD Anderson (NCT01653717,
NCT01619761, NCT00968760, and NCT01497184) (79, 82, 83).
γ-irradiation of aAPC prior to co-culture with T cells subjects
the aAPC to death (typically at or within 3 days) thereby reduc-
ing the risk for unintended transfer of this tumor cell line into
recipients (83). Deniger et al. demonstrated that circulating γδ

T cells, containing a polyclonal TCRγδ repertoire, could be iso-
lated from healthy donor venipuncture or umbilical cord blood
by “unlabeled/negative” magnetic bead selection and recursively
stimulated with irradiated aAPC, IL-2, and IL-21 (Figure 1D,
top). The aAPC-expanded γδ T cells proliferated to numbers suf-
ficient for clinical use while maintaining the expression of most
TRDV and TRGV alleles and demonstrating TCRδ surface expres-
sion of Vδ1 >Vδ1negVδ2neg >Vδ2 (77). These polyclonal γδ T-cell
cultures displayed broad tumor reactivity as they were able to
lyse leukemia, ovarian cancer, pancreatic cancer, and colon can-
cer cells. Separation of the polyclonal cultures by TCRδ surface
expression showed that each T-cell subset had anti-tumor reactiv-
ity and that a polyclonal γδ T-cell population led to the superior
survival of mice with established ovarian cancer xenografts. Prop-
agation of Vδ1negVδ2neg cells had not been previously achieved
and this was the first evidence of the functional activity of this
γδ T-cell sub-population. In a similar study, Fisher et al. iso-
lated polyclonal γδ T cells from PBMC of healthy donors or

patients with neuroblastoma by first depleting monocytes followed
by “positive/labeled” selection with anti-TCRγδ-hapten antibody
and anti-hapten microbeads (Figure 1D, bottom) (79). This study
made use of the Fc receptors on the aAPC surface to load anti-
TCRγδ antibody where isolated γδ T cells were co-cultured with
the antibody-loaded aAPC. These expanded γδ T cells expressed
multiple TRDV and TRGV alleles with surface TCRδ expres-
sion of Vδ2 >Vδ1 >Vδ1negVδ2neg. Using this mode of expansion,
Vδ1 and Vδ2 were mediators of antibody-independent (AIC) and
antibody-dependent cellular cytotoxicity (ADCC), respectively, to
neuroblastoma tumor cells (as predicted by whether or not they
expressed Fc receptor CD16). aAPC-expanded polyclonal γδ T
cells could be used for anti-tumor therapies because aAPC are
currently available as a clinical reagent. However, human applica-
tion of aAPC/mAb-expanded γδ T cells could depend on interest
in the use of the current MCB of aAPC, generation of new MCB
of aAPC at institutions where there are currently none, and pro-
duction of γδ T cell agonistic antibodies in good manufacturing
practice (GMP) conditions. Clinical testing of these cells could
potentially lead to more widespread acceptance and use of γδ T
cells as adoptive cellular therapies.

Given that the aAPC can sustain the proliferation of non-
Vγ9Vδ2 cells to large quantities, there is opportunity for clinical
translation, laboratory testing of subsets to elucidate their func-
tions, and correlative studies. A limiting factor in studying γδ T
cells has been the lack of TCRδ and TCRγ isotype-specific antibod-
ies outside of specificity for TCRδ1, TCRδ2, TCRγ9, and TCRδ3
(where commercially available). Mice can now be immunized to
generate mAb specific for desired TCRγδ isotypes where com-
mercial and academic use of these detection antibodies can have
tangible outcomes, including diagnostic and/or prognostic profil-
ing of γδ T cells resident within tumors. γδ T-cell clones could
be generated through co-culture of single γδ T cells with aAPC,
and this can facilitate studies to determine Vδ/Vγ pairing, corre-
sponding TCRγδ ligands, and pathogenic reactivity. The ligands
on the K562-derived aAPC that TCRγδ binds are not currently
known. Likely candidates include IPP and MICA/B for TCRδ2
and TCRδ1, respectively (22, 35). Elucidation of these interactions
could assist attempts to tailor the design of the aAPC for total
γδ T-cell expansion, propagation of a particular γδ T-cell lineage,
or polarization toward a certain γδ T-cell phenotype (84). As an
example, CD27neg and CD27+ γδ T cells are associated with IL17
and IFNγ production, respectively (85–87), leading to the conclu-
sion that expression of CD70, the CD27 ligand, on aAPC could
potentially polarize these T cells toward a desired cytokine output.
Thus, aAPC could be an excellent source for the study of fun-
damental γδ T-cell immunobiology and could yield answers not
currently accessible because of limited starting cell numbers and
ineffective polyclonal expansion protocols.

GENETIC MODIFICATION OF γδ T CELLS FOR THERAPEUTIC
USE
γδ T cells are also amenable to genetic modification allowing
for the introduction of genes to improve their therapeutic func-
tion. For instance, re-directed specificity of T cells can also be
accomplished through the introduction of recombinant TCRs
with defined antigen specificity. The conventional thought is
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that transfer of TCRα/TCRβ genes into γδ T cells or transfer
of TCRγ/TCRδ genes into αβ T cells would not cause mis-
pairing with the TCRα/TCRβ and TCRγ/TCRδ heterodimers,
thereby mitigating the risk of generating inappropriate pairings
such as TCRα/TCRδ, TCRα/TCRγ, TCRβ/TCRγ, or TCRβ/TCRδ

heterodimers with unknown specificity (88). This mis-pairing
hypothesis was modeled in mice with the ovalbumin-specific αβ

TCR OT-I, which resulted in re-directed specificity of murine
γδ T cells toward ovalbumin peptide, but whether or not the
TCRs were actually mis-paired was not reported (89). Vγ2Vδ2
cells have been expanded with 2M3B1PP and infected with γ-
retrovirus to transduce TCRαβ chains with specificity toward
MAGE-A4 peptide, but co-transduction with CD8 was required
in order to transfer significant MHC Class-I-restricted recogni-
tion of MAGE-A4 peptide-pulsed tumor cells (90, 91). Similar
studies have transferred αβ TCRs specific for CMV pp65 peptide
or minor histocompatibility antigens into γδ T cells rendering
them reactive to antigen-appropriate tumor cells (92). In con-
trast to the above reports of introducing αβ TCRs into γδ T cells,
the Vγ9Vδ2 TCR has been transferred into αβ T cells and ren-
dered both CD4+ and CD8+ T cells reactive to multiple tumor
cell lines (93). Chemotherapy (temozolomide)-resistant γδ T cells
have been generated by lentiviral transduction of (6)-alkylguanine
DNA alkyltransferase into Vγ9Vδ2 cells expanded on Zol (94).
Chimeric antigen receptors (CARs) can be introduced into T
cells and re-direct the T cell toward a specific antigen. CARs
are formed by fusing a single chain antibody to one or more
T-cell intracellular signaling domains, e.g., CD3ζ, CD28, and/or
CD137 (95). The antibody confers specificity through its vari-
able regions toward a particular antigen, e.g., CD19, GD2, HER2,
etc., and CAR binding to the antigen transmits intracellular T-cell
signals for antigen-dependent proliferation, cytokine production,
and cytolysis (96, 97). Following expansion on Zol, Vγ9Vδ2 cells
were efficiently transduced to express CD19- and GD2-specific
CARs with γ-retroviral vectors and displayed re-directed speci-
ficity toward CD19+ and GD2

+ tumor targets, respectively (98).
Zol and γ-retroviruses engineered to transduce CD19- and GD2-
specific CARs are available for human application, but have not
been combined in a clinical trial to date. Thus, subsets of γδ T cells
are amenable to viral gene transfer to improve their therapeutic
impact.

