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Abstract: The commercial graphite felt GFA 10 was subjected to an activation process with the use
of CO2 at 900 ◦C for 35 and 70 min. Pristine and heat-treated materials were characterized using
various methods: low-temperature N2 adsorption, SEM, and EDS. Voltammetric measurements of
GFA samples (before and after activation) as the working electrode were carried out. Voltammograms
were recorded in aqueous solutions of 4-chlorophenol and sodium sulfate as supporting electrolyte.
The catalytic activity of GFA samples in the process of 4-chlorophenol oxidation with the use of H2O2

was also investigated. The influence of graphite felt thermal activation in the CO2 atmosphere on
its electrochemical and catalytic behavior was analyzed and discussed. Results of the investigation
indicate that GFA activated in CO2 can be applied as an electrode material or catalytic material in
the removal of organic compounds from industrial wastewater. However, the corrosion resistance of
GFA, which is decreasing during the activation, needs to be refined.

Keywords: graphite felt; activation in CO2; voltammetric measurements; catalytic activity; stability

1. Introduction

Among various kinds of carbon materials applied in electrochemistry (as electrode
materials in analysis, energy storage, or energy sources), very important are carbon fibers,
felt, or cloth. Carbon-based electrodes find many different applications [1]. Electroanalysis
can be mentioned here [2,3]. They are also used to remove polluting substances from wa-
ter [4–6]. Another area of use of carbon felt electrodes are batteries [7–13] and microbial fuel
cells [14–16]. An important area of research is to characterize [17–20] and modify [21–25]
the properties of carbon felts.

At present, graphite felt or carbon felt is adopted as the typical electrode material
attributed to its advantages, including wide operating potentials, high electrical conduc-
tivity, good corrosion resistance, and low costs [26–28]. However, the original graphite
felt shows poor battery performance, primarily due to its hydrophobic property and poor
catalytic activity [29]. One promising method to improve hydrophilicity and catalytic
activity is the activation of the graphite felt surface [30]. In our work, we have attempted to
assess the effect of graphite felt activation with the use of CO2 on electrode behavior and
catalytic properties of this material in contact with a 4-chlorophenol solution. Graphite
felt GFA 10 used in our studies is characterized by good chemical and physical properties
according to information supplied by the manufacturer [31,32]. Thus, it can be applied in
alkaline batteries in the metallurgy, automobile, and high technologies industries. Taking
this into account, we suggest its application also as a catalytic and electrocatalytic material
in the degradation of organics present in industrial wastewater. To our best knowledge,
this material (GFA 10) has not been applied in wastewater treatment and even has not
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been characterized as a potential catalytic and electrocatalytic material in the removal of
organic pollutants.

Herein, we activated graphite felt GFA 10 in CO2 to increase its specific surface area
and improve its catalytic and electrocatalytic properties. Subsequently, we determined its
morphological characteristics as well as its electrochemical and corrosion characteristics to
prove its applicability in the degradation of organic pollutants.

2. Results and Discussion

Graphite felt GFA 10 was activated with the application of physical activation in
CO2 [30,33] for 35 and 70 min and resulted in a change in the GFA surface. The series of
graphite felt was denoted as GFA for non-activated material and as GFA-35 or GFA-70 for
material activated for 35 and 70 min, respectively. The preparation details of samples are
presented in Section 3.1.

2.1. Morphological Characterization of GFA

The specific surface area of GFA samples was determined by the Brunauer–Emmett–
Teller equation (BET) [34]. The calculations are related to the monolayer volume of adsorbed
gas (N2) from the isotherm data. GFA graphite felt is not a typical porous material. Due
to this fact, the pore volumes were calculated using the Barrett–Joyner–Halenda (BJH)
analysis. Parameters of the porous structure of graphite felt samples are summarized in
Table 1.

Table 1. Characteristics of the porous structure of graphite felt before thermal treatment in
CO2 atmosphere.

Porosity Parameter GFA GFA-35 GFA-70

SBET, m2 g−1 0.6 2.1 4.3

V, cm3 g−1

(from BJH eq)
0.002 0.009 0.017

w, nm
(from 4V/S) 10.3 11.2 10.0

SBET: specific surface area determined with BET method; V: pore volume; w: pore diameter.

