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Industry 4.0 has been a hot topic in recent years. The process of integrating

Cyber-Physical Systems (CPS), Artificial Intelligence (AI), and Internet of Things (IoT)

technology, will become the trend in future construction of smart factories. In the

past, smart factories were developed around the concept of the Flexible Manufacturing

System (FMS). Most parts of the quality management process still needed to be

implemented by Automated Optical Inspection (AOI) methods which required human

resources and time to perform second stage testing. Screening standards also resulted

in the elimination of about 30% of the products. In this study, we sort and analyze

several Region-based Convolutional Neural Network (R-CNN) and YOLO models that

are currently more advanced and widely used, analyze the methods and development

problems of the various models, and propose a suitable real-time image recognition

model and architecture suitable for Integrated Circuit Board (ICB) in manufacturing

process. The goal of the first stage of this study is to collect and use different types

of ICBs as model training data sets, and establish a preliminary image recognition model

that can classify and predict different types of ICBs based on different feature points. The

second stage explores image augmentation fusion and optimization methods. The data

augmentation method used in this study can reach an average accuracy of 96.53%.

In the final stage, there is discussion of the applicability of the model to detect and

recognize the ICB directionality in <1 s with a 98% accuracy rate to meet the real-time

requirements of smart manufacturing. Accurate and instant object image recognition

in the smart manufacturing process can save manpower required for testing, improve

equipment effectiveness, and increase both the production capacity and the yield rate of

the production line. The proposed model improves the overall manufacturing process.

Keywords: smart manufacturing, Internet of Things, deep learning, YOLO, object recognition

INTRODUCTION

Smart manufacturing is based on smart factories involving artificial intelligence (AI), the Internet
of Things (IoT), big data, and other technical tools. Smart manufacturing is the general term
referring to an advanced manufacturing process and a system capable of perceiving information
intuitively, making decisions automatically, and executing manufacturing processes automatically
(Wang et al., 2018). In addition, it reports the current status of each device through the process
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of mechanical automation. Statistics and summarizing data
can help us understand the device’s condition or estimate
its usable period. Moreover, smart manufacturing combines
machines and deep learning technology to improve product
quality and reduce costs. Consequently, the machinery has
attained better production efficiency and adaptive maintenance
time within the effective period. Providing better or more flexible
services to customers is part of smart manufacturing’s pursuit
of true intelligence. Smart manufacturing is the focus of recent
Industry 4.0 topics related to research and development or
industry promotion. However, there are several issues in the
implementation of smart manufacturing. Before the topic of
smart manufacturing was formally proposed, the core concept
in the background of automated manufacturing was the flexible
manufacturing system (FMS) (Kimemia and Gershwin, 1983;
Bihi et al., 2018). FMS hoped to establish a flexible and automated
manufacturing engineering system in response to all predictable
or unpredictable changes in the industry. However, this goal
can only be achieved with the assistance of other technologies
or systems (Yadav and Jayswal, 2018). In a process related
to quality management inspection, although automated optical
inspection (AOI) is applied, the screening standards are too
high, and approximately 30% of the products are eliminated
(Mukhopadhyay et al., 2019; Kovrigin and Vasiliev, 2020; Diering
and Kacprzak, 2021). Moreover, this method requires a massive
workforce and time to perform inspection in the second stage. In
addition, only through the operator’s correct implementation of
various standard inspection procedures can it guarantee accurate
manufacturing quality management. Therefore, a large number
of professional employees undergo long-term training, increasing
the labor cost. Smart manufacturing should include automated
perception at its core and find a way to attain automated
intelligence ultimately. In the process, various technologies and
methods, such as intelligent image recognition and intelligent
data analysis, can help achieve automatic identification and
prediction. Auxiliary decision-making can also be used to
perform automated execution in the environment, though it will
be challenging.

As AI image recognition becomes more and more mature
nowadays, the combination of deep learning with classic
computer vision has become a trend. Today, most mainstream
technology for image recognition applications uses convolutional
neural networks (CNNs). Since the re-emergence of deep
learning in 2012, scholars and experts have proposed several new
methods to solve the problems encountered by neural networks
in the past. The shortcomings of CNNs in the past have also been
reduced (Khan et al., 2020). In recent years, the characteristics
of graphics processing units have also been fully utilized to
accelerate the calculation of deep learning algorithms; therefore,
the algorithm’s efficiency has dramatically improved. The most
crucial technological turning point in image recognition is the
development of the region-based convolutional neural networks
(R-CNN) algorithm. This technology first solved the problem of
the insufficient dataset, and later, the related models introduced
also performed well in terms of performance and recognition
accuracy (Bharati and Pramanik, 2020). Based on it, the Faster
R-CNN algorithm was developed, which allows the calculation

speed of the algorithm to reach a different level of sophistication.
As a result, image recognition technology is getting closer and
closer to the goals of achieving both high speed and high
precision (Gavrilescu et al., 2018; Maity et al., 2021).