In contrast to γ-retroviruses and lentiviruses, which require
cell division for efficient transduction, non-viral Sleeping Beauty
(SB) transposition transfers genes into quiescent T cells and allows
manipulation of cells that are difficult to culture ex vivo (99–102).
SB transposase enzyme was originally derived from fish that were
undergoing active transposition in their evolutionary maturation
and was adapted for human application (103). In short, a DNA
transposon with flanking inverted repeats and direct repeats is lig-
ated into the human genome at TA dinucleotide repeats by the
SB transposase enzyme (104). TA dinucleotide repeats are widely
distributed in the human genome, yielding potential for random
integration into the genome, and have been shown to be safe in
regards to transgene insertion in pre-clinical studies (99, 101, 105).
This is of particular importance in gene therapy as inappropriate
integration at gene start sites or promoters, within exons, or even
distal to genes within enhancers or repressors may cause cellular

transformation. Lentiviruses and γ-retroviruses have higher effi-
ciency in transgene delivery than SB, but these vectors are known
to integrate near genes or within genes (97). Application of SB to
human clinical-grade T cells has been reduced to practice as a two
DNA plasmid system, where one plasmid contains the SB transpo-
son with the transgene of interest, e.g., CAR, and the other plasmid
encodes a hyperactive SB transposase (106). Electro-transfer of
the DNA plasmids by nucleofection into circulating (quiescent)
PBMC results in transient expression of SB transposase that then
ligates the transposon into the genome using a “cut-and-paste”
mechanism. As soon as the SB transposase mRNA is degraded
translation of SB transposase protein is halted, thereby negating
additional transposition events. T cells with stable CAR expression
can be encouraged through the co-culture of T cells on irradiated
aAPC that express antigen for the CAR (83). This process, orig-
inally developed for αβ T cells, has been adapted for expression
of CAR in γδ T cells (78). Resting PBMCs were electroporated
with CD19-specific CAR transposon and SB11 transposase plas-
mids and sorted the following day to deplete non-γδ T cells
with magnetic beads from the transfected mixture. Isolated γδ T
cells were recursively stimulated with CD19+ aAPC along with
IL-2 and IL-21, which resulted in the outgrowth of CAR+ γδ

T cells with a highly polyclonal TCRγδ repertoire. Endogenous
leukemia reactivity by the aAPC-expanded γδ T cells was improved
through expression of CD19-specific CAR rendering these T cells
bi-specific through CAR and TCRγδ. SB transposon and trans-
posase are available as clinical reagents; therefore, clinical trials
can test the safety and efficacy of bi-specific CAR+ γδ T cells.

CONCLUDING REMARKS
Given that γδ T cells are unlikely to cause graft-versus-host dis-
ease (GVHD) because their TCR ligands (IPP, MICA, etc.) are
not MHC-restricted, γδ T cells (with or without genetic modifi-
cation) could be generated from healthy donors in a third party
manufacturing facility and given in the allogeneic setting as an
“off-the-shelf” therapeutic. Additionally, a “universal” bank of
polyclonal γδ T cells could be established that was known to have
high anti-tumor immunity or contain a particular set frequency of
Vδ1, Vδ2, and Vδ1negVδ2neg populations to achieve superior effi-
cacy (66). This could have specialized application in cases where
T cells were difficult to manufacture, e.g., high tumor burden in
blood or after extensive systemic (lymphodepleting) chemother-
apy. Polyclonal γδ T cells could also be used as front-line therapy
before addition of HSCT, CAR+ T cells, TILs, etc. in order to prime
the tumor microenvironment for other adaptive immune cells
with broader tumor specificity or to reveal neo-tumor antigens,
including somatic non-synonymous mutations expressed only in
the tumor (107–109). If immunity is restored in the recipients then
the 3rd party γδ T-cell graft may be rejected, but there may still
be a therapeutic window before this occurs. Both pro-tumor and
anti-tumor effects of γδ T cells infiltrating the tumor microenvi-
ronment have been described (110, 111), and whether or not these
cells could be useful for therapy could be delineated following
expansion of γδ T cells from solid tumors on aAPC, which have
been shown to expand TIL (αβ T cells) from metastatic melanoma
(112). Tumor lysis by γδ T cells could lead to other resident cell
types, e.g., NK cells, macrophages, αβ T cells, etc., to have renewed
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reactivity to the malignancy (113). Indeed, B-ALL cell lines coated
with mAb were lysed by CD16+ Vγ9Vδ2 cells via ADCC, and
subsequently the Vγ9Vδ2 had antigen presenting cell function to
generate antigen-specific CD8+ αβ T cell responses to known B-
ALL peptides, e.g., PAX5 (114, 115). Unknown is whether γδ T
cells will be subjected to inhibition by regulatory T cells or other
immunosuppressive forces. Some γδ T cells have been reported
to have immunosuppressive function, and it would be of interest
to identify these cells and eliminate them from the adoptive T-
cell product prior to infusion (116). In summary, administration
of graded doses of autologous and allogeneic, even 3rd party, γδ

T cells in humans have tested and will continue to evaluate the
ability of these lymphocytes to home and recycle effector func-
tion in the tumor microenvironment. Given the development of
aminobisphosphonates, synthetic phosphoantigens, immobilized
antigens, antibodies, and designer clinical-grade aAPC, it now
appears practical to sculpt and expand γδ T cells to achieve a
therapeutic effect.

AUTHOR CONTRIBUTIONS
Drew C. Deniger, Judy S. Moyes, and Laurence J. N. Cooper wrote
the manuscript.

ACKNOWLEDGMENTS
Funding for this work was provided by Cancer Center Core Grant
(CA16672); RO1 (CA124782, CA120956, CA141303; CA141303);
P01 (CA148600); SPORE (CA83639); Albert J. Ward Foundation;
Alex Lemonade Stand Foundation; American Legion Auxiliary,
Burroughs Wellcome Fund; Cancer Answers; Cancer Prevention
and Research Institute of Texas; Charles B. Goddard Founda-
tion of Texas; CLL Global Research Foundation; DARPA (Defense
Sciences Office); Department of Defense; Estate of Noelan L.
Bibler; Gillson Longenbaugh Foundation; Harry T. Mangurian,
Jr., Fund for Leukemia Immunotherapy; Khalifa Bin Zayed Al
Nahyan Foundation; Leukemia and Lymphoma Society; Lym-
phoma Research Foundation; Miller Foundation; Moon Shot pro-
gram at MDACC, Mr. Herb Simons; Mr. and Mrs. Joe H. Scales;
Mr. Thomas Scott; National Foundation for Cancer Research;
Pediatric Cancer Research Foundation; Sheikh Khalifa Bin Zayed
Al Nahyan Institute for Personalized Cancer Therapy; R. W.
Butcher Foundation, University of Texas MD Anderson Cancer
Center Sister Institution Network Fund and Moon Shot Fund;
William Lawrence and Blanche Hughes Children’s Foundation.