As can be seen, activation in CO2 gives an increase in SBET or V about 3–7 times
for GFA-35 and GFA-70, respectively, but even these values for GFA-70 are very small
in comparison with, e.g., carbon blacks (by an order or two orders of magnitude) [35] or
activated carbons (by two or three orders of magnitude) [36]. GFA graphite felt surface is
very resistant to CO2 action in high temperatures typical for activated carbon production.

However, the increase in GFA-specific surface area is relatively high in comparison
with thermal activation of graphite felt under air at 500 ◦C for 5 h resulting in only a 1.7-fold
increase in SBET [37] and in comparison with thermal activation under air at 400 ◦C for 6 h
giving only 1.4-fold increase in SBET [38]. A higher increase in SBET (9.8-fold) was observed
during the activation of graphite felt in CO2 at 1000 ◦C for 30 min [30], but the authors did
not supply any information on the mass loss caused by burn-off. In the above-mentioned
papers, graphite felts were activated in different methods and, under different conditions,
were applied in vanadium redox flow batteries.

Individual fibers of GFA before and after activation are shown in SEM images (Figure 1).
The chemical composition of GFA samples was also investigated using the SEM-EDS

method. All samples are composed mainly of carbon. EDS spectra recorded for GFA and
GFA-35 were comparable and showed a small number of impurities, i.e., not higher than
1.5%. The longer activation of GFA in CO2 (70 min) resulted in a relatively higher amount
of impurities. This can be related to the Boudouard reaction occurring on the GFA surface
during the activation and leading to a decrease in C content [39,40]. Moreover, the presence
of O, Na, and K was observed only in the case of GFA-70 (Figure 2).
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The content of the above-mentioned impurities can be changed during the activation 
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their presence was recognized by the scanning electron microscope. In the case of GFA-
35, the content of impurities was intermediate between that observed for GFA and GFA-
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Figure 2. EDS spectra recorded for GFA and GFA-70 materials.

The content of the above-mentioned impurities can be changed during the activation
of GFA in CO2. Probably, in the case of GFA-70, lowering the relative content of carbon
and increasing the relative content of O caused these impurities to become visible, and
their presence was recognized by the scanning electron microscope. In the case of GFA-35,
the content of impurities was intermediate between that observed for GFA and GFA-70
samples. Al is an impurity that can arise from an aluminum table applied in scanning
electron microscopes.
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2.2. Electrochemical Characterization of GFA

Given the potential for wide applications of GFA, especially in the field of electrochem-
istry, it was necessary to determine its electrochemical characteristics. Furthermore, the
effect of GFA activation on its electrochemical properties has to be investigated.

2.2.1. Study of GFA in [Fe(CN)6]4−/[Fe(CN)6]3− System

[Fe(CN)6]4−/[Fe(CN)6]3− system is commonly applied in the determination of electro-
chemical characteristics of various electrode materials, including carbon electrodes [41–45].
Voltammetric curves recorded at GFA, GFA-35, and GFA-70 electrodes at the scan rate of
5 mV s−1 are presented in Figure 3.
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Exemplary voltammetric curves recorded at the GFA electrode at different scan rates
in the range from 5 to 200 mV s−1 are shown in Figure 4.
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Electrochemical parameters, i.e., peak current, peak potential, a ratio of anodic peak
current to cathodic peak current, difference between anodic and cathodic peak potential,
and half-wave potential, determined from cyclic voltammetry curves, are listed in Table 2.

Table 2. CV parameters determined from cyclic voltammograms recorded in K4[Fe(CN)6]
(5 × 10−3 mol L−1 in 0.1 mol L−1 KCl) at the scan rate of 5 mV s−1.

GFA
Material Ipa, mA Epa, V Ipc, mA Epc, V Ipa/Ipc ∆Ep, V E1/2, V

GFA
GFA-35
GFA-70

0.350
1.190
1.659

0.294
0.221
0.234

−0.283
−1.163
−1.656

0.079
0.139
0.124

1.24
1.02
1.00

0.215
0.082
0.110

0.187
0.180
0.179

Ipa and Ipc: anodic and cathodic peak current; Epa and Epc: anodic and cathodic peak potential; Ipa/Ipc: a ratio of
anodic peak current to cathodic peak current; ∆Ep: difference between anodic and cathodic peak potential; E1/2:
half-wave potential.