Nowadays, several cases of the combination of computer
vision with deep learning of the IoT have been implemented,
and many positive feedbacks have been obtained in academic
research and real-life applications (Wang et al., 2020; Xu et al.,
2020; Lian et al., 2021). Accurate image recognition technology
helps classify product types, confirm product integrity in an
actual field, and helps establish a smart manufacturing field.
The method proposed in this study is based on the R-CNN-
related model of the deep learning method. The integrated
circuit board (ICB) image is selected as the dataset to complete
the image recognition model. The first stage aims to acquire
different types of ICB images for model training. Thus, we first
constructed the initial phase of image recognition so that the
model can understand the characteristics of different types of
ICBs and their details. In the second stage, a camera is used
for real-time identification of the smart manufacturing field by
collecting real-time images and returning the data to the server
for data analysis, thereby solving the FMS’s quality management
inspection and monitoring. This study has three main objectives:
(1) to establish an image recognition model that is suitable for
use in the smart manufacturing field; (2) to explore the image
augmentation fusion and optimization method of the model so
that the model can learn more image features to improve the
accuracy of image recognition; and (3) to solve the problem of
over screening in automatic optical inspection and introduce
the model into practical applications to test the directionality of
ICB images.

LITERATURE REVIEWS

R-CNN and SPP-Net
There are three main problems to be solved by region-based
convolutional neural networks (R-CNN), which involve (1)
accuracy of object recognition; (2) whether more feature values
can be obtained; and (3) solving the problem of insufficient
dataset. Compared with previous CNNs, R-CNN proposes
a method for selecting region proposals of selective search
(Girshick et al., 2014) to increase its dataset and find critical
features. Previously, when solving dataset problems, the data
augmentation method mentioned in “ImageNet Classification
with Deep Convolutional Neural Networks” was first considered
(Krizhevsky et al., 2012). Notably, the R-CNN region proposal’s
concept also aims at this problem (Girshick et al., 2014). In R-
CNN, the input of selective search (Girshick et al., 2014) is an
image, and the output is the possible position of the object.
The principle is to initialize a similar empty set in advance,
calculate the similarity of all adjacent intervals, store it in the
empty set, find the region with the highest degree of similarity,
and return it to the final total set. The region in the total set is
the object’s bounding box, and the similarity is judged based on
color, texture, size, and shape, and iteratively combining similar
regions to form objects. R-CNN obtains many region proposal
images through the selective search method, but still needs to use
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the same image size as the input of the entire neural network
because the fully connective layer in CNN must maintain the
exact dimensions in operation, and the operation parameters also
need to consider the upper-layer relationship. However, spatial
pyramid pooling network (SPP-Net) addressed this issue: by
adding a layer of SPP before building the fully connective layer.
The function and principle of SPP are that the data process is
performed before regular data input to comply with the fully
connective layer problemsmentioned above. SPP replaces the last
pooling layer before the fully connective layer, and to adapt to
the feature maps of different resolutions, the layer is defined as a
scalable pooling layer so that a fixed ratio can be used through
SPP. This way of converting and maintaining the input of the
fully connective layer is a breakthrough in this part (He et al.,
2014).

Fast R-CNN and Faster R-CNN
The core problem with R-CNN is that it generates a large
number of region proposal images through selective search.
When pre-processing data, we still have to refer to the data
augmentation method by AlexNet (Krizhevsky et al., 2012) to
make modifications, which may lead to the loss of features of
the original region proposal. In addition, if each region proposal
image is put into training, the vast computational waste caused
by repeated feature extraction will make the model inefficient.
With SPP-Net, it is still time-consuming to train all the images,
so Fast R-CNN was created. Fast R-CNN is a unified version of
R-CNN and SPP-Net. Fast R-CNN proposed RollPooling (region
of interest pooling), which uses the idea of SPP-Net to do the
conversion work into the fully connective layer based on the
input image. First, the original image is convolved to generate
a feature map corresponding to RollPooling. Then the image
trained in the region proposals is directly given the convolution
value of the region proposal image through RollPooling to do
MaxPooling. The most significant advantage of RollPooling is
the increase of massive processing speed. Besides, regardless of
the size of the given feature map, the dimensions of the output
data can be kept uniform (Girshick, 2015). The key problem Fast
R-CNN (Girshick, 2015) wants to solve is calculating the image
of the region proposals. Hence, an improved Faster R-CNN
was developed to solve the issue of repetitive region proposals
directly. It does not abandon the selective search (Girshick
et al., 2014) method but finds region proposals with features
more efficiently. Therefore, the concept of RPN (region proposal
network) is proposed in the Faster R-CNN architecture. The
core concept of RPN is not to find the region proposals from
the original image but to find the region proposals through the
convolved feature map of the original image as input. The RPN
extracts region proposals through a sliding window, and each
sliding window generates nine different size of windows (anchor
box). After removing the corresponding nine window features,
the extra part is discarded, and the anchor box with an overlap
area value >0.7 as the foreground is calculated. The overlapping
area is set to the background, the most suitable region proposals
feature map is found, and the concept of RollPooling is combined
to train the model. This method is very similar to Fast R-CNN
in terms of results and has dramatically improved the speed. It

is also one of the most commonly used models in R-CNN (Ren
et al., 2016).