REFERENCES
1. Vantourout P, Hayday A. Six-of-the-best: unique contributions of gammadelta

T cells to immunology. Nat Rev Immunol (2013) 13(2):88–100. doi:10.1038/
nri3384

2. Kabelitz D. Gammadelta T-cells: cross-talk between innate and adaptive immu-
nity. Cell Mol Life Sci (2011) 68(14):2331–3. doi:10.1007/s00018-011-0696-4

3. Hannani D, Ma Y, Yamazaki T, Dechanet-Merville J, Kroemer G, Zitvogel L.
Harnessing gammadelta T cells in anticancer immunotherapy. Trends Immunol
(2012) 33(5):199–206. doi:10.1016/j.it.2012.01.006

4. Xiang Z, Liu Y, Zheng J, Liu M, Lv A, Gao Y, et al. Targeted activation of human
Vγ9Vδ2-T cells controls Epstein-Barr virus-induced B Cell lymphoprolifera-
tive disease. Cancer Cell (2014) 26(4):565–76. doi:10.1016/j.ccr.2014.07.026

5. Smith-Garvin JE,Koretzky GA,Jordan MS. T cell activation. Annu Rev Immunol
(2009) 27:591–619. doi:10.1146/annurev.immunol.021908.132706

6. Kalyan S, Kabelitz D. Defining the nature of human gammadelta T cells: a bio-
graphical sketch of the highly empathetic. Cell Mol Immunol (2013) 10(1):21–9.
doi:10.1038/cmi.2012.44

7. Koretzky GA. Multiple roles of CD4 and CD8 in T cell activation. J Immunol
(2010) 185(5):2643–4. doi:10.4049/jimmunol.1090076

8. Van Laethem F, Tikhonova AN, Singer A. MHC restriction is imposed on a
diverse T cell receptor repertoire by CD4 and CD8 co-receptors during thymic
selection. Trends Immunol (2012) 33(9):437–41. doi:10.1016/j.it.2012.05.006

9. Germain RN. T-cell development and the CD4-CD8 lineage decision. Nat Rev
Immunol (2002) 2(5):309–22. doi:10.1038/nri798

10. Sato K, Ohtsuka K,Watanabe H,Asakura H,Abo T. Detailed characterization of
gamma delta T cells within the organs in mice: classification into three groups.
Immunology (1993) 80(3):380–7.

11. Kabelitz D, Kalyan S, Oberg HH, Wesch D. Human Vdelta2 versus non-
Vdelta2 gammadelta T cells in antitumor immunity. Oncoimmunology (2013)
2(3):e23304. doi:10.4161/onci.23304

12. Kabelitz D, Wesch D, He W. Perspectives of gammadelta T cells in tumor
immunology. Cancer Res (2007) 67(1):5–8. doi:10.1158/0008-5472.CAN-06-
3069

13. Lefranc MP. Nomenclature of the human T cell receptor genes. Curr
Protoc Immunol (2001) Appendix 1:Appendix 1O. doi:10.1002/0471142735.
ima01os40

14. Xiong N, Raulet DH. Development and selection of gammadelta T cells.
Immunol Rev (2007) 215:15–31. doi:10.1111/j.1600-065X.2006.00478.x

15. Hayday AC. Gammadelta T cells and the lymphoid stress-surveillance response.
Immunity (2009) 31(2):184–96. doi:10.1016/j.immuni.2009.08.006

16. Hao J, Wu X, Xia S, Li Z, Wen T, Zhao N, et al. Current progress in gammadelta
T-cell biology. Cell Mol Immunol (2010) 7(6):409–13. doi:10.1038/cmi.2010.50

17. Ishikawa H, Naito T, Iwanaga T, Takahashi-Iwanaga H, Suematsu M, Hibi
T, et al. Curriculum vitae of intestinal intraepithelial T cells: their devel-
opmental and behavioral characteristics. Immunol Rev (2007) 215:154–65.
doi:10.1111/j.1600-065X.2006.00473.x

18. Carding SR, Egan PJ. Gammadelta T cells: functional plasticity and hetero-
geneity. Nat Rev Immunol (2002) 2(5):336–45. doi:10.1038/nri797

19. Bonneville M, O’Brien RL, Born WK. Gammadelta T cell effector functions: a
blend of innate programming and acquired plasticity. Nat Rev Immunol (2010)
10(7):467–78. doi:10.1038/nri2781

20. Chodaczek G, Papanna V, Zal MA, Zal T. Body-barrier surveillance by epi-
dermal gammadelta TCRs. Nat Immunol (2012) 13(3):272–82. doi:10.1038/ni.
2240

21. Xu B, Pizarro JC, Holmes MA, McBeth C, Groh V, Spies T, et al. Crys-
tal structure of a gammadelta T-cell receptor specific for the human MHC
class I homolog MICA. Proc Natl Acad Sci U S A (2011) 108(6):2414–9.
doi:10.1073/pnas.1015433108

22. Li J, Cui L, He W. Distinct pattern of human Vdelta1 gammadelta T cells rec-
ognizing MICA. Cell Mol Immunol (2005) 2(4):253–8.

23. Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, et al. Activation of
NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science
(1999) 285(5428):727–9. doi:10.1126/science.285.5428.727

24. Wrobel P, Shojaei H, Schittek B, Gieseler F, Wollenberg B, Kalthoff H, et al.
Lysis of a broad range of epithelial tumour cells by human gamma delta T cells:
involvement of NKG2D ligands and T-cell receptor- versus NKG2D-dependent
recognition. Scand J Immunol (2007) 66(2–3):320–8. doi:10.1111/j.1365-3083.
2007.01963.x

25. Spada FM, Grant EP, Peters PJ, Sugita M, Melian A, Leslie DS, et al. Self-
recognition of CD1 by gamma/delta T cells: implications for innate immunity.
J Exp Med (2000) 191(6):937–48. doi:10.1084/jem.191.6.937

26. Uldrich AP, Le Nours J, Pellicci DG, Gherardin NA, McPherson KG, Lim RT,
et al. CD1d-lipid antigen recognition by the gammadelta TCR. Nat Immunol
(2013) 14(11):1137–45. doi:10.1038/ni.2713

27. Paget C, Chow MT, Duret H, Mattarollo SR, Smyth MJ. Role of gammadelta
T cells in alpha-galactosylceramide-mediated immunity. J Immunol (2012)
188(8):3928–39. doi:10.4049/jimmunol.1103582

28. Vermijlen D, Brouwer M, Donner C, Liesnard C, Tackoen M, Van Rysselberge
M, et al. Human cytomegalovirus elicits fetal gammadelta T cell responses
in utero. J Exp Med (2010) 207(4):807–21. doi:10.1084/jem.20090348

29. Wesch D, Hinz T, Kabelitz D. Analysis of the TCR Vgamma repertoire in healthy
donors and HIV-1-infected individuals. Int Immunol (1998) 10(8):1067–75.