The activation of GFA resulted in an increase in the anodic and cathodic peak currents
observed in the redox system. In the case of the anodic peak, 35 min activation in CO2
caused a threefold increase in the peak current, while 70 min activation resulted in a higher
than fourfold increase. Furthermore, the activation resulted in a decrease in the anodic
and cathodic peak ratio to almost 1 (Table 2), indicating the reversible nature of the redox
couple. The half-wave potential (E1/2) calculated using the expression (Epa + Epc)/2 was
almost constant, showing no effect of the activation. However, the value of ∆Ep (the
peak-to-peak separation) was clearly lower in the case of activated GFA, indicating more
reversible electron transfer in the electrochemical reaction. The increase in anodic and
cathodic peak currents also proves that electrochemical oxidation and reduction of the
redox couple proceed significantly slower at non-activated GFA. Thus, the electroactive
surface area of GFA and the activation effect on its value were determined.

Electroactive surface area (EASA) was calculated from the Randles–Sevcik equation,
which can be applied in the case of all electrochemical processes that are controlled by
diffusion [46]:

Ip = 2.69·105·n3/2·A·D1/2·C·v1/2 (1)

where A is the electroactive surface area, Ip is the peak current, D is the diffusion coefficient
of the analyte, n is the number of transferred electrons, v is the scan rate, and C is the
concentration of the redox molecules in a solution.

Therefore, it was first necessary to confirm the diffusion control in the redox couple
system by determining the dependence of Ip on the square root of the scan rate, which
should be linear. These dependencies are presented in Figure 5.

To additionally confirm the diffusion control for both the anodic and cathodic pro-
cesses, relationships of log Ip vs. log v (v = scan rate) were determined. The equations
describing these relationships are shown in Table 3.

The slopes of the Ip dependence on v are almost the same for GFA activated in CO2
and determined from the anodic and cathodic peaks. Their values slightly exceed the value
of 0.5, which is theoretically expected in the case of diffusion control. However, in the
case of the non-activated GFA, the slope values are higher (about 0.7), indicating little
contribution of adsorption in the reaction control [47,48].
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(5 × 10−3 mol L−1 in 0.1 mol L−1 KCl) at the scan rates in the range from 5 to 200 mV s−1.

Table 3. Dependences of log Ip vs. log v determined for the tested GFA materials in K4[Fe(CN)6]
(5 × 10−3 mol L−1 in 0.1 mol L−1 KCl).

GFA Material Equation R2

Anodic Peak

GFA
GFA-35
GFA-70

y = 0.726x − 1.777
y = 0.577x − 1.544
y = 0.583x − 1.383

0.9996
0.9917
0.9916

Cathodic Peak

GFA
GFA-35
GFA-70

y = 0.713x − 1.935
y = 0.594x − 1.517
y = 0.596x − 1.357

0.9911
0.9931
0.9914

EASA of GFA electrodes was calculated based on the relationships determined for
the anodic peak of the redox couple and, for comparison, also based on the relation-
ships obtained for the cathodic peak. The results of calculations carried out taking into
account the commonly known values of the diffusion coefficients of the oxidized, and
reduced form in the [Fe(CN)6]4-/[Fe(CN)6]3- system equal to 7.63 × 10−6 cm2 s−1 and
6.50 × 10−6 cm2 s−1 [49,50], respectively, are presented in Table 4.

Table 4. Electroactive surface area (EASA) and roughness factor (ρ) of the tested GFA materials
calculated from the dependence of Ipa and Ipc vs. v1/2 determined in K4[Fe(CN)6] (5 × 10−3 mol L−1

in 0.1 mol L−1 KCl).

GFA Material Anodic Peak Cathodic Peak

Ipa vs. v1/2

Slope
EASA, cm2 Roughness

Factor (ρ)
Ipc vs. v1/2

Slope
EASA, cm2 Roughness

Factor (ρ)

GFA
GFA-35
GFA-70

1.238 × 10−2

2.482 × 10−2

3.566 × 10−2

18.1
36.2
52.0

8.6
17.2
24.8

−8.605 × 10−3

−2.594 × 10−2

−3.728 × 10−2

11.6
34.9
50.2

5.5
16.6
25.1
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The activation of GFA in CO2 significantly affected EASA. GFA-35 activated for 35 min
was characterized by EASA twice that of non-activated GFA, while GFA-70 had EASA
almost three times that of GFA. Results of EASA determination were comparable for
calculations based on the anodic and cathodic peak current except for GFA, which revealed
the little contribution of adsorption in the reaction control. Similar relationships were
observed for the roughness factor, which is defined as the ratio of EASA to the geometric
area of the electrode [51]. Its value determined for GFA-35 from the anodic and cathodic
peak current was 2 and 3 times higher, respectively, in comparison with GFA. Higher time
of GFA activation in CO2 resulted in almost 3 and 4.5 times higher ρ values determined
from the anodic and cathodic peak currents, respectively.