YOLO
After introducing Faster-RCNN (Ren et al., 2016), You Only
Look Once (YOLO) (Redmon et al., 2016) and ordinary R-CNN
were introduced in the same year with different architectures.
The past versions of R-CNN, from selective search (Girshick
et al., 2014) to RPN, were all intended to increase training and
reduce energy consumption. Although the development of RPN
enables sharing of convolution values, YOLO uses an end-to-end
method for object detection using an entire image as the input
of the neural network to predict the coordinate position of the
bounding box directly. YOLOv1 is fast in calculation and can be
applied to real-time fields, but the prediction of the position is
not accurate enough, and the performance of small object fields is
poor. In addition, for object images’ recognition, it is impossible
to distinguish between the foreground and background of the
object effectively. Interestingly, YOLOv2 (Redmon and Farhadi,
2016) imported the anchor box to increase accuracy. The original
YOLOv1 version divides the image into 7 × 7 grids, and
each grid predicts two bounding boxes, which is better than
importing 1,000 pre-selected regions into the anchor box. The
fully connective layer was removed and changed to a fully
convolutional network, and dropout was removed to optimize
the overall speed and accuracy of YOLOv3 (Redmon and Farhadi,
2018). The maximum input of the image can reach 608 × 608
pixels, and many optimizations have been made. For example,
residual neural network (ResNet) and feature pyramid network
(FPN) are used to improve the detection of small objects; the
darknet53 network is applied; the detection threshold of YOLO
model can be adjusted in the training process according to
the threshold parameter in its network architecture. Faster R-
CNN’s architecture RetinaNet is built using ResNet. Comparing
YOLOv3 with ResNet, it can be observed that YOLOv3 can
achieve the same results in a relatively short time. The mentioned
FPN architecture uses three boxes of different sizes. The
model can learn the image characteristics of different blocks
through these three scales to improve YOLO’s shortcomings in
small object prediction (Redmon and Farhadi, 2018). YOLOv4
(Bochkovskiy et al., 2020) has improved the previous version
in many aspects. The author uses the Mosaic method, which
used random scaling and cropping to mix and stitch 4 kinds of
pictures from the original datasets, to enrich the data set and
enhance the stability of the model for small target detection. For
stability, the network uses CSPDarknet53, which is composed of
darknet53 and CSPNet (Wang et al., 2019), which greatly reduces
equipment requirements and computing speed. The author also
drew on the PANet (Path Aggregation Network) (Liu et al., 2018)
used in the field of image segmentation, integrates PAN on the
basis of the FPN architecture, and adds SPP (Spatial pyramid
pooling) to improve the ability of feature extraction.

MATERIALS AND METHODS

Nowadays, in implementing smart manufacturing, intelligence
should be implemented to achieve the most effective results to
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FIGURE 1 | Image recognition and object detection model for ICB.

complete the quality management part of FMS effectively. In
the field of traditional non-intelligent manufacturing, several
problems are encountered. (1) Although the current automatic
optical inspection method can achieve accurate inspection, its
parameter setting is too strict, resulting in a pass rate of ∼70%.
It is still necessary to employ field operators to complete the
second inspection stage to ensure the yield. (2) In traditional
manual monitoring, the biggest problem is that people may suffer
from mistakes due to inattention or fatigue, which affects the
quality of some parts. (3) In the field of smart manufacturing,
the inspection process should give high accuracy in real-time.
Therefore, we must find a suitable image recognition model to
apply here. The deep learning image recognition method allows
the selected model to learn the item’s features by using the
features provided in the dataset. Consequently, accurate image
recognition in the manufacturing system can be attained, and
the integrity and quality inspection of ICBs can be completed
through precise image recognition. This study aims to build
an image recognition model of ICBs so that various types of
ICBs can be classified in this model according to the system
architecture flow of this study, such as Figure 1. In the image
recognition and object detection model for ICB, the first stage
is to collect part of the dataset and establish the image database
standard that can be used based on the R-CNN method. Then,
the collected images are cropped, feature labeled, and matrixed.
Later, the dataset is divided into training data and test data. Next,
an R-CNN is constructed to train the image recognition model.
Finally, the image of the test data is mapped to the recognition
model to generate the result. The results are respectively sent to
the user and the server end for data analysis applications.