www.frontiersin.org December 2014 | Volume 5 | Article 636 | 7

http://dx.doi.org/10.1038/nri3384
http://dx.doi.org/10.1038/nri3384
http://dx.doi.org/10.1007/s00018-011-0696-4
http://dx.doi.org/10.1016/j.it.2012.01.006
http://dx.doi.org/10.1016/j.ccr.2014.07.026
http://dx.doi.org/10.1146/annurev.immunol.021908.132706
http://dx.doi.org/10.1038/cmi.2012.44
http://dx.doi.org/10.4049/jimmunol.1090076
http://dx.doi.org/10.1016/j.it.2012.05.006
http://dx.doi.org/10.1038/nri798
http://dx.doi.org/10.4161/onci.23304
http://dx.doi.org/10.1158/0008-5472.CAN-06-3069
http://dx.doi.org/10.1158/0008-5472.CAN-06-3069
http://dx.doi.org/10.1002/0471142735.ima01os40
http://dx.doi.org/10.1002/0471142735.ima01os40
http://dx.doi.org/10.1111/j.1600-065X.2006.00478.x
http://dx.doi.org/10.1016/j.immuni.2009.08.006
http://dx.doi.org/10.1038/cmi.2010.50
http://dx.doi.org/10.1111/j.1600-065X.2006.00473.x
http://dx.doi.org/10.1038/nri797
http://dx.doi.org/10.1038/nri2781
http://dx.doi.org/10.1038/ni.2240
http://dx.doi.org/10.1038/ni.2240
http://dx.doi.org/10.1073/pnas.1015433108
http://dx.doi.org/10.1126/science.285.5428.727
http://dx.doi.org/10.1111/j.1365-3083.2007.01963.x
http://dx.doi.org/10.1111/j.1365-3083.2007.01963.x
http://dx.doi.org/10.1084/jem.191.6.937
http://dx.doi.org/10.1038/ni.2713
http://dx.doi.org/10.4049/jimmunol.1103582
http://dx.doi.org/10.1084/jem.20090348
http://www.frontiersin.org
http://www.frontiersin.org/T_Cell_Biology/archive


Deniger et al. Multivalent γδ T-cell therapies

doi:10.1093/intimm/10.8.1067
30. Bukowski JF, Morita CT, Brenner MB. Human gamma delta T cells recognize

alkylamines derived from microbes, edible plants, and tea: implications for
innate immunity. Immunity (1999) 11(1):57–65. doi:10.1016/S1074-7613(00)
80081-3

31. Wang L, Kamath A, Das H, Li L, Bukowski JF. Antibacterial effect of human
V gamma 2V delta 2 T cells in vivo. J Clin Invest (2001) 108(9):1349–57.
doi:10.1172/JCI13584

32. Munk ME, Elser C, Kaufmann SH. Human gamma/delta T-cell response
to Listeria monocytogenes protein components in vitro. Immunology (1996)
87(2):230–5. doi:10.1046/j.1365-2567.1996.470549.x

33. Green AE,Lissina A,Hutchinson SL,Hewitt RE,Temple B, James D,et al. Recog-
nition of nonpeptide antigens by human V gamma 9V delta 2 T cells requires
contact with cells of human origin. Clin Exp Immunol (2004) 136(3):472–82.
doi:10.1111/j.1365-2249.2004.02472.x

34. Mookerjee-Basu J, Vantourout P, Martinez LO, Perret B, Collet X, Perigaud
C, et al. F1-adenosine triphosphatase displays properties characteristic of an
antigen presentation molecule for Vgamma9Vdelta2 T cells. J Immunol (2010)
184(12):6920–8. doi:10.4049/jimmunol.0904024

35. Vantourout P, Mookerjee-Basu J, Rolland C, Pont F, Martin H, Davrinche
C, et al. Specific requirements for Vgamma9Vdelta2 T cell stimulation by
a natural adenylated phosphoantigen. J Immunol (2009) 183(6):3848–57.
doi:10.4049/jimmunol.0901085

36. Scotet E, Martinez LO, Grant E, Barbaras R, Jeno P, Guiraud M, et al. Tumor
recognition following Vgamma9Vdelta2 T cell receptor interactions with a
surface F1-ATPase-related structure and apolipoprotein A-I. Immunity (2005)
22(1):71–80. doi:10.1016/j.immuni.2004.11.012

37. Constant P, Davodeau F, Peyrat MA, Poquet Y, Puzo G, Bonneville M, et al.
Stimulation of human gamma delta T cells by nonpeptidic mycobacterial lig-
ands. Science (1994) 264(5156):267–70. doi:10.1126/science.8146660

38. Farnault L, Gertner-Dardenne J, Gondois-Rey F, Michel G, Chambost H,
Hirsch I, et al. Clinical evidence implicating gamma-delta T cells in EBV con-
trol following cord blood transplantation. Bone Marrow Transplant (2013)
48(11):1478–9. doi:10.1038/bmt.2013.75

39. Hacker G, Kromer S, Falk M, Heeg K, Wagner H, Pfeffer K. V delta 1+ subset
of human gamma delta T cells responds to ligands expressed by EBV-infected
Burkitt lymphoma cells and transformed B lymphocytes. J Immunol (1992)
149(12):3984–9.

40. Knight A, Madrigal AJ, Grace S, Sivakumaran J, Kottaridis P, Mackinnon S,
et al. The role of Vdelta2-negative gammadelta T cells during cytomegalovirus
reactivation in recipients of allogeneic stem cell transplantation. Blood (2010)
116(12):2164–72. doi:10.1182/blood-2010-01-255166

41. Kabelitz D, Hinz T, Dobmeyer T, Mentzel U, Marx S, Bohme A, et al.
Clonal expansion of Vgamma3/Vdelta3-expressing gammadelta T cells in an
HIV-1/2-negative patient with CD4 T-cell deficiency. Br J Haematol (1997)
96(2):266–71. doi:10.1046/j.1365-2141.1997.d01-2027.x

42. Thompson K, Roelofs AJ, Jauhiainen M, Monkkonen H, Monkkonen J, Rogers
MJ. Activation of gammadelta T cells by bisphosphonates. Adv Exp Med Biol
(2010) 658:11–20. doi:10.1007/978-1-4419-1050-9_2

43. Nagamine I, Yamaguchi Y, Ohara M, Ikeda T, Okada M. Induction of gamma
delta T cells using zoledronate plus interleukin-2 in patients with metastatic
cancer. Hiroshima J Med Sci (2009) 58(1):37–44.

44. Chiplunkar S, Dhar S, Wesch D, Kabelitz D. gammadelta T cells in cancer
immunotherapy: current status and future prospects. Immunotherapy (2009)
1(4):663–78. doi:10.2217/imt.09.27

45. D’Asaro M, La Mendola C, Di Liberto D, Orlando V, Todaro M, Spina
M, et al. V gamma 9V delta 2 T lymphocytes efficiently recognize and
kill zoledronate-sensitized, imatinib-sensitive, and imatinib-resistant chronic
myelogenous leukemia cells. J Immunol (2010) 184(6):3260–8. doi:10.4049/
jimmunol.0903454

46. Thedrez A, Harly C, Morice A, Salot S, Bonneville M, Scotet E. IL-21-mediated
potentiation of antitumor cytolytic and proinflammatory responses of human
V gamma 9V delta 2 T cells for adoptive immunotherapy. J Immunol (2009)
182(6):3423–31. doi:10.4049/jimmunol.0803068

47. Chargui J, Combaret V, Scaglione V, Iacono I, Peri V, Valteau-Couanet D, et al.
Bromohydrin pyrophosphate-stimulated Vgamma9delta2 T cells expanded
ex vivo from patients with poor-prognosis neuroblastoma lyse autologous
primary tumor cells. J Immunother (2010) 33(6):591–8. doi:10.1097/CJI.