To confirm the results obtained, the EASA of GFA electrodes was also determined
using the chronoamperometry method. Chronoamperograms were recorded in ferri- and
ferrocyanide solution for the electrooxidation reaction. An example of a chronoamperogram
is presented in Figure 6. The EASA values for the tested electrodes were calculated from
the Cottrell equation [52]:

I =
n·F·A·D1/2·C

π1/2·t1/2 (2)

where I is the current intensity, and other parameters have their usual meanings. The results
of the calculations are presented together with the roughness factor values in Table 5.
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The values of EASA determined from chronoamperograms are clearly higher than
those determined from cyclic voltammograms. However, these results confirm that the
activation of GFA in CO2 increases its EASA by two and three times for activation duration
of 35 and 70 min, respectively.

Similarly, the roughness factor also increased two and three times for GFA-35 and
GFA-70, respectively.

2.2.2. Electrochemical Behavior of 4-Chlorophenol (4-CP) at GFA Electrode

GFA electrodes can be potentially applied as electrode material in the treatment of
industrial wastewater containing 4-CP. Therefore, the electrochemical behavior of 4-CP on
GFA electrodes was investigated by cyclic voltammetry. A comparison of cyclic voltammo-
grams recorded at the tested GFA electrodes for electrooxidation and electroreduction of
4-CP is presented in Figures 7 and 8.
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The cyclic voltammograms (Figures 7 and 8) show the changes in oxidation or re-
duction current density versus potential, which were calculated taking into account the
previously determined EASA for the electrodes tested. Table 6 presents the comparison of
parameters characterizing GFA materials and used in calculations of current densities.

Table 6. Parameters characterizing GFA materials applied in recording cyclic voltammograms in the
solution of 1 mM 4-chlorophenol (0.05 M Na2SO4) and presented in Figures 7 and 8.

GFA Material EASA, cm2 g−1 EASA, cm2 (Electrode)

GFA 920 18.0

GFA-35 1840 36.1

GFA-70 3045 51.6

The electrooxidation of 4-CP proceeds in at least one electrode step before the potential
reaches the value at which oxygen evolution starts. The activation of GFA in CO2 resulted
in a higher peak potential of 4-CP oxidation by 57 and 132 mV (Table 7) in the case of GFA-
35 and GFA-70, respectively, compared to GFA. This means that a longer activation time
of GFA makes the oxidation of 4-CP more difficult at GFA. Furthermore, GFA activation
caused a significant increase in the oxidation current of 4-CP. The peak current density
determined for GFA-35 was 2.5 times higher compared to the non-activated GFA (Table 7).
However, in the case of GFA-70, the longer activation time in CO2 resulted in a decrease in
the peak current density value, which was still 50% higher compared to the non-activated
GFA. The nature of the observed oxidation peaks of 4-CP may indicate a significant effect of
the adsorption of this compound on the electrode surface. This was probably the reason for
the reduced oxidation peak current of 4-CP on GFA-70 compared to GFA-35. In addition, a
longer activation time may have resulted in a deterioration of electrode wettability and an
increase in its electrical resistance.

Table 7. Comparison of Ep and ip values for electrooxidation of 4-CP on GFA electrodes.

GFA Electrode Ep, V ip, mA cm−2

GFA 1.095 0.031

GFA-35 1.152 0.078

GFA-70 1.218 0.047

In addition, the electroreduction of 4-CP on the GFA was investigated. Although
higher 4-CP reduction currents were observed on GFA-35 and GFA-70, no reduction peaks
were developed on the voltamperograms in the potential range up to the potential value at
which hydrogen evolution starts.

The results obtained indicate that GFA activated in CO2 can potentially be used as
electrode material in the electrochemical treatment of 4-CP by electrooxidation. Electrolyses
performed at anode potentials higher than the oxygen evolution potential should result in
the complete degradation of 4-CP to simple inorganic compounds or to simple organic com-
pounds that are readily biodegradable. Such a process, called electrochemical incineration,
requires significant energy consumption but allows the complete degradation of organic
compounds present in industrial wastewater. The use of GFAs with a highly developed
surface area should make it possible to reduce the electrical energy consumption that often
determines the use of the method on a larger scale.