ICB Data Collection
The training data in this study has five types of ICB images,
and 100 images are collected based on these five types. The ICB
images used in this studymust contain identifiable features under
specified conditions. First, training the model for collecting

images is standardized to better sample the image features in
the data collection part. While collecting images, two methods
of data collection can be used. In both scenarios, the ICB that
needs to be picturedmust be placed in the center of the image and
then divided into near and far for feature collection. Moreover,
in the collection process, the background is changed to be used
for image recognition under different backgrounds. The focus of
long-range shooting has covered the entire ICB. On the contrary,
the focus of short-range shooting is mainly on the integrity and
clarity of the internal structure of the ICB. Both methods must
sample the different angle characteristics of the ICB during the
shooting process. At least 100 samples of each category must be
tested, and the final data collection shall be based on the five types
of ICBs.

Pre-process
To successfully import the dataset into the model’s training
process, pre-processing must be done. The purpose of data pre-
processing is to keep the input data in a consistent form, such as
fixed image size or labeling so that it fits within the processing
range of the R-CNN model before entering the model training
process. The pre-processing of the data here includes three steps:
the first step is to cut each ICB dataset into the size of 1,024 ×

1,024 pixels without losing key details of the board. Only then
can the dataset be easily imported into the model. The second
step is to mark the image area through the open-source software
Labellmg. Labellmg is the most commonly used software for
labeling images. For our classification, we can mark the features
in the image by selecting the box. The third step is to carry
out matrix work. The image recognition model is different from
humans. Humans capture features through images viewed by
their eyes. Machines, on the other hand, use a data matrix to
understand the key features in blocks in two-dimensional images
and then use this matrix in the model for the application.

To train the YOLO model more effectively, pre-processing
must be carried out for the first stage of data collection. The
purpose is to make the model more focused on learning features
with organization and clarity when learning images. In this stage,
we must first set a fixed image size to mark the learning features
of the model and then, convert the marked features into a matrix
to train the neural network model. The steps are as follows:

• Image cutting: Use ImageSplitter, an online image cutting
tool on the Internet, to fix the image size to capture
the characteristics of each image and define the fixed size
as 1,024× 1,024 pixels.

• Data label matrix: Use the open-source software Labellmg to
label images and feature matrix for training the model to
correspond to the features that this study hopes to learn to
complete the full model training.

Model Selection
There have been many studies comparing model suitability for
smart manufacturing. In this study, YOLO is selected as the
model. In the past, when recognizing R-CNN in images, most
of them used the model architecture of Faster-RCNN for image
recognition. Indeed, the accuracy of Faster-RCNN is still the
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FIGURE 2 | YOLOv3_Darknet53 network (Redmon and Farhadi, 2018).

highest, but to deal with the field of smart manufacturing, real-
time recognition of images is vital. YOLO has a faster real-
time response speed with an accuracy of results close to Faster-
RCNN. Therefore, this study uses YOLO as the R-CNNmodel of
the architecture. Figure 2 shows YOLO’s network configuration
diagram (Redmon and Farhadi, 2018). YOLO is a multi-level R-
CNN, where the first layer defines the dimensions of the input
parameters and the output layer performs classification actions
according to its final output results. Thus, the hidden layer
between the input and output layers is the main structure of
this R-CNN. The activation function used after each CNN layer
is Leaky ReLU, and Residual refers to the ResNet architecture,
which replaces the activation function covering the two-layer
CNN. The functions and tasks of each layer are as follows:

• Input layer: After an ICB image is cut into the input size of
the model, the learning features are marked. Then the parts
are converted into a matrix pattern that the machine can
understand, thereby becoming the model’s input data.

• Convolution layer: The ICB image is two-dimensional in
this study, so a two-dimensional convolutional layer is used.
The convolutional layer can parameterize the image of the
ICB through the size of its image, the kernel size, and the
feature factor.

• Leaky ReLU layer: This derivation of ReLU uses the function
in the neural network node to increase the non-linear
characteristics of the entire neural network function and define

TABLE 1 | Comparison table based on YOLO model.

Model Advantages Disadvantages

YOLOv3 Benchmark Benchmark

YOLOv3_tiny Fast training and lightweight

architecture

The number of model layers

is low, and it is difficult to

reach the maximum value

YOLOv3_voc Low confidence threshold

and small input image

Features are relatively easy

to lose focus

YOLOv3_spp Can be used with the

multi-scale conversion of

eigenvalues

Features are easily

compressed during

conversion

the node’s output so that it is suitable for solving the dying
ReLU problem.

• Residual layer: Its original name is the residual network
(ResNet) and its core is residual block. To solve the problem
of an unexpected increase in the error rate during training,
some of the weight parameters may tend to zero or become
zero during the regular conversion of each layer, and the error
rate will increase when the best solution is ignored.