0b013e3181dda207
48. Espinosa E, Belmant C, Pont F, Luciani B, Poupot R, Romagne F, et al. Chemical

synthesis and biological activity of bromohydrin pyrophosphate, a potent stim-
ulator of human gamma delta T cells. J Biol Chem (2001) 276(21):18337–44.
doi:10.1074/jbc.M100495200

49. Fisher JP,Heuijerjans J,Yan M,Gustafsson K,Anderson J. gammadelta T cells for
cancer immunotherapy: a systematic review of clinical trials. Oncoimmunology
(2014) 3(1):e27572. doi:10.4161/onci.27572

50. Gomes AQ, Martins DS, Silva-Santos B. Targeting gammadelta T lymphocytes
for cancer immunotherapy: from novel mechanistic insight to clinical appli-
cation. Cancer Res (2010) 70(24):10024–7. doi:10.1158/0008-5472.CAN-10-
3236

51. Wilhelm M, Kunzmann V, Eckstein S, Reimer P, Weissinger F, Ruediger T, et al.
Gammadelta T cells for immune therapy of patients with lymphoid malignan-
cies. Blood (2003) 102(1):200–6. doi:10.1182/blood-2002-12-3665

52. Kunzmann V, Smetak M, Kimmel B, Weigang-Koehler K, Goebeler M, Birk-
mann J, et al. Tumor-promoting versus tumor-antagonizing roles of gam-
madelta T cells in cancer immunotherapy: results from a prospective phase I/II
trial. J Immunother (2012) 35(2):205–13. doi:10.1097/CJI.0b013e318245bb1e

53. Lang JM, Kaikobad MR, Wallace M, Staab MJ, Horvath DL, Wilding G, et al.
Pilot trial of interleukin-2 and zoledronic acid to augment gammadelta T cells
as treatment for patients with refractory renal cell carcinoma. Cancer Immunol
Immunother (2011) 60(10):1447–60. doi:10.1007/s00262-011-1049-8

54. Dieli F, Vermijlen D, Fulfaro F, Caccamo N, Meraviglia S, Cicero G, et al. Tar-
geting human {gamma}delta} T cells with zoledronate and interleukin-2 for
immunotherapy of hormone-refractory prostate cancer. Cancer Res (2007)
67(15):7450–7. doi:10.1158/0008-5472.CAN-07-0199

55. Meraviglia S, Eberl M, Vermijlen D, Todaro M, Buccheri S, Cicero G, et al.
In vivo manipulation of Vgamma9Vdelta2 T cells with zoledronate and low-
dose interleukin-2 for immunotherapy of advanced breast cancer patients. Clin
Exp Immunol (2010) 161(2):290–7. doi:10.1111/j.1365-2249.2010.04167.x

56. Poccia F, Gioia C, Martini F, Sacchi A, Piacentini P, Tempestilli M, et al. Zole-
dronic acid and interleukin-2 treatment improves immunocompetence in
HIV-infected persons by activating Vgamma9Vdelta2 T cells. AIDS (2009)
23(5):555–65. doi:10.1097/QAD.0b013e3283244619

57. Kobayashi H, Tanaka Y, Yagi J, Osaka Y, Nakazawa H, Uchiyama T, et al. Safety
profile and anti-tumor effects of adoptive immunotherapy using gamma-delta
T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol
Immunother (2007) 56(4):469–76. doi:10.1007/s00262-006-0199-6

58. Bennouna J, Bompas E, Neidhardt EM, Rolland F, Philip I, Galea C, et al.
Phase-I study of Innacell gammadelta, an autologous cell-therapy product
highly enriched in gamma9delta2 T lymphocytes, in combination with IL-2,
in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother
(2008) 57(11):1599–609. doi:10.1007/s00262-008-0491-8

59. Bennouna J, Levy V, Sicard H, Senellart H, Audrain M, Hiret S, et al. Phase I
study of bromohydrin pyrophosphate (BrHPP, IPH 1101), a Vgamma9Vdelta2
T lymphocyte agonist in patients with solid tumors. Cancer Immunol
Immunother (2010) 59(10):1521–30. doi:10.1007/s00262-010-0879-0

60. Nakajima J, Murakawa T, Fukami T, Goto S, Kaneko T, Yoshida Y, et al. A phase
I study of adoptive immunotherapy for recurrent non-small-cell lung cancer
patients with autologous gammadelta T cells. Eur J Cardiothorac Surg (2010)
37(5):1191–7. doi:10.1016/j.ejcts.2009.11.051

61. Sakamoto M, Nakajima J, Murakawa T, Fukami T, Yoshida Y, Murayama T,
et al. Adoptive immunotherapy for advanced non-small cell lung cancer using
zoledronate-expanded gammadeltaTcells: a phase I clinical study. J Immunother
(2011) 34(2):202–11. doi:10.1097/CJI.0b013e318207ecfb

62. Izumi T, Kondo M, Takahashi T, Fujieda N, Kondo A, Tamura N, et al. Ex
vivo characterization of gammadelta T-cell repertoire in patients after adop-
tive transfer of Vgamma9Vdelta2 T cells expressing the interleukin-2 receptor
beta-chain and the common gamma-chain. Cytotherapy (2013) 15(4):481–91.
doi:10.1016/j.jcyt.2012.12.004

63. Abe Y, Muto M, Nieda M, Nakagawa Y, Nicol A, Kaneko T, et al. Clinical and
immunological evaluation of zoledronate-activated Vgamma9gammadelta T-
cell-based immunotherapy for patients with multiple myeloma. Exp Hematol
(2009) 37(8):956–68. doi:10.1016/j.exphem.2009.04.008

64. Kobayashi H, Tanaka Y, Yagi J, Minato N, Tanabe K. Phase I/II study of adoptive
transfer of gammadelta T cells in combination with zoledronic acid and IL-2
to patients with advanced renal cell carcinoma. Cancer Immunol Immunother

Frontiers in Immunology | T Cell Biology December 2014 | Volume 5 | Article 636 | 8

http://dx.doi.org/10.1093/intimm/10.8.1067
http://dx.doi.org/10.1016/S1074-7613(00)80081-3
http://dx.doi.org/10.1016/S1074-7613(00)80081-3
http://dx.doi.org/10.1172/JCI13584
http://dx.doi.org/10.1046/j.1365-2567.1996.470549.x
http://dx.doi.org/10.1111/j.1365-2249.2004.02472.x
http://dx.doi.org/10.4049/jimmunol.0904024
http://dx.doi.org/10.4049/jimmunol.0901085
http://dx.doi.org/10.1016/j.immuni.2004.11.012
http://dx.doi.org/10.1126/science.8146660
http://dx.doi.org/10.1038/bmt.2013.75
http://dx.doi.org/10.1182/blood-2010-01-255166
http://dx.doi.org/10.1046/j.1365-2141.1997.d01-2027.x
http://dx.doi.org/10.1007/978-1-4419-1050-9_2
http://dx.doi.org/10.2217/imt.09.27
http://dx.doi.org/10.4049/jimmunol.0903454
http://dx.doi.org/10.4049/jimmunol.0903454
http://dx.doi.org/10.4049/jimmunol.0803068
http://dx.doi.org/10.1097/CJI.0b013e3181dda207
http://dx.doi.org/10.1097/CJI.0b013e3181dda207
http://dx.doi.org/10.1074/jbc.M100495200
http://dx.doi.org/10.4161/onci.27572
http://dx.doi.org/10.1158/0008-5472.CAN-10-3236
http://dx.doi.org/10.1158/0008-5472.CAN-10-3236
http://dx.doi.org/10.1182/blood-2002-12-3665
http://dx.doi.org/10.1097/CJI.0b013e318245bb1e
http://dx.doi.org/10.1007/s00262-011-1049-8
http://dx.doi.org/10.1158/0008-5472.CAN-07-0199
http://dx.doi.org/10.1111/j.1365-2249.2010.04167.x
http://dx.doi.org/10.1097/QAD.0b013e3283244619
http://dx.doi.org/10.1007/s00262-006-0199-6
http://dx.doi.org/10.1007/s00262-008-0491-8
http://dx.doi.org/10.1007/s00262-010-0879-0
http://dx.doi.org/10.1016/j.ejcts.2009.11.051
http://dx.doi.org/10.1097/CJI.0b013e318207ecfb
http://dx.doi.org/10.1016/j.jcyt.2012.12.004
http://dx.doi.org/10.1016/j.exphem.2009.04.008
http://www.frontiersin.org/T_Cell_Biology
http://www.frontiersin.org/T_Cell_Biology/archive


Deniger et al. Multivalent γδ T-cell therapies

(2011) 60(8):1075–84. doi:10.1007/s00262-011-1021-7
65. Nicol AJ, Tokuyama H, Mattarollo SR, Hagi T, Suzuki K, Yokokawa K, et al.