2.3. Corrosion Characterization of GFA

The stability of electrode materials, applied as anodes and cathodes in the electrochem-
ical oxidation of organic pollutants present in industrial wastewater, is very important.
Corrosion is defined as not only a dangerous process but also an extremely costly problem
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that affects more than just metals and their alloys. GFA electrodes immersed in wastewater
may corrode, especially in the presence of O2 and reactive oxygen species (ROS) formed
during the electrooxidation of organics. These oxidants react with carbonaceous materi-
als surfaces resulting in electrochemical carbon corrosion, which is thermodynamically
favorable at potentials higher than 0.207 V vs. SCE (standard potential of carbon oxida-
tion) [53]. Therefore, it was important to investigate the effect of GFA activation on its
corrosion resistance.

Assessment of GFA corrosion resistance was performed in a solution of the supporting
electrolyte (0.05 mol L−1 Na2SO4) using potentiodynamic polarization sweep preceded
by OCP (open circuit potential) determination. The polarization curves were recorded in
the potential range of OCP ± 200 mV with the scan rate of 2 mV s−1. Examples of the
polarization curves recorded at GFA electrodes are shown in Figure 9.
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The measured corrosion currents for GFA electrodes, presented in Figure 9, were
normalized with respect to EASA values determined for the tested electrodes and shown
in Table 6. The electrochemical parameters: anodic and cathodic Tafel slopes (ba and
bc), corrosion current density (icorr), and corrosion potential (Ecorr) determined from the
polarization curves are listed in Table 8.

Table 8. Corrosion parameters of GFA materials determined in 0.05 mol L−1 Na2SO4.

GFA Material Ecorr, V icorr, mA cm−2 Rp, kΩ ba, mV dec−1 bc, mV dec−1

GFA
GFA-35
GFA-70

0.031
−0.112
−0.172

8.00 × 10−6

3.28 × 10−5

1.78 × 10−5

102.840
9.225
6.421

125.2
38.8
23.7

47.1
72.1
47.1

The activation of GFA in CO2 resulted in a significant decrease in Ecorr value. Given
that corrosion potential is a thermodynamic parameter that determines susceptibility to
corrosion, it can be concluded that GFA-35 and GFA-70 corrode much more easily than non-
modified GFA. The longer the activation time, the less corrosion-resistant GFA is obtained.

Polarization resistance (Rp) is another corrosion parameter applied in comparison to
material corrosion resistance under specified conditions. Activated GFA electrodes are
characterized by significantly lower Rp values—by 11 and 16 times for GFA-35 and GFA-70
(Table 8), respectively. A lower Rp value implies lower corrosion resistance.
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A comparison of Tafel slopes (ba and bc) indicates that there is probably a change in the
mechanism of an anodic reaction during corrosion of activated GFA electrodes. Whereas
the cathodic reaction during corrosion probably follows the same mechanism regardless of
whether the GFA was activated or not.

The density of corrosion current is a kinetic parameter used in estimating corrosion
rates. The highest icorr value was observed in the case of GFA-35 and was about four times
higher in comparison with the non-activated GFA. However, increasing the activation
time resulted in a reduction of the corrosion current by about 1.8 times in the case of
GFA-70 compared to GFA-35. Nevertheless, the corrosion current determined for GFA-70
was still more than two times higher compared to the non-modified GFA, indicating a
higher corrosion rate. Given the potential use of activated GFA as electrode material in
the electrochemical disposal of organic compounds found in industrial wastewater, the
increased durability and corrosion resistance of this material needs to be refined.

2.4. Degradation of 4-Chlorophenol with H2O2

Activated carbon and other carbon materials are the most widely used adsorbents
for the removal of chlorophenols from water. Carbon materials have also been used in
heterogeneous catalysis because they can be used as direct catalysts or as catalyst support
for specific needs [54,55]. All materials used in this work were characterized by low BET
surface area, and therefore, they cannot be used as adsorbents. However, their usefulness
as potential catalysts was investigated. Degradation of 4-chlorophenol from water and
0.05 mol L−1 sodium sulfate solutions by hydrogen peroxide in the presence of all three
carbon materials is shown in Figure 10.
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The percentage loss of 4-CP after 6 h from water without hydrogen peroxide (adsorp-
tion) and solutions containing H2O2 is shown in Table 9.