• Average pooling layer: This layer replaces the fully connective
layer used at the end of the general neural network. The
most significant disadvantage of the fully connective layer
is that the number of parameters is too large, resulting in
overfitting. Therefore, the average pooling layer replaces the
weighted connection layer to directly give each feature its
sense to prevent the overfitting problem caused by the fully
connected layer.

• Softmax layer: The Softmax layer multiplies the weight matrix,
adds the characteristic error to generate the Softmax function,
and applies it to the output of the average pooling layer.

• Classification layer: The classification layer obtains the output
of the previous Softmax layer and classifies the input data
according to the final output.

This study is built on four models based on YOLOv3, namely,
YOLOv3, YOLOv3_tiny, YOLOv3_voc, and YOLOv3_spp. The
comparison of these four models is shown in Table 1.

• YOLOv3: It is the third version of the initial model of
YOLO, which adds the model architecture of Darknet53 and a
multi-scale method to verify the feature map. The multi-scale
approach helps the model learn the detailed features of the
image through three different sizes, which is a breakthrough
for YOLOv3. In addition, it can use images up to 608× 608 as
input data (Redmon and Farhadi, 2018).

• YOLOv3-tiny: There are 19 layers of CNN, which is a part of
the gap compared with the 75 layers of the original version.
Its advantage is that it has better applications for devices with
limited computing resources and fast training.

• YOLOv3-voc: It is an improvement of YOLOv3. The original
input of YOLOv3 is 608 × 608, and YOLOv3-voc is 416 ×

416, which is the same as that of YOLOv3-tiny. This method
focuses on retaining the convolutional layer, reducing the
image size to improve the training speed, and reducing its
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FIGURE 3 | Research flow chart.

ignore thresh (the threshold value that the overlapped block
of the predicted labeled area and the overlapped labeled area
must exceed) for training.

• YOLOv3-spp: The purpose of adding the SPP to YOLOv 3 is
to convert the selected feature maps to the same size using the
SPP fixed-scale conversion method to achieve a more accurate
learning feature model training (Huang and Wang, 2019).

Model Adjustment
YOLO’s overall training process includes classification design,
training dataset cutting, test dataset cutting, naming of each
category, and parameter settings in order. These five items
are YOLO’s current framework, and the selection and setting
of the datasets and models are used to complete the image
recognition work. In this process, the related settings of model
adjustment are introduced as follows: Classes: identify target
types; Train: training dataset settings; Valid: verify dataset
settings; Names: specify the name of the target type; and Backup:
store model parameters. During the model training process,
YOLO trains the recognition model based on the training
data. After repeated iterative training, the image recognition
and object detection results are generated according to the
model parameters and the classification settings. This result has
the characteristics of the relevant image data in the learning
process. Finally, the membership classification is marked when
an output is achieved, and the overall recognition accuracy
is returned. The parameter setting values when using the
learning model in this study are as follows. (1) Batch: 16
(refers to the number of batches that have passed to update
the parameters once); (2) Subdivisions: 4 (if the memory is
insufficient, the batch will be divided into sub-batches); (3)
Width: 608 (the width of the input image data); (4) Height: 608
(the height of the input image data); and (5) Momentum: 0.9
(in neural networks, it is a variant of the stochastic gradient
descent. It replaces the gradient with a momentum, which is

an aggregate of gradients); (6) Decay: 0.0005 (parameter weight
attenuation setting to prevent overfitting); and (7) Learning rate:
0.001 (initial learning rate). The study process includes data
collection, pre-processing methods, experimental environment,
model establishment, discussion, evaluation, and analysis to
verify the proposed R-CNN image recognition model design
method applied to the smart manufacturing field. Figure 3 shows
the flow chart of the study.

EXPERIMENTS

Evaluation Metrics
(1)MeanAverage Precision (mAP): As shown in equation (2), the
accuracy of all classifications is averaged (an average is calculated
by estimating the prediction and actual accuracy). The basic
accuracy calculated is as follows:

TP(ICB1), True Positive in ICB1: The classification result
of the current model is correct, and the overlap between the
predicted labeled area and the actual labeled area is high enough.

FP(ICB1), False Positive in ICB1: The classification result
of the current model is incorrect, or the overlap between
the predicted labeled area and the actual labeled area is not
high enough.

From this, the accuracy of classification ICB1 can be calculated
from the following equation (1):

Precision (ICB1) =
TP(ICB1)

TP (ICB1)+FP(ICB1)
(1)

Therefore, the mAP of each category is calculated from equation
(2) (take N categories as an example):

mAP =
Precision (ICB1)+ . . . + Precision(ICBN)

N
(2)
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FIGURE 4 | ICB type table and image labeling.

(2) Recall: The ratio of the number of correctly identified
categories in the prediction result to the target in the test data,
calculated from equation (3).