Clinical evaluation of autologous gamma delta T cell-based immunotherapy
for metastatic solid tumours. Br J Cancer (2011) 105(6):778–86. doi:10.1038/
bjc.2011.293

66. Godder KT, Henslee-Downey PJ, Mehta J, Park BS, Chiang KY, Abhyankar S,
et al. Long term disease-free survival in acute leukemia patients recovering
with increased gammadelta T cells after partially mismatched related donor
bone marrow transplantation. Bone Marrow Transplant (2007) 39(12):751–7.
doi:10.1038/sj.bmt.1705650

67. Lamb LS Jr, Gee AP, Hazlett LJ, Musk P, Parrish RS, O’Hanlon TP, et al. Influ-
ence of T cell depletion method on circulating gammadelta T cell reconstitu-
tion and potential role in the graft-versus-leukemia effect. Cytotherapy (1999)
1(1):7–19. doi:10.1080/0032472031000141295

68. Lamb LS Jr, Henslee-Downey PJ, Parrish RS, Godder K, Thompson J, Lee
C, et al. Increased frequency of TCR gamma delta + T cells in disease-
free survivors following T cell-depleted, partially mismatched, related donor
bone marrow transplantation for leukemia. J Hematother (1996) 5(5):503–9.
doi:10.1089/scd.1.1996.5.503

69. Lamb LS Jr, Musk P, Ye Z, van Rhee F, Geier SS, Tong JJ, et al. Human gam-
madelta(+) T lymphocytes have in vitro graft vs leukemia activity in the absence
of an allogeneic response. Bone Marrow Transplant (2001) 27(6):601–6.
doi:10.1038/sj.bmt.1702830

70. Scheper W, van Dorp S, Kersting S, Pietersma F, Lindemans C, Hol S,
et al. gammadeltaT cells elicited by CMV reactivation after allo-SCT cross-
recognize CMV and leukemia. Leukemia (2013) 27(6):1328–38. doi:10.1038/
leu.2012.374

71. Wilhelm M, Smetak M, Schaefer-Eckart K, Kimmel B, Birkmann J, Einsele
H, et al. Successful adoptive transfer and in vivo expansion of haploidentical
gammadelta T cells. J Transl Med (2014) 12:45. doi:10.1186/1479-5876-12-45

72. Qi J, Zhang J, Zhang S, Cui L, He W. Immobilized MICA could expand human
Vdelta1 gammadelta T cells in vitro that displayed major histocompatibility
complex class I chain-related A-dependent cytotoxicity to human epithelial
carcinomas. Scand J Immunol (2003) 58(2):211–20. doi:10.1046/j.1365-3083.
2003.01288.x

73. Kang N, Zhou J, Zhang T, Wang L, Lu F, Cui Y, et al. Adoptive immunotherapy
of lung cancer with immobilized anti-TCRgammadelta antibody-expanded
human gammadelta T-cells in peripheral blood. Cancer Biol Ther (2009)
8(16):1540–9. doi:10.4161/cbt.8.16.8950

74. Zhou J, Kang N, Cui L, Ba D, He W. Anti-gammadelta TCR antibody-expanded
gammadelta T cells: a better choice for the adoptive immunotherapy of lym-
phoid malignancies. Cell Mol Immunol (2012) 9(1):34–44. doi:10.1038/cmi.
2011.16

75. Dokouhaki P, Han M, Joe B, Li M, Johnston MR, Tsao MS, et al. Adoptive
immunotherapy of cancer using ex vivo expanded human gammadelta T cells:
a new approach. Cancer Lett (2010) 297(1):126–36. doi:10.1016/j.canlet.2010.
05.005

76. Lopez RD, Xu S, Guo B, Negrin RS, Waller EK. CD2-mediated IL-12-dependent
signals render human gamma delta-T cells resistant to mitogen-induced apop-
tosis, permitting the large-scale ex vivo expansion of functionally distinct lym-
phocytes: implications for the development of adoptive immunotherapy strate-
gies. Blood (2000) 96(12):3827–37.

77. Deniger DC, Maiti S, Mi T, Switzer K, Ramachandran V, Hurton LV, et al. Acti-
vating and propagating polyclonal gamma delta T cells with broad specificity
for malignancies. Clin Cancer Res (2014) 20(22):5708–19. doi:10.1158/1078-
0432.CCR-13-3451

78. Deniger DC, Switzer K, Mi T, Maiti S, Hurton L, Singh H, et al. Bispecific T-
cells expressing polyclonal repertoire of endogenous gammadelta T-cell recep-
tors and introduced CD19-specific chimeric antigen receptor. Mol Ther (2013)
21(3):638–47. doi:10.1038/mt.2012.267

79. Fisher J, Yan M, Heuijerjans J, Carter L, Abolhassani A, Frosch J, et al. Neurob-
lastoma killing properties of V-δ 2 and V-δ2 negative gamma delta T cells fol-
lowing expansion by artificial antigen presenting cells. Clin Cancer Res (2014)
20(22):5720–32. doi:10.1158/1078-0432.CCR-13-3464

80. Dechanet-Merville J. Promising cell-based immunotherapy using gamma delta
T cells: together is better. Clin Cancer Res (2014) 20(22):5573–5. doi:10.1158/
1078-0432.CCR-14-1371

81. O’Connor CM, Sheppard S, Hartline CA, Huls H, Johnson M, Palla SL, et al.
Adoptive T-cell therapy improves treatment of canine non-Hodgkin lym-
phoma post chemotherapy. Sci Rep (2012) 2:249. doi:10.1038/srep00249

82. Singh H, Figliola MJ, Dawson MJ, Olivares S, Zhang L, Yang G, et al.
Manufacture of clinical-grade CD19-specific T cells stably expressing
chimeric antigen receptor using sleeping beauty system and artificial antigen
presenting cells. PLoS One (2013) 8(5):e64138. doi:10.1371/journal.pone.
0064138

83. Huls MH, Figliola MJ, Dawson MJ, Olivares S, Kebriaei P, Shpall EJ, et al. Clin-
ical application of sleeping beauty and artificial antigen presenting cells to
genetically modify T cells from peripheral and umbilical cord blood. J Vis Exp
(2013) 72:e50070. doi:10.3791/50070

84. Rushworth D, Jena B, Olivares S, Maiti S, Briggs N, Somanchi S, et al. Univer-
sal artificial antigen presenting cells to selectively propagate T cells expressing
chimeric antigen receptor independent of specificity. J Immunother (2014)
37(4):204–13. doi:10.1097/CJI.0000000000000032