Table 9. The percentage removal of 4-chlorophenol after 6 h.

Solution of 4-CP,
Composition

GFA Material

GFA GFA-35 GFA-70

Water without H2O2 0% 0% 1.0%

Water + H2O2 0.2% 20.2% 24.7%

0.05 mol L−1 Na2SO4 + H2O2 0.2% 24.9% 30.1%

The results showed that non-activated graphite material (GFA) cannot be used as
catalysts. On the other hand, as can be seen in Figure 10 and Table 9, in an aqueous
solution in the presence of the GFA-35 and GFA-70 materials was oxidized about 20 and
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25% of 4-CP, respectively. From the electrolyte solution was removed about 25 and 30%
of 4-chlorophenol, respectively. This fact suggests that the modified graphite materials
have catalytic properties. They generate hydroxyl radicals resulting in oxidation of the
4-chlorophenol. The catalytic properties of the graphite materials increase with increasing
surface roughness.

The results shown in Tables 1, 4, 5 and 9 indicate that increasing the activation time
of GFA in CO2 to 70 min is favorable, and its further increase above 70 min should allow
higher degradation efficiencies of 4-CP. However, it should be considered that a further
increase in activation time will result in an increase in mass loss of GFA (Table 10). At
some point, the increase in specific surface area and EASA of GFA caused by increasing
the activation time will not compensate for the significant mass loss caused by burn-off at
900 ◦C.

Table 10. Parameters of activation process with CO2 in laboratory vertical oven at 900 ◦C. The heating
rate to activation temperature was 10 ◦C min−1. The time of stabilization before the activation process
was 1 h (in a nitrogen stream of 30 dm3 h−1).

Parameters
of Activation

Process

Time of
Activation, min

Initial Sample
Mass, g

Mass of
Activated

GFA, g
Mass Loss, %

900 ◦C, CO2,
30 dm3 h−1 35 14.8 12.8 13.5

900 ◦C, CO2,
30 dm3 h−1 70 14.4 9.2 36.4

GFA samples activated for 35 and 70 min were labeled GFA-35 and GFA-75, respectively.

3. Materials and Methods
3.1. Materials

The commercial graphite felt GFA 10 obtained from SGL Group The Carbon Company
(Wiesbaden, Germany) was applied in experiments. Before pretreatment, its specific surface
area was below 1 m2 g−1, according to the manufacturer’s note.

The samples of GFA were heated at the rate of 10 ◦C min−1 to the temperature of
900 ◦C and then thermally stabilized at this temperature for one hour in a nitrogen stream;
then, CO2 was introduced, and after the prescribed activation time (35 or 70 min) at
900 ◦C, it was again replaced with N2, and the system was cooled in its stream to the room
temperature. Parameters and effects of the activation process are given in Table 10.

3.2. Material Characterization

The specific surface area of GFA samples was calculated based on nitrogen adsorp-
tion/desorption isotherms measured at 77 K using a Micromeritics ASAP 2020 (Norcross,
GA, USA) surface analyzer. The differences in morphology as well as in surface chemistry
of GFA samples were determined by scanning electron microscopy SEM (S-4700, Hitachi,
Tokyo, Japan) coupled with energy dispersive X-ray analysis EDS (Noran System, Thermo
Fisher Scientific, Waltham, MA, USA).

3.3. Electrochemical Measurements

All electrochemical measurements were carried out in the three-electrode cell, which
was connected to the electrochemical workstation, µATOLAB III (Metrohm Autolab B.V.,
Utrecht, The Netherlands). NOVA software ver. 2.1 (Metrohm Autolab B.V., Utrecht, the
Netherlands)was applied in the analysis of recorded chronoamperograms and voltammo-
grams and in the determination of corrosion parameters. A saturated calomel electrode
(SCE) and platinum electrode were used as the reference and counter electrode, respectively.
GFA samples with a geometric area of about 2 cm2 were applied as the working electrode.
Before measurements, all liquid samples were purged with pure argon to remove dissolved
oxygen. During measurements, an argon blanket was kept over the solution surface.
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Determination of electrochemically active surface area (EASA) of GFA material was
performed with the cyclic voltammetry method in K4[Fe(CN)6] solution (5 × 10−3 mol L−1

in 0.1 mol L−1 KCl) by recording voltammograms at the scan rates in the range from 5 to
200 mV s−1. Chronoamperometry was the second method applied in the determination of
EASA to confirm the results obtained by the cyclic voltammetry method. Chronoampero-
grams were recorded in the same solution at the potential of 0.6 V vs. SCE.