Recall (ICB1) =
TP(ICB1)

TP (ICB1)+FN(ICB1)
(3)

TP(ICB1), True Positive in ICB1: The classification result of the
current model is correct, and the overlap between the predicted
labeled area and the actual labeled area is high enough.

FN(ICB1), False Negative in ICB1: It means that the current
model test set is not classified in the pre-set classification, and the
recognition model classifies it as one of the classifications.

Experimental Designs
This study uses the evaluation indicators of the YOLO image
recognition model to compare the image recognition results of
four different models of YOLO and enhance the difference in
the size of the training data through the image augmentation
fusion method. The following three aspects are used to evaluate
the performance of the proposed method.

• Models comparison and evaluation: This study identifies four
different models based on YOLOv3 and use fixed parameters
to train the model. In addition, five different types of ICB
images are used; each type has 100 images, with 80 of them
used for training and 20 for verification. Thus, the total dataset
contains 400 training images and 100 verification images.
Finally, an additional 60 images are used as a test.

• Data augmentation: In this stage, each classification’s original
ICB images are used for data augmentation methods.

The amplification parameters used are rotation_range,
width_shift_range, height_shift_range, shear_range,
zoom_range, horizontal_flip, vertical_flip, and fill_mode.
The 100 original images of each classification are processed
by the data augmentation method to generate 500 images,
and then 400 images per classification are used as the
model’s training data. The remaining 100 images are used as
verification data. There are a total of 1,600 training images
and 400 verification images. Finally, the same 60 test data are
used to discuss the analysis of the data augmentation method
for the model feature training and learning.

• ICB directionality inspection: This stage of the experiment
checks the core image of the integrated circuit board to see
whether the chip is installed incorrectly. Type 5 of the ICBs
is used to perform this test. The whole experiment uses 88
training images 22 verification images, and 50 test images.
These images contain both correct and incorrect integrated
circuit images (incorrect images are ICBs with wrong core
directionality). The images are inspected to see whether the
model can correctly check the core installation error of the
ICB. This experimental model uses the best model discussed
in the 1st and 2nd experiments for training.

Training Dataset
As shown in Figure 4, this study collects 100 images of each
of the five types of ICB, and the data must be labeled during
YOLO training. After labeling each image, the image is set to the
learning format of the YOLO model on the Darknet platform
corresponding to its classification. Images of each format are
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TABLE 2 | Experiment 1-various YOLO models result comparison table.

Model Average

iteration time

Average error Average training

accuracy

Training recall

rate

Average test

accuracy

Test recall rate Maximum average

accuracy

YOLOv3 0.94 0.05 98.87% 98% 91.39% 88% 91.39%

YOLOv3-tiny 0.18 0.203 98.82% 99% 91.63% 87% 91.73%

YOLOv3-voc 0.72 0.036 99% 100% 91.66% 90% 91.9%

YOLOv3-spp 0.98 0.057 98.47% 99% 87.86% 87% 88.68%

FIGURE 5 | YOLOv3 average error rate and average accuracy rate.

divided into training and verification data to complete the
preliminary model training settings.

Experimental Results
Models Comparison and Evaluation
During the model training process, we use the YOLOv3 model
with the parameters that have been set, and the training iteration
target is 10,000. During the training, the values are stored
as train_log_loss.txt file to help us understand each iteration’s
error value and average error, the current learning rate, the
number of training images, and the training time. The entire
training set includes 500 ICB images, which are classified into five
categories, of which 100 ICB images are used as the training phase
verification of the overall model, and the number of training
iterations is 10,000. Then, using the trained model parameters,
the current classification status of each classification and the
generation of mAP and recall of the model are calculated through
the additional 60 images of test data. In this stage, the four
models YOLOv3, YOLOv3-tiny, YOLOv3-voc, and YOLOv3-spp
are presented in sequence from Case 1 to Case 4, respectively,
showing the training process and the accuracy during training
and the final test accuracy. Experimental discussion in Table 2

shows that the YOLOv3-voc model is significantly better than
the other three in 10,000 iterations. Experiment 1 shows that the
YOLOv3-voc model is the best, and its overall average error is
0.036, and its maximum average accuracy is 91.9%.

Case 1: YOLOv3
The model used in Case 1 is the YOLOv3 model. As shown in
Table 2; Figure 5, the average iteration time is 0.94 s, and the

average error rate is 0.05. Therefore, the average accuracy rate
in the training phase can reach 98.87%, and the recall rate can
reach 98%. During the test phase, 60 ICB images are used as test
data. As a result, the average accuracy rate in the test phase can
reach 91.39%, and the recall rate can reach 88% due to the overall
model performance.

Case 2: YOLOv3-tiny
The model used in Case 2 is the YOLOv3-tiny model. As shown
in Table 2; Figure 6, the average iteration time is 0.18 s, and the
average error rate is 0.203. Therefore, the average accuracy rate
in the training phase can reach 98.82%, and the recall rate can
reach 99%. During the test phase, 60 ICB images are used as test
data. As a result, the average accuracy rate in the test phase can
reach 91.63%, and the recall rate can reach 87% due to the overall
model performance.