85. Caccamo N, La Mendola C, Orlando V, Meraviglia S, Todaro M, Stassi G,
et al. Differentiation, phenotype, and function of interleukin-17-producing
human Vgamma9Vdelta2 T cells. Blood (2011) 118(1):129–38. doi:10.1182/
blood-2011-01-331298

86. DeBarros A, Chaves-Ferreira M, d’Orey F, Ribot JC, Silva-Santos B. CD70-
CD27 interactions provide survival and proliferative signals that regulate T cell
receptor-driven activation of human gammadelta peripheral blood lympho-
cytes. Eur J Immunol (2011) 41(1):195–201. doi:10.1002/eji.201040905

87. Ribot JC, deBarros A, Pang DJ, Neves JF, Peperzak V, Roberts SJ, et al. CD27 is a
thymic determinant of the balance between interferon-gamma- and interleukin
17-producing gammadelta T cell subsets. Nat Immunol (2009) 10(4):427–36.
doi:10.1038/ni.1717

88. Heemskerk MH. T-cell receptor gene transfer for the treatment of leukemia
and other tumors. Haematologica (2010) 95(1):15–9. doi:10.3324/haematol.
2009.016022

89. van der Veken LT, Coccoris M, Swart E, Falkenburg JH, Schumacher TN,
Heemskerk MH. Alpha beta T cell receptor transfer to gamma delta T cells gen-
erates functional effector cells without mixed TCR dimers in vivo. J Immunol
(2009) 182(1):164–70. doi:10.4049/jimmunol.182.1.164

90. Hiasa A, Nishikawa H, Hirayama M, Kitano S, Okamoto S, Chono H, et al.
Rapid alphabeta TCR-mediated responses in gammadelta T cells transduced
with cancer-specific TCR genes. Gene Ther (2009) 16(5):620–8. doi:10.1038/
gt.2009.6

91. Murayama M, Tanaka Y, Yagi J, Uchiyama T, Ogawa K. Antitumor activity
and some immunological properties of gammadelta T-cells from patients with
gastrointestinal carcinomas. Anticancer Res (2008) 28(5B):2921–31.

92. van der Veken LT, Hagedoorn RS, van Loenen MM, Willemze R, Falkenburg
JH, Heemskerk MH. Alphabeta T-cell receptor engineered gammadelta T cells
mediate effective antileukemic reactivity. Cancer Res (2006) 66(6):3331–7.
doi:10.1158/0008-5472.CAN-05-4190

93. Marcu-Malina V, Heijhuurs S, van Buuren M, Hartkamp L, Strand S, Sebestyen
Z, et al. Redirecting alphabeta T cells against cancer cells by transfer of a
broadly tumor-reactive gammadeltaT-cell receptor. Blood (2011) 118(1):50–9.
doi:10.1182/blood-2010-12-325993

94. Lamb LS Jr, Bowersock J, Dasgupta A, Gillespie GY, Su Y, Johnson A, et al. Engi-
neered drug resistant gammadelta T cells kill glioblastoma cell lines during a
chemotherapy challenge: a strategy for combining chemo- and immunother-
apy. PLoS One (2013) 8(1):e51805. doi:10.1371/journal.pone.0051805

95. June CH. Principles of adoptive T cell cancer therapy. J Clin Invest (2007)
117(5):1204–12. doi:10.1172/JCI32446

96. Singh H, Huls H, Kebriaei P, Cooper LJ. A new approach to gene therapy using
sleeping beauty to genetically modify clinical-grade T cells to target CD19.
Immunol Rev (2014) 257(1):181–90. doi:10.1111/imr.12137

97. Jena B, Dotti G, Cooper LJ. Redirecting T-cell specificity by introducing
a tumor-specific chimeric antigen receptor. Blood (2010) 116(7):1035–44.
doi:10.1182/blood-2010-01-043737

98. Rischer M, Pscherer S, Duwe S, Vormoor J, Jurgens H, Rossig C. Human
gammadelta T cells as mediators of chimeric-receptor redirected anti-tumour
immunity. Br J Haematol (2004) 126(4):583–92. doi:10.1111/j.1365-2141.
2004.05077.x

www.frontiersin.org December 2014 | Volume 5 | Article 636 | 9

http://dx.doi.org/10.1007/s00262-011-1021-7
http://dx.doi.org/10.1038/bjc.2011.293
http://dx.doi.org/10.1038/bjc.2011.293
http://dx.doi.org/10.1038/sj.bmt.1705650
http://dx.doi.org/10.1080/0032472031000141295
http://dx.doi.org/10.1089/scd.1.1996.5.503
http://dx.doi.org/10.1038/sj.bmt.1702830
http://dx.doi.org/10.1038/leu.2012.374
http://dx.doi.org/10.1038/leu.2012.374
http://dx.doi.org/10.1186/1479-5876-12-45
http://dx.doi.org/10.1046/j.1365-3083.2003.01288.x
http://dx.doi.org/10.1046/j.1365-3083.2003.01288.x
http://dx.doi.org/10.4161/cbt.8.16.8950
http://dx.doi.org/10.1038/cmi.2011.16
http://dx.doi.org/10.1038/cmi.2011.16
http://dx.doi.org/10.1016/j.canlet.2010.05.005
http://dx.doi.org/10.1016/j.canlet.2010.05.005
http://dx.doi.org/10.1158/1078-0432.CCR-13-3451
http://dx.doi.org/10.1158/1078-0432.CCR-13-3451
http://dx.doi.org/10.1038/mt.2012.267
http://dx.doi.org/10.1158/1078-0432.CCR-13-3464
http://dx.doi.org/10.1158/1078-0432.CCR-14-1371
http://dx.doi.org/10.1158/1078-0432.CCR-14-1371
http://dx.doi.org/10.1038/srep00249
http://dx.doi.org/10.1371/journal.pone.0064138
http://dx.doi.org/10.1371/journal.pone.0064138
http://dx.doi.org/10.3791/50070
http://dx.doi.org/10.1097/CJI.0000000000000032
http://dx.doi.org/10.1182/blood-2011-01-331298
http://dx.doi.org/10.1182/blood-2011-01-331298
http://dx.doi.org/10.1002/eji.201040905
http://dx.doi.org/10.1038/ni.1717
http://dx.doi.org/10.3324/haematol.2009.016022
http://dx.doi.org/10.3324/haematol.2009.016022
http://dx.doi.org/10.4049/jimmunol.182.1.164
http://dx.doi.org/10.1038/gt.2009.6
http://dx.doi.org/10.1038/gt.2009.6
http://dx.doi.org/10.1158/0008-5472.CAN-05-4190
http://dx.doi.org/10.1182/blood-2010-12-325993
http://dx.doi.org/10.1371/journal.pone.0051805
http://dx.doi.org/10.1172/JCI32446
http://dx.doi.org/10.1111/imr.12137
http://dx.doi.org/10.1182/blood-2010-01-043737
http://dx.doi.org/10.1111/j.1365-2141.2004.05077.x
http://dx.doi.org/10.1111/j.1365-2141.2004.05077.x
http://www.frontiersin.org
http://www.frontiersin.org/T_Cell_Biology/archive


Deniger et al. Multivalent γδ T-cell therapies

99. Hackett PB Jr, Aronovich EL, Hunter D, Urness M, Bell JB, Kass SJ, et al.
Efficacy and safety of sleeping beauty transposon-mediated gene transfer in
preclinical animal studies. Curr Gene Ther (2011) 11(5):341–9. doi:10.2174/
156652311797415827