The corrosion resistance of GFA material was determined in the supporting electrolyte
Na2SO4 (0.05 mol L−1) and was evaluated using the electrochemical technique, measure-
ment of open circuit potential (OCP), followed by potentiodynamic polarization sweep.
After the GFA electrode was immersed in the supporting electrolyte, its potential was
measured as a function of time. The OCP value was measured for 1 h or less if the OCP
value was constant, i.e., the condition dE/dt ≤ 1 µV s−1 was fulfilled. The GFA electrodes
were cathodically and anodically polarized in the potential range of OCP ± 200 mV with a
scan rate of 2 mV s−1.

The electrochemical behavior of 4-chlorophenol (4-CP) at GFA material before and after
activation in CO2 was determined using the cyclic voltammetry method. Voltammograms
were recorded at ambient temperature in 4-CP at the concentration of 1 × 10−3 mol L−1

dissolved in 0.05 mol L−1 Na2SO4. Sodium sulfate was used as a supporting electrolyte.
The 4-chlorophenol (≥99%) was purchased from Sigma-Aldrich (St Louis, MO, USA).

All other chemicals used in the experiments were of the analytical reagent grade and were
received from Avantor Performance Materials (Gliwice, Poland). The volume of the liquid
sample used in voltammetric measurements was 20 mL.

3.4. Degradation of 4-CP in the Presence of H2O2

Batch experiments were performed in Erlenmeyer flasks containing 50 mL of 0.5 mmol L−1

solutions of 4-chlorophenol (4-CP) in water or 0.05 mol L−1 sodium sulfate. In all tests, the
applied concentration of hydrogen peroxide was 5 mmol L−1 (ten-fold excess in relation
to the 4-CP), and the carbon materials amount was 0.05 g. Erlenmeyer flasks were shaken
for 6 h (200 rpm). The concentration of 4-chlorophenol in the solutions was measured by
high-performance liquid chromatography with a diode array detector (Shimadzu LC-20,
Kyoto, Japan). The separation of analytes was performed using a Phenomenex Luna C18
(4.6 × 150 mm, 3 µm) column (Torrance, CA, USA). The chromatographic conditions were
as follows: mobile phase consisted of acetonitrile/water adjusted to pH 3.0 with acetic acid
(50/50, v/v); flow rate of 0.25 mL/min; analytical wavelengths of 274 nm, which correspond
to the maximum absorption peak of the 4-CP. Analytical wavelength was selected based on
diode-array spectra taken in real-time analysis.

4. Conclusions

Graphite felt (GFA) appeared to be very resistant to activation in CO2 in high tem-
peratures taking into consideration an increase in its specific surface area. Although the
SBET of GFA-70 increased seven times in comparison with non-activated GFA, its specific
surface area was still relatively low in comparison with carbon blacks or activated carbons.
On the other hand, activation of GFA resulted in an increase in electrochemically active
surface area, which was two and three times higher for GFA-35 and GFA-70, respectively,
in comparison with GFA.

Voltammetric characterization of GFA material in electrochemical oxidation and re-
duction of 4-chlorophenol indicates that GFA activated in CO2 can be potentially applied
as electrode material in 4-CP degradation by electrochemical oxidation.

The corrosion resistance of GFA decreased with increasing activation time in CO2.
GFA-70 corroded at a higher rate in comparison with non-activated GFA. In addition, the
corrosion potential of GFA-70 was lower than that of GFA, indicating higher susceptibility
to corrosion.

The results of the investigations also indicate that GFA activated in CO2 can be applied
as a catalytic material in the removal of 4-CP from aqueous solutions, contrary to the



Molecules 2022, 27, 6298 14 of 16

non-activated GFA. GFA-35 and GFA-70 generate hydroxyl radicals resulting in oxidation
of 4-CP.

Given the potential use of activated GFA as an electrode material or catalytic material in
the disposal of organic compounds found in industrial wastewater, the increased durability
and corrosion resistance of this material needs to be refined.
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