Case 3: YOLOv3-voc
The model used in Case 3 is the YOLOv3-voc model. As shown
in Table 2; Figure 7, the average iteration time is 0.72 s, and the
average error rate is 0.036. Therefore, the average accuracy rate
in the training phase can reach 99%, and the recall rate can reach
100%. During the test phase, 60 ICB images are used as test data.
As a result, the average accuracy rate in the test phase can reach
91.66%, and the recall rate can reach 90% due to the overall
model performance.

Case 4: YOLOv3-spp
The model used in Case 4 is the YOLOv3-spp model. As shown
in Table 2; Figure 8, the average iteration time is 0.98 s, and the
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FIGURE 6 | YOLOv3_tiny average error rate and average accuracy rate.

FIGURE 7 | YOLOv3_voc average error rate and average accuracy rate.

FIGURE 8 | YOLOv3_spp average error rate and average accuracy rate.

average error rate is 0.057. Therefore, the average accuracy rate
in the training phase can reach 98.47%, and the recall rate can
reach 99%. During the test phase, 60 ICB images are used as test
data. As a result, the average accuracy rate in the test phase can
reach 87.86%, and the recall rate can reach 87% due to the overall
model performance.

Data Augmentation
In this stage of the experiment, the impact of the amount of
data on training is discussed in advance, so data augmentation
methods are used to increase the dataset. The result of
a single image using the data augmentation method is
shown in Figure 9, and the image generated by the data
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FIGURE 9 | Results of data augmentation methods.

TABLE 3 | Experiment 2-various YOLO models result comparison table (after data augmentation).

Model Average

iteration time

Average error Average training

accuracy

Training recall

rate

Average test

accuracy

Test recall rate Maximum average

accuracy

YOLOv3 0.67 0.105 99.62% 99% 91.14% 92% 94.86%

YOLOv3-tiny 0.20 0.251 99.55% 97% 93.56% 90% 94.87%

YOLOv3-voc 0.71 0.06 99.8% 100% 94.72% 95% 96.53%

YOLOv3-spp 0.66 0.079 97.07% 97% 92.22% 95% 94.58%

augmentation method still requires data pre-processing
and labeling.

In this stage of the experiment, as shown in Table 3, the
performance of the YOLOv3-voc model at the number of
iterations of 10,000 is significantly better than the other three.
The experimental result of experiment 2 is that the YOLOv3-voc
model is the best. It has an average error value of 0.06, and the
highest average accuracy rate can reach 96.53%.

Comparing the results from the YOLOv3-voc model of
experiment 1 and experiment 2, listed in Tables 2, 3, respectively,
it is found that using data augmentation methods to allow the
model to learn more image features can significantly improve its
average accuracy and recall rate.

ICB Directionality Inspection
A total of 160 images of type-5 integrated circuit board model
(ICB5) are used in this experiment stage. In the experiment,
the images are divided into 88 for training datasets, 22 for
verification datasets, and 50 for test datasets; all datasets contain
both correct and incorrect integrated circuit images. The model
used is the YOLOv3_voc model, and the model is trained
to 10,000 iterations. The identification results are shown in

Figure 10, showing the correct identification and three kinds
of incorrect identification. Correct: The direction of the ICB
recognition image is correct; Error type 1: The direction of
the ICB recognition image shows type one error; Error type
2: The direction of the ICB recognition image shows type two
error; Error type 3: The ICB recognition image direction shows
type three error; None: Cannot identify the direction of the
ICB identification image. For the result, among the 50 test
images, only one image is currently not recognized. The original
trainingmodel and actual prediction results are shown inTable 4,
showing a correct rate of 98%, which is more than 90% required
for general applications. Furthermore, the recognition time for
each image is no more than one s, which is practical for smart
manufacturing fields that require real-time recognition.

SUMMARY

The experiment in this study is divided into four stages. In the
first stage, we must execute the pre-processing of the dataset
to complete the learning goal and then generate a complete
training process. The second stage focuses on the four models
under YOLOv3 to explore more suitable model for smart
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FIGURE 10 | Directionality classification and inspection of integrated circuit image (correct, error type 1, error type 2, and error type 3).

TABLE 4 | Confusion matrix of ICB Image directionality recognition results.