100. Hackett PB, Largaespada DA, Cooper LJ. A transposon and transposase
system for human application. Mol Ther (2010) 18(4):674–83. doi:10.1038/
mt.2010.2

101. Hackett PB, Largaespada DA, Switzer KC, Cooper LJ. Evaluating risks of inser-
tional mutagenesis by DNA transposons in gene therapy. Transl Res (2013)
161(4):265–83. doi:10.1016/j.trsl.2012.12.005

102. Maiti SN, Huls H, Singh H, Dawson M, Figliola M, Olivares S, et al. Sleep-
ing beauty system to redirect T-cell specificity for human applications. J
Immunother (2013) 36(2):112–23. doi:10.1097/CJI.0b013e3182811ce9

103. Wadman SA, Clark KJ, Hackett PB. Fishing for answers with transposons. Mar
Biotechnol (NY) (2005) 7(3):135–41. doi:10.1007/s10126-004-0068-2

104. Liu G, Aronovich EL, Cui Z, Whitley CB, Hackett PB. Excision of sleeping
beauty transposons: parameters and applications to gene therapy. J Gene Med
(2004) 6(5):574–83. doi:10.1002/jgm.486

105. Liu G, Geurts AM, Yae K, Srinivasan AR, Fahrenkrug SC, Largaespada DA,
et al. Target-site preferences of sleeping beauty transposons. J Mol Biol (2005)
346(1):161–73. doi:10.1016/j.jmb.2004.09.086

106. Singh H, Manuri PR, Olivares S, Dara N, Dawson MJ, Huls H, et al. Redi-
recting specificity of T-cell populations for CD19 using the sleeping beauty
system. Cancer Res (2008) 68(8):2961–71. doi:10.1158/0008-5472.CAN-07-
5600

107. Tran E, Rosenberg SA. T-cell therapy against cancer mutations. Oncotarget
(2014) 5(13):4579–80.

108. Tran E, Turcotte S, Gros A, Robbins PF, Lu YC, Dudley ME, et al. Can-
cer immunotherapy based on mutation-specific CD4+ T cells in a patient
with epithelial cancer. Science (2014) 344(6184):641–5. doi:10.1126/science.
1251102

109. Robbins PF, Lu YC, El-Gamil M, Li YF, Gross C, Gartner J, et al. Min-
ing exomic sequencing data to identify mutated antigens recognized by
adoptively transferred tumor-reactive T cells. Nat Med (2013) 19(6):747–52.
doi:10.1038/nm.3161

110. Peng G, Wang HY, Peng W, Kiniwa Y, Seo KH, Wang RF. Tumor-infiltrating
gammadelta T cells suppress T and dendritic cell function via mechanisms
controlled by a unique toll-like receptor signaling pathway. Immunity (2007)
27(2):334–48. doi:10.1016/j.immuni.2007.05.020

111. Raspollini MR, Castiglione F, Rossi Degl’innocenti D, Amunni G, Villanucci
A, Garbini F, et al. Tumour-infiltrating gamma/delta T-lymphocytes are

correlated with a brief disease-free interval in advanced ovarian serous car-
cinoma. Ann Oncol (2005) 16(4):590–6. doi:10.1093/annonc/mdi112

112. Forget MA, Malu S, Liu H, Toth C, Maiti S, Kale C, et al. Activation and
propagation of tumor-infiltrating lymphocytes on clinical-grade designer arti-
ficial antigen-presenting cells for adoptive immunotherapy of melanoma. J
Immunother (2014) 37(9):448–60. doi:10.1097/CJI.0000000000000056

113. Anderson J, Gustafsson K, Himoudi N. Licensing of killer dendritic cells
in mouse and humans: functional similarities between IKDC and human
blood gammadelta T-lymphocytes. J Immunotoxicol (2012) 9(3):259–66. doi:
10.3109/1547691X.2012.685528

114. Himoudi N, Morgenstern DA, Yan M, Vernay B, Saraiva L, Wu Y, et al. Human
gammadelta T lymphocytes are licensed for professional antigen presentation
by interaction with opsonized target cells. J Immunol (2012) 188(4):1708–16.
doi:10.4049/jimmunol.1102654

115. Anderson J, Gustafsson K, Himoudi N, Yan M, Heuijerjans J. Licensing of gam-
madeltaT cells for professional antigen presentation: a new role for antibod-
ies in regulation of antitumor immune responses. Oncoimmunology (2012)
1(9):1652–4. doi:10.4161/onci.21971

116. Kang N, Tang L, Li X, Wu D, Li W, Chen X, et al. Identification and character-
ization of Foxp3(+) gammadelta T cells in mouse and human. Immunol Lett
(2009) 125(2):105–13. doi:10.1016/j.imlet.2009.06.005

Conflict of Interest Statement: Dr. Cooper founded and owns InCellerate, Inc. He
has patents with Sangamo BioSciences with artificial nucleases. He consults with
Targazyme, Inc. (formerly American Stem cells, Inc.), GE Healthcare, Ferring Phar-
maceuticals, Inc., and Bristol-Myers Squibb. He receives honoraria from Miltenyi
Biotec. Other authors declare no other competing financial interests.

Received: 29 September 2014; accepted: 28 November 2014; published online: 11
December 2014.
Citation: Deniger DC, Moyes JS and Cooper LJN (2014) Clinical applications
of gamma delta T cells with multivalent immunity. Front. Immunol. 5:636. doi:
10.3389/fimmu.2014.00636
This article was submitted to T Cell Biology, a section of the journal Frontiers in
Immunology.
Copyright © 2014 Deniger , Moyes and Cooper. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Immunology | T Cell Biology December 2014 | Volume 5 | Article 636 | 10

http://dx.doi.org/10.2174/156652311797415827
http://dx.doi.org/10.2174/156652311797415827
http://dx.doi.org/10.1038/mt.2010.2
http://dx.doi.org/10.1038/mt.2010.2
http://dx.doi.org/10.1016/j.trsl.2012.12.005
http://dx.doi.org/10.1097/CJI.0b013e3182811ce9
http://dx.doi.org/10.1007/s10126-004-0068-2
http://dx.doi.org/10.1002/jgm.486
http://dx.doi.org/10.1016/j.jmb.2004.09.086
http://dx.doi.org/10.1158/0008-5472.CAN-07-5600
http://dx.doi.org/10.1158/0008-5472.CAN-07-5600
http://dx.doi.org/10.1126/science.1251102
http://dx.doi.org/10.1126/science.1251102
http://dx.doi.org/10.1038/nm.3161
http://dx.doi.org/10.1016/j.immuni.2007.05.020
http://dx.doi.org/10.1093/annonc/mdi112
http://dx.doi.org/10.1097/CJI.0000000000000056
http://dx.doi.org/10.3109/1547691X.2012.685528
http://dx.doi.org/10.4049/jimmunol.1102654
http://dx.doi.org/10.4161/onci.21971
http://dx.doi.org/10.1016/j.imlet.2009.06.005
http://dx.doi.org/10.3389/fimmu.2014.00636
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/T_Cell_Biology
http://www.frontiersin.org/T_Cell_Biology/archive

	Clinical applications of gamma delta T cells with multivalent immunity
	Introduction
	γδ T-Cell clinical experience
	Ex Vivo propagation of Non-Vγ9Vδ2 γδ T Cells
	Genetic modification of γδ T Cells for therapeutic use
	Concluding Remarks
	Author Contributions
	Acknowledgments
	References