Original

predict

Correct Error 1 Error 2 Error 3 None

Correct 30 0 0 0 0

Error 1 0 6 0 0 0

Error 2 0 0 7 0 0

Error 3 0 0 0 6 0

None 0 0 0 1 0

manufacturing. In the third stage, the influence of the image
augmentation fusion method on the identification results of the
model is discussed based on the comparison results of the second
stage. Finally, the fourth stage discusses the application of its
model in the actual field. The results of the experiment show the
following conclusions:

YOLOv3 Model Selection
In the experimental part of this study, because we hoped to apply
the model to smart manufacturing and because the advantage of
YOLO is the speed of image recognition, so we hoped to choose
a model with excellent training cost and actual recognition
results. After comparing YOLOv3, YOLOv3-tiny, YOLOv3-voc,
YOLOv3-spp under the third version of YOLO, the experimental

results show that YOLOv3-voc is the best choice, which can reach
the highest 96.53% accuracy rate and 94.72% average accuracy
rate during test stage under the experimental conditions, the
performance is quite good. Although the second-place YOLOv3-
tiny model also has an average accuracy of 93.56, the difference
in training time to reach the same level is quite large, so the final
selection of the model is YOLOv3-voc. Of course, if we further
optimize various parameters or lengthen the overall training
time, it is possible to obtain higher accuracy.

Effectiveness of Data Augmentation
Methods
In the second model comparison, this study applied a data
augmentation method to the dataset to increase the data size and
learn more features. Among them, data augmentation methods
include angle flipping, focus scaling, and image cropping. As
a result, the size of the dataset increased from 100 images to
400 images. Thus, the original average accuracy rose from 91.66
to 94.72%, which proved that the model has a higher grasp
of the image characteristics of the ICB after using the image
augmentation fusion method.

Application of Directional Inspection of the
Integrated Circuit Board
This study focuses on the actual image recognition of the
ICB. We used the brand image of the ICB as the inspection
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target to determine the correctness of its installation
direction. After experimental testing, a total of 160 images
were used to complete the training test. In the last 50
test images, the detection accuracy rate reached 98%,
exceeding the 90% threshold in general actual application
environment, proving that the model could be used for
application testing.

Discussion on the Number of Iterations of
the YOLOv3_Tiny Model
This study also had a separate discussion on the YOLOv3_tiny
model. The training cost of the model and the experimental
data of the YOLOv3_tiny model are discussed in the
first few subsections. Compared with other models, the
training time is shorter due to its lightweight architecture.
Although a high level of average test accuracy can be
achieved through multiple training iterations, the overall
time cost is still slightly higher than YOLOv3_voc.
Nevertheless, its advantage is that the equipment is
relatively standard, and it is easy to train a good model for
application quickly.

CONCLUSIONS

Smart manufacturing must cover functions such as automated
information perception, automated decision-making, and
automated execution. What drives these automated processes
rely on data and every piece of this data comes from various
sensors, and image recognition is one of the methods that can
be used. Moreover, based on the deep learning architecture,
the work can be completed by the trained model. The results
prove that YOLO’s model can achieve the lowest model
training cost in an automated environment that requires image
recognition speed and excellent image recognition results
using the ICB image under the pre-processing method of
this study. Thus, the model is quite suitable for application
in the smart manufacturing field, effectively achieving
automatic perception.

This study also discusses several YOLO models. Among
them, YOLOv3_voc has the best performance, with the highest
accuracy rate of 91.9%. When combined with the pre-processing
in experiment 2 of this study using the image data augmentation
fusion method, the highest accuracy can reach 96.53, 4.5%
higher than the original model without the data augmentation
method. In the final experiment, the image of the ICB was
used and the directional inspection accuracy could reach 98%,
which met the 90% threshold required in general application.
In addition, given the real-time nature of the production site,
this study takes <1 s to identify each image, which can be a
good candidate for application with real-time requirements. This
proves the feasibility and accuracy of R-CNN in the field of
smart manufacturing.

Regarding the research limitations in this study, since it is
impossible to collect all different ICB image data, the ICB image
data sources in this study are only specific to five different types of

webcams. In addition, in terms of model selection, the YOLOv3
model was used in this study in consideration of both machine
performance and accuracy. In the future, more innovativemodels
andmore various ICB image data can be used in this architecture.
In addition, to optimize the parameters of this model for
the future development of this study, the biggest problem is
actually the availability of data. Although the R-CNN can achieve
excellent image recognition results, it requires many data behind
it and must be labeled as learning features. To achieve the
ultimate automatic perception, automatic correction is needed.
The automatic correction introduced in image recognition
provides new data that can be imported into the dataset of
the model for learning. If it could be improved, the results of
the learning are believed to be more prominent. Another part
is about the method of image pre-processing. Although this
study uses image data augmentation fusion methods, it may be
possible to import binary image processing to increase data in
the future.

Finally, we hope the model can be applied to smart
manufacturing as practical application to make overall
learning adjustments. There will be some problems in
the actual field, such as the effect of light that may
cause reflections when the ICB image is automatically
detected, resulting in unrecognizable results. Therefore,
it may be necessary to sample the characteristics of the
ICB itself and some other features to assist the image
recognition process.
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